Why HANK Matters for Stabilization Policy

Francois Le Grand Xavier Ragot Thomas Bourany*

Preliminary

Abstract

When do optimal inflation and consumption differ between Heterogeneous-Agent (HA)
and Representative-Agent (RA) models? What are the underlying mechanisms? To answer
these questions, we derive jointly the optimal fiscal and monetary Ramsey policy in HA and
RA models, incorporating both price and wage stickiness. The allocation in HA economies
diverges significantly from RA economies when the severity of credit constraints varies over
time, which is captured by a new statistics, the Marginal Value of the Credit Constraint. We
identify the relevant fiscal tools to maximize welfare over the business cycle. Time-varying

labor tax appears to be a useful stabilizing tool.
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1 Introduction

Standard heterogeneous-agent (HA) models describe economies in which agents face incomplete
insurance markets for idiosyncratic risk and credit constraints. When combined with nominal
frictions, these models—known as HANK models—are now widely used to identify and quantify
new transmission channels following shocks or policy changes. Yet their implications for optimal
stabilization policy remain unclear. Do these models imply genuinely new normative predictions
compared to simpler representative-agent (RA) models? Does the heterogeneity merely matter

for positive questions?
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To answer these questions, we solve for the optimal joint monetary and fiscal policy in HA
models featuring both wage and price stickiness, under different assumptions about the fiscal
system. We derive the optimal policy response to the main aggregate shocks considered in the
literature: a TFP shock, a public spending shock, a discount factor shock, and an uncertainty
shock. Our analysis addresses two central questions. First, under what conditions does fiscal
policy make it optimal for inflation to deviate from price stability in HA economies? Second,
does the optimal aggregate allocation differ between RA and HA economies and, if so, does this
difference rely on HA-specific mechanisms?

Our first contribution is to analyze deviations from price stability in HA and RA models. The
environment we consider features both sticky prices and sticky wages, under a standard separable
utility function. Our investigation of fiscal-monetary interactions starts with characterizing
a benchmark “complete fiscal system” comprising three types of labor taxation (employer
contributions, employee contributions, and total labor income tax), a capital tax, and public
debt. When all these instruments are optimally time-varying, the optimal rates of price and wage
inflation are shown to be exactly zero, regardless of the aggregate shock that is considered. This
result extends the equivalence findings of Correia et al. (2008) or LeGrand et al. (2022) to an
environment with both sticky prices and sticky wages. Building on this flexible-price benchmark,
our analysis of fiscal-monetary interactions then involves solving for optimal policy in RA and
HA economies, when the planner is prevented from using fiscal instruments that are set constant.
This approach allows us to identify which missing fiscal tools generate the largest welfare losses
and the most significant deviations from price and wage stability.

Our second contribution is to show that HA economies generate new first-order mechanisms
that are relevant to optimal stabilization policy. These mechanisms are driven by time-varying
precautionary savings, and are hence specific to HA models. In a tractable setting, we prove
that aggregate allocations differ between HA and RA economies after an aggregate shock when
the severity of the credit constraint is time-varying—specifically, when the Lagrange multiplier
on household borrowing constraints varies over time. To build economic intuition, we introduce
a new sufficient statistic that we call the Marginal Value of the Credit Constraint (MVCC). We
show that the time variations of this quantity are instrumental in determining when HA and
RA allocations diverge. The MVCC measures by how much to increase the interest rate for
relaxing the borrowing limit of credit-constrained households. In both simple and quantitative
models, we demonstrate that the behavior of the MVCC depends on the nature of the aggregate
shock and on the set of available fiscal instruments. The MVCC is time-varying after discount
factor and uncertainty shocks but nearly constant after TFP and public spending shocks, at least
when the set of fiscalinstruments is not too restricted. Consequently, HA and RA economies
differ significantly in their responses to discount factor and uncertainty shocks but not so much
to the TFP and public spending shocks, helping reconcile contrasting results in the literature.

When fewer fiscal instruments are available, the MVCC becomes more volatile, regardless of



the aggregate shock. The gap between HA and RA economies also grows with the lack of
available instruments. We also compare the MVCC to the discount factor wedge (DFW) used
in Nakajima (2005), Werning (2015), Acharya and Dogra (2021) and Berger et al. (2023) to
compare allocations between HA and RA economies. While the two statistics are distinct, they
are quantitatively close in our simulations.

The two contributions show that when labor taxes cannot vary over time, the optimal
HA allocation differ from the optimal RA one and sizable deviations from price stability arise
optimally in HA models. This holds for instance for TFP shocks, that imply a labor wedge and
make the real wage differ from the marginal productivity of labor. With sticky nominal wages,
price inflation becomes a second-best instrument to mitigate this wedge. Time-varying labor
taxes thus serve as a key stabilizer, reducing both deviations from price stability and aggregate
fluctuations (that become closer to those in the HA model). We call these taxes non-Keynesian
stabilizers because they dampen the fall in consumption and inflation after a negative shock,
whereas traditional Keynesian stabilizers reduce the fall in consumption by increasing inflation
through a lower output gap. Furthermore, when the planner is prevented from optimally levying
capital tax, short-lived variations in optimal inflation responses in HA models act as an imperfect
substitute for time-varying capital taxes. Conversely, the absence of optimal capital tax has no
consequence in RA models. The HA allocation therefore deviates from the RA one. However,
substantial inflation adjustments through this channel require relatively flexible prices.

As a final side result, we also derive predictions on the optimal path of public debt. In HA
models, the variation at impact is always smaller in absolute value than the one in RA models.
Given the role of public debt as a buffer saving in HA models, the planner tends to limits its
variations compared to the complete market case. The public debt is highly persistent both in
RA and HA models, but slightly less so in the latter than in the latter..

Related literature. This paper contributes to three strands of the literature: optimal fiscal
and monetary policy in heterogeneous-agent (HA) and representative-agent (RA) economies,
fiscal-monetary interactions in HANK models, and models with both price and wage stickiness.

First, deriving optimal Ramsey policy in HA models with aggregate shocks is both theoretically
and computationally challenging. Some papers rely on numerical methods to solve for the optimal
path of instruments (Dyrda and Pedroni, 2022), while others use continuous-time techniques to
derive first-order conditions for the planner (Nuno and Moll, 2018 and Nutio and Thomas, 2022
among others). Acharya et al. (2022) solve for optimal monetary policy using the tractability
of a CARA-normal environment without capital. Bhandari et al. (2021) provide a quantitative
solution for optimal policies in a New Keynesian model with aggregate shocks. Yang (2022)
analyzes optimal monetary policy by optimizing the coefficients of a Taylor rule. McKay and
Wolf (2022) develop a general quadratic-linear framework to characterize optimal policy rules. In

this paper, we use the tools of LeGrand and Ragot (2022a) and their subsequent improvements,



which rely on constructing a finite state-space representation of HANK models. This approach
makes it possible to solve for optimal policy with multiple instruments, various nominal frictions,
and different aggregate shocks. Using this framework, monetary policy after a TFP shock is
studied in LeGrand et al. (2022), while fiscal policy after a public spending shock is examined in
LeGrand and Ragot (2025). Within this body of work, our contribution is to clarify the new
insights that HA environments provide for optimal policy design.

Second, the literature on fiscal and monetary interactions has been reinvigorated by the
HANK framework. In these models, monetary policy has redistributive implications, fiscal shocks
exert novel effects on inflation due to realistic marginal propensities to consume (MPCs), and
public debt influences the real interest rate. Recent surveys by Auclert et al. (2025) and Kaplan
(2025) provide a synthesis of this literature. In this context, the analysis of Ramsey policy serves
both as a tool to derive policy implications and as a framework to identify the mechanisms that
matter most.

Finally, this paper relates to the literature on environments with both price and wage
stickiness, sometimes referred to as the “inflation spiral” literature. Early contributions in RA
settings include Blanchard (1986), Gali (2015, chapter 6), or Blanchard and Gali (2007). Erceg
et al. (2000) study optimal monetary policy in this framework, while Chugh (2006) analyzes both
optimal monetary policy and optimal labor taxation. More recently, Lorenzoni and Werning
(2023) provide a detailed analysis of optimal policy and real wage dynamics in such an environment.
Introducing both nominal frictions generates real wage rigidity, which creates new and important

roles for fiscal and monetary policy.

2 Understanding the difference between RA and HA economies

in a simple environment

In this section, we analyze a tractable model, where the difference between the optimal policies
and allocations of HA and RA economies can be characterized analytically. The key simplifying
assumption is to consider deterministic productivity fluctuations, following the approach of
Woodford (1990) and LeGrand and Ragot (2025), among others. To further streamline the

exposition, we focus on the flexible price economy.

Production. The production function transforms each unit of labor L; into Z; units of output,
such that aggregate output is given by Y; = Z;L;. Since prices are flexible, the real wage is equal
to TFP: U‘}t = Zt.

The agents. The economy is populated by two types of agents, denoted by A and B. A unit
mass of agent A has a productivity 1 in every odd period and a productivity 0 in every even

period. Conversely, a unit mass of agent B has a productivity 1 in every even period and a



productivity 0 in every odd period. Thus, in each period, there is a unit mass of agents with
productivity 1, and income fluctuations are deterministic. Agents with positive productivity are
referred to as “employed” (subscript e), while those with zero productivity are referred to as
“unemployed” (subscript u).

Agents’ preferences are represented by a Greenwood-Hercowitz-Huffman (GHH) utility
1

function: U(e,l) = log(c — %), where ¢ and [ are individual consumption and labor supply
respectively, and ¢ > 0 is the I*ﬁrisch elasticity of labor supply. We assume that agents discount
utility from period t+ 1 in period ¢ by a possibly time-varying discount factor 5, with 0 < 5; < 1.
Following Gali (2015) among others, we interpret changes in [3; as preference shocks(). The

discount factor for utility in period ¢ as of period 0 is:
Oy = I, (1)

which simplifies to 3t if 3; is constant over time.
The only friction in the economy is a credit constraint: Agents cannot borrow. We denote
Ce,ts Get, Cuyt, Ayt > 0 as the consumption and saving levels of employed and unemployed agents

in period ¢, respectively. The budget constraints for employed and unemployed agents are:

Cet + et = Riay 1+ wiley, (2)
Cut + Gyt = Riaey 1, (3)

where R; and w; are the gross real post-tax interest rate and wage rate, respectively. For
simplicity, we assume that initial wealth is zero: a.—1 = ay,—1 = 0. The Euler equations for

employed and unemployed agents are:

-1

1+
et —1
Cet — 1 > Bth—HCu 110 (4)
1+1 !
1+ -1
-1 > BR Lea 1 ith equality if 0 5
Cut1 = BBt | Cepy1 — I , with equality if a, ¢ > 0. (5)
©

Because they have a null productivity, unemployed agents do not work: [, ; = 0. Due to the
GHH utility function, the labor supply of employed employed agents is pinned down by the real
wage. Aggregate labor supply L; is therefore:

L=l =w. (6)

Government. The government issues a quantity of public debt B;. Financial market clearing
requires:
Qet + Qyut = By (7)



The government raises linear capital tax 7/ and labor tax 7}V to finance interest payments
on public debt. If #; denotes the net pre-tax interest rate, the gross post-tax interest rate is
Ry = 1+ (1 — 7f)7;. Similarly, the post-tax wage rate is w; = (1 — 7V )w;. The government
budget constraint writes as (1 + 7¢)By—1 < By + Ttht(a@t_l + ay—1) + 7V Ly, which with

Ttht = Wy — wy = Zy — wy simplifies to:

RtBt—l = (Zt - wt)Lt + Bt. (8)

The Ramsey allocation. For a given sequence of MIT shocks, known at date 0, {5, Z; }+>0,
the Ramsey program selects the path of instruments {75, 7}V, B;};>0 that implements the
competitive equilibrium achieving the highest aggregate welfare (given the initial conditions).
The aggregate welfare criterion used is the standard Utilitarian objective, in which both agents
are equally weighted. Since the discount factors correspond to those of the agents, they may

therefore be time-varying. The Ramsey program can be expressed in post-tax terms as follows:

1+1

> let ’
max Ol log | cer — — + log(c > 9
(Ce,t,Cu,trae,t,0u,t,le,t Bt, At ,Re,wt )¢ t—ZO t( & et 1+ é g( ujt) ( )
SubjeCt to: Ce,ts Cu,ts Qe,t,Au,t, le,ta lu,t > 07 (10)
ae7,1 = au7,1 = 0, (11)

and subject to: the constraints (2)—(8) guaranteeing the optimality of individual choices (budget
constraints, Euler equations and labor FOC with GHH utility function, respectively); the resource

constraint (8); and the financial market clearing condition (7).

2.1 Two benchmark economies: The representative-agent and no-policy

economies

Before characterizing the Ramsey allocation, we present two benchmark economies that will

serve as a baseline for analyzing the effects of the different aggregate shocks we will consider.

The representative-agent economy. The representative-agent (RA) economy is an economy
populated by a unique agent endowed with the same GHH utility function as in the general
case. In this setting, the Ramsey problem involves maximizing the agent’s intertemporal welfare
subject to the Euler equation and the resource constraint. The optimal policy is straightforward

to characterize, as the first-best allocation can be achieved. Specifically, the planner sets

/£ = 7V = B; = 0. Under this policy, the labor supply is given by LﬁA = Zf, and optimal

o 1
consumption is Cf*4 = 7%



The no-policy economy. In the no-policy (NP) economy, the planner does not intervene
in the economy with credit constraints. The laissez-faire policy implies B, = 7}V = 7£ = 0.
The wage equals labor productivity of labor, and the employed agent supplies labor such that
let = Ly = Zf. Since there is value storage, the employed agent consumes their entire income:

Zt1 *#_ while the unemployed agent consumes nothing: cu,t = 0. There is no consumption

Cet =
smoothing and the aggregate consumption, denoted as C{¥" in this economy, is equal to the
consumption of employed agent and verifies C¥F" = Zt1 e — C’tRA.

As a consequence, these two economies yield identical aggregate consumption paths following

both TFP shocks (Z;); and discount factor shocks (5;);.

2.2 The incomplete-market economy with optimal policy

The Ramsey program is expressed in equations (9)—(11). As a preliminary step, we prove that
the planner does not increase public debt to the point where credit constraints cease to bind
for unemployed agents. Such a policy would imply a very high debt level and necessitate an
excessively high and distortionary labor tax. We therefore assume that credit constraint remains
binding for unemployed agents. By substituting the labor supply expression (6), the program can
considerably be simplified. All technical details can be found in Appendix A, here we present
only the main result.

We denote the aggregate consumption in this economy by C/! 4= Cut + @y . Our first result,
stated in the following proposition, summarizes how the optimal allocations in HA and RA

economies differ in their response to shocks to the discount factor and TFP.!

Proposition 1 For any path of TFP (Z;); and discount factor (B¢):, the optimal allocations in

the HA and RA economies are related as follows:

cHA 1 4 1 \7%
= (a49) (o0 15)

Proposition 1, whose proof can be found in Appendix A highlights two key insights regarding

the role of aggregate shocks on why HA and RA models differ.

TFP shocks (Z;); only. When the economies are subject to TFP shocks alone, then discount
factors remain constant and gy = 8 for all t. Proposition 1 implies that the ratio gi% also
stays constant. This further yields étH 4= CA’tRA, where &; denotes the proportional deviation of
variable x; from its steady state value. Although RA and HA economies have different steady

states, their aggregate response to TFP shocks is identical.

In the literature, the former are typically referred to as demand shocks, while the latter are termed supply
shocks. However, since we also consider other shocks in the quantitative sections, we adhere to their precise
denominations to avoid any ambiguity.



Discount factor shocks (3¢); only. When the economies are subject to shocks to the discount

HA
factor only, the ratio gtﬂ becomes time-varying. As a result, the RA and HA economies exhibit
t

heterogeneous aggregate responses, with CA'tH A4 é’ﬁA.

Consequently, only discount factor shocks induce different aggregate responses between the
HA and RA economies. However, for both shocks, the paths of the policy instruments (labor tax
and public debt) differ between the twoeconomies. In the RA economy, setting B; = 7}V = 0
achieves the first-best allocation in each period, and the paths of all instruments adjust in
response to both types of shocks. The difference in the optimal allocation response between the
HA and RA economies is our primary focus, as it is a key indicator capturing the distinct policy

implications of the two economies for both types of shocks.

2.3 Interpreting the results: Two statistics

We introduce two statistics to understand the differences between optimal allocations in RA and

HA economies.

The Marginal Value of the Credit Constraints (MVCC). We define as v; the Lagrange
multiplier associated to the credit constraint of unemployed agents. It is given by: vy =
Uc(cut,0) — BRi41Uc(Cept4+1, les+1). Intuitively, words, 14 measures the gap between the current
and future discounted marginal utilities of agents u and therefore reflects how slack the Euler
equation (5) of unemployed agents is. It equals 0, when credit constraints do not bind and is
positive otherwise. We then define the Marginal Value of Credit Constraints (MVCC) as the
Lagrange multiplier v; normalized by the current marginal utility of agents wu:

Vi

MVCCt = 7Uc(cu7t7 O) .

This unitless quantity reflects how binding the credit constraint is. If credit constraints do not
bind, the MVCC equals zero as saving is already optimal by construction.
Using the definition of 14, the Euler equation of unemployed agents can be written as:

Uc(cu,ta 0) = ﬁt Uc(ce,t—i-h le,t—i—l)'

This implies that % is the gross interest rate at which zero savings would be optimal for
unemployed agents. In other words, MV CC; measures by how much the interest rate should be
increased for the credit constraints of the unemployed agent to be relaxed.

When the MV CC' is constant, the interest rate R, becomes a sufficient statistic for the
growth rate of the marginal utility of unemployed agents—and hence for the growth rate of their
consumption. The same logic applies to employed agents, as their Euler equation holds with

equality. Thus, when the MVCC is constant, the consumption dynamics of both employed and



unemployed agents depend solely on the real interest rate, and their consumption growth rates
are identical to those in the RA economy. Therefore, only the dynamic properties of the MVCC
— and not its steady-satte value — determine the extent to which the dynamic responses of RA
and HA differ following an aggregate shock.

The MVCC can be explicitly computed in this economy. As derived in Appendix A.2, its

expression is:
L+ o1+ Bit1)) A+ (1 + Br))

(1+2¢)*
This expression depends on the discount factor ; but not on TFP Z;. In particular, the MVCC

remains constant when [ is constant, regardless of TFP shocks. This explains why the dynamics

MVOC, =1 -

of aggregate consumption in RA and HA economies are identical following a TFP shock, but

differ after a discount factor shock.

The Discount Factor Wedge (DFW). Following Nakajima (2005), Werning (2015), Acharya
and Dogra (2021) and Berger et al. (2023), it is well established that the aggregate allocation
of HA models can be interpreted as the equilibrium outcome of a RA model, augmented by
the appropriate wedges. In particular, the discount factor wedge (DFW) is defined such that
the allocation and interest rate in the HA economies emerge as an equilibrium outcome of an
RA economy, in which the discount factor is scaled by this wedge—with all other elements held
constant between the HA and RA economies. The DFW thus enables the replication of the
HA economy’s allocations and prices as an equilibrium outcome of a modified RA economy.
It can also be seen as a measure of the distortions in saving incentives arising from market
incompleteness. Formally, the DWF, denoted D FW,, is defined to ensure that the Euler equation
of a representative agent—endowed with the allocation of the HA economy and a scaled discount

factor— holds with equality. Formally:

l1+1/‘P -1 l1+1/§0 1
HA HA HA HA HAt+1
— : =(1+DFW — . .
(Ct 1+ 1/<p) 1+ QR (Ct“ 1+ 1/@0)

After some algebra, derived in Appendix A.3, we obtain the following expression:

(1+1/0) 14+ @1+ Biy1)) — (1/2+ ) (1 + Bry1) 142
(L+1/0) A+ 1+ 5) — (1/2+¢) (L + 5) L+ ¢ (1+ Bei)

The DFW DFW, pertains to the aggregate consumption of all agents, both constrained and

DFW, = —1.

unconstrained. However, since the Euler equation of unconstrained agents holds with equality,
movements in the DFW are primarily driven by the choices of unconstrained agents. Actually,
when the steady-state MV CC is close to 0, it can be shown that the deviations of DFW; and
MV CCy are proportional, i.e., DFW £ X ]\mCt. As a consequence, both statistics convey the

same information. The advantage of the MVCC lies in its micro-foundation, as it directly reflects



the underlying credit constraint.
In the more general HA model studied below, the MVCC will be different from 0 for all
credit-constrained agents. In this case, we will verify that the average value of the MVCC behave

similarly to the DEW and that both statistics are observationally equivalent (see Section 5).

Sufficient statistics and optimal policies. The simple model delivers three results, which
will help understanding the general model. First, it demonstrates that a specific statistis can
be employed to assess the degree to which the dynamics of HA and RA allocations differ. This
statistic, that we call MVCC, captures the intensity of the credit constraint, which is the central
imperfection responsible for the discrepancies between HA and RA outcomes.. Second, the model
reveals that the optimal aggregate allocation in the HA economy can replicate the dynamic
properties of its RA counterpart. This equivalence arises when the optimal path of policy
instruments effectively neutralizes the impact of shocks on the credit constraint, thereby ensuring
that the MVCC remains constant over time. Third, the MVCC, while informative, does not
serve as a sufficient statistic for evaluating the optimality of observed policies. For instance,
maintaining a constant MVCC in response to a discount factor shock would be suboptimal,
whereas such a policy is indeed optimal in the context of TFP shocks. This distinction highlights
that optimal policy design must account for the nature of the shock and its implications for

credit constraints.

3 The general model

We now relax many of the simplifying assumptions of the previous Section, and we introduce
both sticky prices and sticky wages, along with a rich fiscal structure.
We consider a discrete-time economy populated by a continuum of size one of ex-ante identical

agents. These agents are assumed to be distributed along a set J, with the non-atomic measure

0 0(J) =12

3.1 Risk

Aggregate risks. Agents face an aggregate shock (S;);. The shock is persistent but known
at date 0 and should hence be considered as a MIT shock. The aggregate shock can affect the
economy through different channels: the TFP, Z;; agents’ discount factors, 8;; government public
spending, Gy; or individual productivity levels, y;;. In the main text, we primarily focus on two
channels: the TFP and the discount factors, as in the theoretical section. These two cases are
sufficient to contrast Ramsey policies in HA and RA economies. Results for the other channels

are summarized in Section XX, with a more more detailed providedin the appendix.

*We follow Green (1994) and assume that the law of large numbers holds.
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Idiosyncratic risk. Agents also face idiosyncratic productivity risk. The productivity process,
denoted y, follows a first-order Markov chain with transition matrix @ = (my,),, and takes
value in a finite set ), which may depend on the aggregate shock S;. With wage w and labor
supply [, an agent with productivity y earns pre-tax labor income wyl. In each period, the
fraction of agents with productivity y is constant and denoted by n,. We normalize average
productivity to 1, i.e., 35, nyey,y = 1. The history of idiosyncratic productivity shocks up to
date t for agent i is denoted by y! = {vi0,...,vi+}, where y; - is the productivity at date 7. The
measure of idiosyncratic histories up to date ¢, denoted 6;, can be computed using the initial

distribution and the transition matrix.

3.2 Preferences

Households are expected-utility maximizers with time-separable preferences and possibly time-
varying discount factors. As in Section 2, the discount factor from ¢+ 1 to ¢ is denoted 3; € (0, 1),
and the compounded discount factor from ¢ to 0 by©®, = HZ;%)BS. In each period, households
derive utility U(c,!) from consuming the economy’s unique consumption good ¢ and experience
disutility from supplying labor [. We further assume that in each period, the instantaneous
utility is separable in consumption and labor: U(c,l) = u(c) — v(l), where u,v : Ry — R are
twice continuously differentiable and increasing. Furthermore, u is concave, with u/(0) = oo, and

v 1S convex.

3.3 Labor taxes

For generality, and for theoretical reasons developed in Section 3.8, we introduce a rich set of four
linear taxes. We here present the two labor taxes, and introduce income and capital tax below.

First, unions bargain over the nominal wage rate, denoted W,. Workers pay a linear labor
tax 7V on this income, so their post-tax nominal wage is (1 — 7}V)W;. We will interpret 7"V as
a worker social contribution. Second, firms pay an additional labor tax, TtE , creating a wedge
between the labor cost per efficient unit of labor, W;, paid by firms and the bargained wage
W,. This tax can be interpreted of as an employer social contribution that does not appear
on workers’ payroll. Formally, the relationship is: W; = (1 — 7F)W;. The tax 77 affects labor
demand, which unions internalize in their bargaining strategy. Similarly, the tax 7}V affects labor
income and is also internalized. The key between is that 77 has a direct effect on employment
for a given bargained wage W;, but not on the wage W, whereas 7V has a direct effect on the

wage W, for a given wage W, but no direct effect on employment.?

3By direct effect, we refer tothe partial equilibrium effect of each variable. In general equilibrium (with
endogenous income), these taxes affect all variables through price variations. The assumption on the incidence of
the two taxes, 7"V and 7%, is based on the empirical literature (e.g., Saez et al., 2012 and Lehmann et al., 2013).
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3.4 Production

The specification of the production sector follows the New-Keynesian literature on price stickiness,
adapted to the tax structure described above. The consumption good Y; is produced by a unique
profit-maximizing representative firm that combines intermediate goods (yJJi ¢); from different
sectors indexed by j € [0,1] using a standard Dixit-Stiglitz aggregator with an elasticity of
substitution p:

€

1 f ep—1 513771
Y, = / Yio P dj .
0

For any intermediate good j € [0, 1], the production yjf , is realized by a monopolistic firm and

sold at price p;;. Aggregate labor productivity Z; is affected in period 0 by a shock eOZ and
follows a AR(1) process: Z; = e, with

zZ0 = 1—1—602 and zt:pzzt_l for t > 1,pZ < 1.

Intermediate firms face quadratic price adjustment costs & la Rotemberg, proportional to the
_ 2
magnitude of relative price changes: % (p?'%’tl — 1) . Denoting the price inflation rate as
F
7rtP = Pfj - 1 where P, is the implied price index, we obtain the standard ePhillips curve (see

Appendix XXX for the details):

ep—1 Y,
(1 +x) = dep (my — 1) + By {Wf‘rl(l + Wﬁl)% , Y= ZiLy. (12)

3.5 Labor market: Labor supply and Union wage decision

Following the New Keynesian sticky-wage literature, labor hours are supplied monopolistically
by unions (Erceg et al., 2000; Chugh, 2006; Hagedorn et al., 2019; Auclert et al., 2022 among
others). There is a continuum of unions of size 1 indexed by k. Each union k supplies Ly,
hours of labor at date ¢ with a nominal wage Wkt. Each union £ sets its wage Wkt to maximize
the intertemporal welfare of its members internalizing the labor demand by firms. We assume
quadratic utility costs for the adjustment of the nominal wage: wTW(Wkt / W1 — 1)2dk. The

objective of union k is:

00 T 2
max [, Z O /(U(Ci,sa li,s) - wTW <I/TI;V]€S — 1) )E(dz),
A ks—1

(Wks )S s=t

This maximization yields the New-Keynesian wage-Phillips curve:

5 ew — 1
WXV(WF/—FI):I#—I;VV W

(v’(Lt) - (1— ¥ )iy / yi,tu'(ci,t)z(di)) Lo+ B,

WKl(”XL + 1)]a
ew

labor gap
(13)
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where 7}V = % is the wage inflation rate, and w; = Wy /P, is the real pre-tax wage.
t—1

3.6 Assets

The only asset is nominal public debt, with supply B; at date ¢, paying a pre-determined
before-tax nominal interest rate i;_1. Public debt, issued by the government, is assumed to
be default free. The financial market clearing implies that the net total savings of households,
denoted A, equals public debt:

A = By (14)

The real before-tax (net) interest rate for public debt, denoted by 74, is defined by:

_ 1491
= ———1. 15
" 1—1—772P (15)

3.7 Agents’ program

Each agent enters the economy with an initial endowment of public debt a; —1 and productivity
level y;0. The joint initial distribution over public debt and productivity levels is Ag. In
subsequent periods, agents learn their productivity y;;, supply labor, and earn savings payoffs.
Since labor supply L; is chosen by unions, labor income is (1 — Ttw)wty@tLt. The before-tax real
financial payoff amounts to 7a;¢—1.

We assume that agents pay two additional taxes. First, a capital tax TtK is levied on interest
payment, implying a net asset payoff of (1 — TtK )7ta;t—1. Second, an income tax TtL is levied
on total labor income, TtL(l — TtW)wtyi,tLt. The latter income tax TtL is not internalized by the
unions as each union’s marginal contribution to total income is negligible. As a consequence, the
post-tax total income is equal to (1 — 75)(1 — 7}V )by, 1 Le.4

Agents earn this net total income and use it together with their past savings, to consume c; 3

and save a;;. Their budget constraint can be expressed as follows:
Cip + iy = i1 + (L= 7/ a1 + (1 — ) (1= 7" )deyi e L) (16)
To simplify the notation, we define the post-tax real interest and wage rates as:

re = (1 — 77, (17)

wy = (1— TtL)(l — TtW)wt =(1- TtL)(l — TtW)(l — TE)'lDt. (18)

Given that Wy /P, = we/(1 —7F)(1 —7)V), we derive the law of motion for the post-tax real wage

4An alternative specification would treat 7% as a tax on all income, including capital income. However, results
would remain unchanged, as the set of feasible optimal allocations would be identical. In our setting, 7% should
be interpreted as the sum of corporate income tax and household capital income tax.
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as a function of inflation and taxes

1%7% Wt—1 . Wi P
0 -y - G-t 19)

The agent’s program can be finally be written as:

o0
max _ Eo > Oy (Ulciy, Lt)), (20)
{ci,tvai,t}t:O t=0
cit+air=1+7r)ai—1+wyirLle, aig, (21)

and subject to the credit constraint a;; > —a, and the consumption positivity constraint
ciy > 0. The notation Eg represents the expectation operator over both idiosyncratic and
aggregate risks. The solution to the agent’s program is a sequence of functions, defined over
([—a; +00) x V) x Yt x Rt and denoted by (ct, at)i>0, such that:®

cit = ct((ai—1,Yi0),¥5, 2", air = ar((ai—1,9i0), yl, 2°). (22)

For simplicity, we retain the i-index notation. Denoting by v; ; the discounted Lagrange multipliers

of the credit constraint, the Euler equation corresponding to the agent’s program (20) is:

w'(cie) = Bl [ (1 + resn)u'(ciprn) | + vig- (23)
with the complementary slackness condition:

ait > —a,v(ais+a) =0, vy > 0. (24)

The Marginal Value of Cash Constraint (MVCC). As in Section 2, the MVCC for agent
i is defined as MV CC;; = v;i/u'(ciy). The Euler equation (23) of agent i becomes:

T+ 741

u'(cip) = Bl m“’(%,tﬂ) :

In the HA economy, there is a distribution of MVCC values. When agents are unconstrained,
MVCC;; =0;and 0 < MVCC;; < 1. In the quantitative section, we will discuss the average
value of MVCC across agents.

3.8 Government and market clearing conditions

The government finances an exogenous public good expenditure G; by raising four taxes and

issuing one-period riskless public debt. The government raises four linear taxes: (i) a tax 7/

®See e.g. Miao (2006), Cheridito and Sagredo (2016), and Acikgéz (2018) for a proof of the existence of such
functions.
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based on labor cost @w; and paid by employers, (ii) a tax TtVV based on bargained wage w; and
paid by workers, (iii) a tax 7/ based on income and paid by workers, and (iv) a capital tax 7/5.
Importantly, the three labor instruments (7", 77 and 7/) are independent and non-redundant.
On the one hand, 77 creates a wedge between the labor cost and the bargained wage, while 7}V
and TtL create wedges between the bargained wedge and the net wage. On the other hand, TtW is
internalized by unions, while 7/ is not. These three labor taxes operate on different margins and
enable us to derive our equivalence result below. They should be understood as theoretical tools
necessary to generate price and wage stability. Each tax will be removed in turn to consider more
realistic fiscal settings and to assess how each fiscal instrument contributes to inflation volatility.

In addition to capital and labor taxes and public debt, the government also taxes firms’
profits, €, which limits the distortions implied by profit distribution.®The government budget

constraint can be expressed as:

1+ i .
Gi+ —— 3By <+ By +7EQ — 7V i Ly
14+

+ Ttl(?:t /ai7t_1£(di) + TtW’lthLt + TtETIJtLt.
%

Using the financial market clearing condition (14), the post-tax interest rate 7 (15) and the

post-tax rate definitions (17), we simplify the government budget constraint to:

Gy +rBi—1 +w Ll < (1 — %(Wf)zﬁft + By — B, (25)

We also express the financial market clearing condition and the economy’s resource constraints

as:

/ai7t€(di) = Bt, (26)

/i cil(di) + Gy = (1 — Q’?’(ﬁﬁ) ZiLy. (27)

Equilibrium definition. We now formulate our definition of competitive equilibrium.

Definition 1 (Sequential equilibrium) For any exogenous paths of aggregate shocks (S),
characterizing TFP (Z;), public spending (Gy)¢, discount factors (Bt)¢, and productivity levels,
(Ve)t, a sequential competitive equilibrium is a collection of individual allocations (¢;t, @it Vit)t>0,icT,
aggregate quantities (L¢, At, Yy, Qi, mi)e>0, price processes (Wi, re, Tt, We, We)e>0, monetary policy
(it)e>0, fiscal policies (7)Y, 7F, 7F, 7, By)i>0, and inflation dynamics (n}V, 7] )i>0 such that, for
an initial wealth and productivity distribution (a; —1,Yio0)icz, and for an initial value of public

debt satisfying B_1 = [, a; 1£(di), we have:

5 Alternative modeling strategies could involve distributing profits to agents or introducing a fund that receives
interest payments and profits (see LeGrand et al., 2022 for a discussion and references). We adopt the current
assumption to simplify the algebra, as these alternatives yield quantitatively similar results.
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1. given prices, the allocations (¢it, iy, Vit)t>0ez Solve the agent’s optimization program

(20)~(21);
2. financial and goods markets clear at all dates: for allt >0, equations (26) and (27) hold;
3. the government budget is balanced at all dates: equation (25) holds for all t > 0;
4. firms’ profits Q; and the mark-up m; are consistent with firms profit maximization.

5. the price inflation path (7} )i>o is consistent with the price Phillips curve (12), while the
wage inflation path (7}¥)i>o is consistent with the wage Phillips curve (13);

6. the real and nominal rates (7,1t )e>0 verify (15);

7. post tax rates (wy, e, Ty, We, We)¢>0 are defined in equations (17)-(18).

Social Welfare Function. We assume that the planner maximizes a generalized Social Welfare
Function (SWF), where the weights w on each period’s utility can depend on the agent’s current

productivity. The planner’s objective is:

Wo = By [fj o0 [wtue iy - Witz 23)

t=0
This expression encompasses the utilitarian case, where w(y) = 1 for all y. This generalization of
the standard SWF is now used either in both quantitative work (e.g., LeGrand and Ragot, 2025
and McKay and Wolf, 2022) and theoretical investigations as a deviation from the utilitarian case
(see Davila and Schaab, 2022). A theoretical foundation is provided in LeGrand et al. (2025).
We use it here to facilitate simulations and comparisons of economies in Section 5.

We assume that the economy starts from a steady-state situation where the fiscal system is
optimally determined. In period 0, the economy is hit by an aggregate shock affecting either Gy,
Zy, By or the productivity levels y;. The entire path of these shocks is known in period 0, and
the planner optimally sets its available instruments under commitment.

We have introduced five fiscal instruments (7)Y, 77, 7F, 7/, By)1>0. This rich fiscal system is
a theoretical device to understand differences between HA and RA economies with both price
and wage stickiness. As shown below, this fiscal system is the minimal one required to ensure
no deviation from price and wage stability in all cases. In what follows, we consider different
fiscal systems, where only some fiscal instruments, rather than all, are available to the planner
to smooth the effect of the aggregate shock. Specifically, we solve for optimal monetary policy
considering subsets Z C {7, 7 7L 7K} of available fiscal instruments. Public debt is always
optimally set, which is theoretically and empirically relevant in this environment. The set Z is

fixed and does not change across periods. For all other instruments I € {7, 7% 7L 7K B} \ Z,
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we assume that the instrument is constant and set to its steady-state value: I; = I, at all dates.
Ramsey equilibrium definitions.

We start with the definitions when all instruments are available.

Definition 2 (Ramsey equilibrium) For a given path of aggregate shocks (St)i>0, a Ram-
sey equilibrium with all instruments is the path of monetary policy (it)i>0, fiscal instruments
(TtW,TtE,TtL, TtK, Bi)t>0, which selects a sequential equilibrium following Definition 1 and maxi-
mizing the SWF (28).

Definition 3 (Ramsey steady state) A steady-state Ramsey equilibrium is a Ramsey equilib-
rium where aggregate real variables (L¢, At, Yy, Q¢ mit)e>0, prices (wy, re, Fe, We, W )e>0, monetary
policy (i)i>0, fiscal policies (7)V,7F 7k, 7/, Bi)i>0, and inflation dynamics (w}V,wf )10 are

constant. The value of the instruments are denoted as (1Y, 75 7L 7K. Byy).

We then turn to the case of a limited set of instruments.

Definition 4 (Ramsey equilibrium with limited instruments) For a given path of aggre-
gate shocks (S;)i>0 and a given set of available instruments T C {7V, 7F 7L 751 o Ramsey
equilibrium with a limited number of instruments is the path of monetary policy (i¢)t>0, public
debt (Bt)e>0, and fiscal instruments (Z;)i>0, which selects a competitive equilibrium maximizing
the SWF (28) given that the unavailable instruments are set to their steady-state values: Iy = I

for all I € {7V 7E 71 7K1\ T.

We first solve the Ramsey model without aggregate shock to compute the steady-state values
of instruments, (7YY, 75 7L 7K) and then we solve for the optimal dynamics of the available
instruments. For the simulation of the dynamics for a given set of available instruments Z,
observe that unavailable instruments are set to their steady-state value. Therefore, regardless
of the choice of Z, the Ramsey equilibrium will feature the same steady-state allocation, as the

aggregate shock is transitory.

3.9 The representative agent economy

We compare HA results to the optimal allocation in the RA economy, which is standard. A
representative agent maximizes utility in an economy without financial constraints. The planner
uses distorting tools and public debt to finance public spending. The algebra is provided in
Appendix C.
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4 Optimal policies with heterogeneous agents

4.1 Characterizing the Ramsey allocation

We derive optimal policies in HA economies for all aggregate shocks, given a set of available

fiscal instruments Z. The Ramsey planner’s program is:

)
max B0y 0| [wiui) (utel) -~ o(r)) a) - Sl (29)

(Zewere Lo Beal wlV (ciaievin)i)yng 10 i 2
subject to the government budget constraint (25), the individual budget constraints (21), the
individual Euler equation (23), the individual slackness condition (24), the individual positivity
constraints ¢, It > 0 (for given initial wealth a’ ;), the price Phillips curve (12), the wage Phillips
curve (13), the real wage dynamics (19), and that unavailable instruments verify I; = Ig for
all I ¢ Z. We provide the full program in Appendix D, where we also derive the first-order
conditions of the planner. As in LeGrand and Ragot (2025), we use aspects of Marcet and
Marimon (2019) to factorize the Lagrangian. On a technical note, the factorization of the price
and wage Phillips curve is straightforward, as both can interpreted as Euler equations, for firms
and unions, respectively.

This economy features several frictions, which are worth summarizing. The monetary side of
the economy exhibits two sets of market imperfections. The first set relates to the goods market.
Intermediary firms posses monopoly power, which implies a price markup m; that can differ from
one. There is also a Rotemberg cost for price adjustment, preventing firms from freely setting
their price. Notably, these two market imperfections are complementary: one vanishes when the
other is absent, as evident from the price Phillips curve (12). The second set of imperfections
pertains to the labor market. The presence of unions means that agents’ labor supply is not set
optimally, while the Rotemberg cost for wages prevents unions from freely adjusting wages. In
the absence of Rotemberg cost, labor supply remains sub-optimal, as it still determined at the
union level and characterized by: v'(L;) = wy [, ysu'(ci)€(di). If agents could choose their own
labor supply, l; +, it would be individual-specific and satisfy: v'(l;+) = wiy; 10 (¢iz).

To gain further insights into the optimal allocation in the HA economy, it is useful to introduce
the notion of social valuation of liquidity (SVL) for agent i, which represents the value to the
planner of transferring one additional unit of the consumption good to agent ¢ in period ¢. In
LeGrand and Ragot (2025); LeGrand et al. (2025), we show that this statistics simplifies the
derivation of the FOCs of the planner, and that it is related to the Generalized Social Marginal
Welfare Weights (GSMWW) introduced by Saez and Stantcheva (2016).

More precisely, we denote by ©;\;; the Lagrange multipliers of the Euler equations (23 of
agent i at date ¢t. The Lagrange multiplier of the government budget constraint is ©u; (25) and
the Lagrange multipliers on the price and wage Phillips curves (12) and (13) are denoted ©;yp;
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and Oy, respectively. From the Lagrangian denoted £, we define the SVL 1); ; as:

oL
q/)’i,t = a )
Cit
which can also be expressed as:
i " ew — 1 weyit L
Vi = wyu(cig) = (Nig — (L+re) A1) u'(cip) — Wit 7w (cit) (30)
—_— Yw 1 — 7
direct effet effect on savings

effect on the bargained wage

As shown in equation (30), this valuation consists of three terms. The first term, wiu/(c;;),
represents the private valuation of liquidity for agent ¢ scaled by the planner’s current weight for
agent i. The second term in (30) accounts for the impact of an additional unit of consumption on
saving incentives from periods ¢t — 1 to ¢ and from periods ¢ to t+ 1. An extra unit of consumption
makes the agent more willing to smooth out consumption between periods ¢ and t 4+ 1, making
the Euler equation more binding. This more “binding” constraint reduces the utility by the
algebraic quantity u”(c;+)\;+. Conversely, this extra consumption unit also makes the agent less
willing to smooth consumption between periods ¢t — 1 and ¢ and therefore “relaxes” the constraint
from period ¢ — 1, as reflected in A; ;—1. The third term captures the effect of the transfer on the
unions’ marginal incentives to bargain over wages and is hence proportional to the Lagrange
multiplier vy on the wage Phillips curve.

This expression for v; ; is common across all HA economies we consider, regardless of the set
of available tools. The planner’s FOCs will depend on the specific set of available instruments.

We provide all derivations in Appendix D.

The corresponding RA economy. We solve the same problem with a representative agent
instead of the HA structure. For brevity, we present the problem and the FOCs in Appendix
C, as the solution techniques are more standard. However, to the best of our knowledge, this

problem has not been solved with such a rich fiscal structure.

4.2 The equivalence result

We can now state our main equivalence result.

Proposition 2 (An equivalence result) In the HA economy, when all instruments (TL, TE, TW,TK)

are optimally chosen, the planner ezactly implements 7 = 0 and ©}V = 0, for every path of

aggregate shocks (St)e>0.

Proposition 2 generalizes the equivalence result of Correia et al. (2008) and Correia et al.
(2013) for RA economies and LeGrand et al. (2022) for HA economy, to the case where both
sticky prices and sticky wages are present. Notably, compared to LeGrand et al. (2022), we
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need two additional instruments (7, 7), while introducing one additional nominal constraint.

Specifically, one instrument is needed to prevent wage inflation (which destroys resources), and
another is required to replicate the flexible-price labor supply and neutralize the market power
of unions. In the presence of a sufficiently large fiscal system, monetary policy plays no role
beyond ensuring stability. This result holds for all possible paths of aggregate shocks, regardless
of whether they affect TFP, public spending, discount factors, or productivity levels.

Importantly, the result hindges on the presence of two labor taxes. The first labor tax
TE (internalized by the planner) enables the planner to “isolate” the pre-tax rate w;, which
is determined by the allocation (with zero price inflation), from the union wage w;, which is
determined by the inflation path (7}');. Removing 7¥ as an independent instrument imposes a
constraint linking the factor price w; and the wage inflation path. In other words, the planner
would have to balance the effects of price inflation (determining w;) and of wage inflation
(determining 10). The second labor tax 7/ allows the planner to simultaneously set the labor
supply optimally and close the wage gap in the wage Phillips curve. Without 7%, the planner
would face a tradeoff between two inefficiencies: (i) the sub-optimal labor supply due to union
market power and (ii) the cost of wage inflation. If either of these two instruments were removed,
Proposition 2 would no longer hold, and the economy would exhibit positive inflation in wages
or prices.

Overall, the first part of Proposition 2 rationalizes our tax system, which represents the
minimal tax system for which price stability is optimal.”

To assess the deviation in the allocations and in price and wage stability, we now provide a

quantitative investigation of economies in which we vary the set of available fiscal instruments.

5 Quantitative analysis of optimal policies

We now focus on two pairs of economies to derive the main lessons regarding the differences
between HA and RA allocations, as well as the deviations from price and wage stability. In each
case, the ies differ based on the set of taxes to the planner (with all other taxes held constant
at their steady-state value). Given four taxes (77, 7%, 7W 1K) we can analyze 15 subsets of
time-varying tools (since 2* — 1 = 15, as at least one tax must be adjustable to prevent public
debt divergence). We examine the effects of four shocks (Z;, B, G, y:) in both RA and HA
economies. Rather than presenting results for all these 120 combinations, we concentrate on the
economies that best clarify the relevant mechanisms.

More precisely, for each pair of economies (HA and RA), we contrast the implications of a

TFP shock with those of a discount factor shock. This approach is a consistent extension of

"More precisely, while other tax systems could also achieve price and wage stability—such as introducing a
time-varying consumption tax, as in Correia et al. (2008)—the number of independent instruments would not be
reduced. We consider our tax system to be realistic.
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our theoretical investigation in Section 2. These two shocks yield very different implications
for optimal policy. We consider first the case where all fiscal instruments are available: W =
(r5,7W 7 7). We then analyze two scenarios where we remove some labor taxes. In the
second economy, 7" is held constant 72 = (TK JTE L ). In the third economy, 7F is the only
time-varying labor tax. Z®) = (75 7). The rationale for this selection will become clear in the
interpretation of the results.

Finally, we discuss the effects of other missing instruments (notably 7/) and the two remaining
aggregate shocks in Section 5.6.

To conduct these simulations, we first calibrate the model in Section 5.1. We explain how to

compute optimal policies in HA economies in Section 5.2.

5.1 The calibration and steady-state distribution

The time period is a quarter.

Aggregate shock. The aggregate shock (S;) follows an AR(1) process, such that S; = pSi_1,

where we set p = 0.95 to ensure the same persistence across all channels of the aggregate shock.

Technology and TFP shock. The production function is: Y = ZL. The TFP process is a
standard AR(1) process and satisifies Z; = exp(z0S¢), where zp < 0 represents the initial negative
TFP shock.

Preferences. The steady-state discount factor is f = 0.99, and the period utility function
=71 —1 /e

o X Ii/p-
value recommended by Chetty et al. (2011) for the intensive margin in HA models. The scaling

is: The Frisch elasticity of labor supply is set to ¢ = 0.5, which is the
parameter is xy = 0.01, which implies an aggregate labor supply of roughly one-third.
The process for g; verifies 5 = f x exp(boSt), where by > 0 is a period-0 positive shock to

the discount factor.

Idiosyncratic risk. We use a standard productivity process: logy; = pylogy,—1 + €}, with
! i (0, 05). We calibrate the persistence of the productivity process as p, = 0.994 and the
standard deviation as o, = 0.06. These values are consistent with empirical estimates (Krueger
et al., 2018), and generate a steady-state Gini coefficient of wealth of 0.78, which aligns with the
data.® Finally, we use the Rouwenhorst (1995) procedure to discretize the productivity process
into 10 idiosyncratic states {y,...,y10} with a constant transition matrix.

To consider an increase in the variance of the productivity process, we define y; ¢ := y; +
(—1)1i§5n;1ut50, where dy > 0 is the initial variance shock, n; is the share of agents with

productivity y; and (—1)'<5 = —1if 4 <5 and 1 otherwise (recall that there are 10 productivity

8The Gini coefficient of wealth is 0.78 using the SCF data in 2007, before the 2008 Great Recession.
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levels). This specification leaves the average productivity level unchanged but increases the

variance. Low productivity levels decrease further, while high-productivity levels increase.

Steady state taxes and public debt, and public spending shock. We first solve the
model with constant exogenous taxes and explain the choice of the SWF below. We assume that

L'is set

employer social contributions and capital taxes are 0, 7¥ = 75 = 0.9 The income tax 7
to $ to offset distortions on the labor market due to the monopoly power of unions. We assume
W = 16%. This value, combined with the value of public debt level described below, implies
that public spending amounts to 15 of GDP, which is close to the US value in 2007. The amount
of public debt (which is the only asset in this economy) is set to an annual value of 128% of
GDP. Since public debt is the sole asset, we calibrate this level to achieve an average Marginal
Propensity to Consume (MPC) of 0.3.19

The process for Gy is a AR(1) process, with Gy = G exp(goSt) where go > 0 is the period-0

positive shock to public spending.

Monetary parameters. Following the literature, particularly Schmitt-Grohé and Uribe (2005),
we assume that the elasticity of substitution is ep = 6 across goods and ey = 21 across labor
types. The price adjustment cost is set to ¥p = 100, such that the slope of the price Phillips

curve is 82;1 = 5% (see Bilbiie and Ragot, 2021, for a discussion and references). The wage

adjustment cost is set to ¥y, = 2100, such that the slope of the wage Phillips curve is 1%, ,
reflecting the assumption that wages are stickier than prices.!! Since there is no steady-state

P

inflation in prices or wages: 77 = 7" = 0, these coefficients only affect the dynamics.

Table 1 summarizes the model parameters.

Calibration of the RA economy. The calibration of the RA economy retains the same
preference parameters as in the HA economy. Allocations in the RA (resp., HA) economy are
denoted with a superscript RA (HA). In the RA economy, the first-best allocation is achieved
at the steady-state. The steady-state labor supply, L74 (with 7% = 0 ), is determined by
the FOC: v/(L%4) = u/(cf4). We set public spending in the RA economy, G#4, such that the
public-spending-to-GDP ratio is equalized across the two economies: G4 / yRA — gHA JYH A

9Setting a zero capital tax is necessary to facilitate the comparison bewteen HA and RA models. In the latter,
the optimal steady-state capital tax is O (when it exists), which is not necessarily the case in HA framework. See
LeGrand and Ragot (2025) for a discussion.

10We thus adopt a liquid one-asset liquid wealth calibration to match a realistic MPC (Kaplan and Violante,
2022).

N Gensitivity analysis confirms that our qualitative results are robust to these values, although the volatility of
price and wage inflation obviously increases with the slopes of Phillips curves.
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Parameter Description Value Target

Preference and technology

B Discount factor 0.99 Quarterly calibration
o Curvature utility 2
a Credit limit 0
X Scaling param. labor supply 0.01 L=1/3
© Frisch elasticity labor supply 0.5 Chetty et al. (2011)
Shock process
Py Autocorrelation idio. income 0.993 Krueger et al. (2018)
oy Standard dev. idio. income 6% Gint = 0.78
o Autocorrelation TFP shock 0.95
Tax system
™ Worker social contribution 16% G/Y =15%
L Income tax 4.74% 1/eyw
TF L 7K Other tax 0%
B/Y Public debt over yearly GDP 128% MPC =0.3
G/Y Public spending over yearly GDP 15% Targeted
Monetary parameters
Ep Elasticity of sub. between goods 6 Schmitt-Grohé and Uribe (2005)
Uy Price adjustment cost 100 Price PC 5%
Ew Elasticity of sub. labor inputs 21 Schmitt-Grohé and Uribe (2005)
(. Wage adjustment cost 2100 Wage PC 1%

Table 1: Parameter values for the baseline calibration. See the text for descriptions and calibration
targets.

5.2 Simulating optimal policies in the HA economies

To investigate the optimal dynamics of the model, we perform the following experiment — which
is standard in the New Keynesian RA literature, but which must be adapted to the HA case.
We first solve for the optimal policy for a given set of instruments and consider the steady-state
allocation — which represents the long-run allocation in the absence of aggregate shock. We
then assume that the economy starts from this Ramsey steady state and implement a period-0
persistent MIT shock, either a TFP or a discount factor shock. This procedure allows us to
quantify the extent to which the economy deviates from the steady state before converging back
to it. The magnitude of the economy’s response to the shock depends both on the nature of the
shock and on the set of instruments available to the planner.

The steady state crucially depends on the SWF used in the Ramsey program, as well as in

general on the tools available to the planner. To overcome this difficulty and ensure that all
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simulations start from the same steady state, we employ the inverse optimal taxation approach,
as in Heathcote and Tsujiyama (2021) and LeGrand and Ragot (2025). Specifically, we fix
thesteady-state fiscal instruments, defined by 7% = 75 = 0, 7% = 1/g,, and 7V > 0, and
estimate the weights of the SWF for each set of fiscal tools to ensure that this steady state is
optimal. Each instrument available to the planner generates a FOC, imposing a restriction on
the SWF.!2Nonetheless, these constraints alone are insufficient to uniquely determine the SWF.
We therefore select the SWF closest to the utilitarian SWF (where all weights are equal) that
satisfies these restrictions. We also verify that the choice of the SWF does not quantitatively
affect the first-order dynamics of the allocation.

The Ramsey problem in HA models cannot be solved with standard simulation techniques.
The Ramsey equilibrium involves a joint distribution across wealth and Lagrange multipliers,
which is a high-dimensional object. While computing the steady-state values of Lagrange
multipliers is already challenging, the Ramsey solution further requires solving the dynamics of
this joint distribution. To address this complexity, we employ the truncation method developed
by LeGrand and Ragot (2022a) to determine the joint distribution of individual wealth and
Lagrange multipliers.!> The accuracy of optimal policies, both in the steady state and dynamics,
has been analyzed in LeGrand and Ragot (2023). In addition, LeGrand and Ragot (2022b)
propose an improvement to efficiently reduce the state space. Further details on the method and
its application in the present setup are provided in Appendix.

To determine the steady-state values of the Lagrange multipliers and SWF for a given fiscal

policy, we use the following algorithm:

1. Set a truncation structure (with a maximum truncation length N) and set the desired

values for the fiscal instruments.

2. Solve the steady-state allocation of the full-fledged Bewley model, using standard techniques

and the specified instrument values.

3. Compute the truncated representation of the economy by aggregating over truncated

histories.

4. Solve the steady-state Ramsey problem in the truncated economy through the following

steps:

(a) Derive FOCs of the planner for each instrument in the truncated representation.

12This strategy ensures the existence of a consistent steady-state. An alternative approach would involve
specifyinga given SWF function and solving for the optimal Ramsey steady state. However, this method may
yield unrealistic steady-state allocations (Auclert et al., 2024 or LeGrand and Ragot, 2025 for a discussion). As in
standard New Keynesian models, optimal steady-state price and wage inflation rates are zero, regardless of the
SWEF. Consequently, steady-state price stability does not impose any additional restriction on the SWF.

130ptimizing simple rules in the spirit of Krusell and Smith (1998) is also difficult to implement due to the large
number of many independent instruments.
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(b) Compute the SWF weights that are the closest to 1, for which all the planner’s FOCs
hold.

(c) Compute the associated Lagrange multipliers.

(d) The truncated representation, combined with the fiscal instruments, the estimated
SWEF, and the Lagrange multipliers constitutes a steady-state optimal Ramsey alloca-

tion for the truncated representation.

5. Compute the optimal dynamics of the instruments and allocation in the truncated economy

using the planner’s FOCs, as is standard in finite state space models.

We use the refined truncation approach, setting the refinement truncation length to N = 8. We
check that the results do not depend on the choice of the truncation length. Consistent with
LeGrand and Ragot (2022a), the truncation method provides accurate results, thanks to the

introduction of the £s parameters.

5.3 The economies with all instruments

We consider an economy where the planner has access to all fiscal instruments, with no restriction.
We plot the Impulse Response Functions (IRFs) of allocations and planner’s instruments following
either a transitory negative TFP shock or a transitory positive discount factor shock. The solid
blue line corresponds to the HA economy and the red dashed line to the RA economy. We report
the IRFs for eight key variables over 40 periods: aggregate consumption (panel 1), expressed
as a percentage deviation from the steady state; the three labor taxes, all in level deviations:
employer social contribution 7/ (panel 2), the worker social contribution tax 7}V (panel 3), and
the labor tax 7/ (panel 4); the two inflation rates, for prices (7, panel 5) and wages (7", panel
6), both also in level deviations; the public debt (B, panel 7); the MVCC and the DFW (panel
8). In the latter panel, we only report the MVCC for the HA economy using a solid blue plain
line, as it is inapplicable for the RA economy, where credit constraints never bind. We also
report the DFW using black squares. We have rescaled the series for the DFW by the same
constant (approximately equal to 2), which depends solely on steady-state parameters and is
identical across economies. As will be evident, the (rescaled) series of DFW and MVCC are
nearly—though not exactly—identical across all simulations.

First, both price and wage inflation rates remain at zero along the dynamics, as expected.
This price and wage stability is independent of the nature of the shock and holds in Figures 1a
and 1b. Second, the response of aggregate allocation differs markedly depending on the shock. In
the case of the TFP shock, the aggregate consumption response is virtually identical between the
HA and RA economies. In contrast, following a discount factor shock, aggregate consumption
does not react in the RA economy but falls on impact before rapidly converging back to zero in

the HA economy. The RA economy implements the first-best allocation, which is independent
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(b) Discount factor shock.

Figure 1: Dynamics of the economy when all instruments are available, after a TFP and discount
factor shock. The Heterogeneous-Agent economy (HA) is in blue and the Representative Agent
(RA) is in red. Variables are in percentage proportional change, except tax rates and inflation
rates which are in percentage level change.
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of agents’ discount factor. Only two quantities react to the discount factor shock in the RA
economy: the interest rate and the public debt. The interest rate does not affect the allocation
and is merely a residual of the Fuler equation. Public debt, computed from the government’s
budget constraint, increases to reflect the changes in the interest rate.

In the HA economy, the aggregate allocation is sensitive to the discount factor shock. Agents
become more patient, leading them to save more. Because of credit constraints, the economy is
non-Ricardian and these larger individual savings translate into lower aggregate consumption.
This explains the drop on impact of aggregate consumption in Panel 1. Similarly, the rise in
individual savings implies that public debt must increase to accommodate the extra saving
demand coming from more patient agents. As explained in the theoretical model of Section 2,
the MVCC (panel 8) is a strong indicator of whether HA and RA economies do differ. The
MVCC measures the extent to which the credit constraints are binding in the economy and,
thus, the degree to which the economy is non-Ricardian. For the TFP shock in Figure 1a, the
MVCC barely changes, indicating that HA and RA allocations do not differ significantly. For
the discount factor shock in Figure 1b, the MVCC responds strongly on impact, highlighting the
quantitative importance of the non-Ricardian dimension in this case and the differing responses
of aggregate consumption in HA and RA economies. As noted, the responses of the MVCC and
DFW are observationally equivalent.

Finally, the reaction of fiscal tools differs across economies and shocks. After the TFP shock,
the planner substantially reduces social the employer contribution (7). This adjustment aligns
the cost and the marginal productivity of labor more closely. Subsidizing labor demand helps
mitigate the negative impact of the contraction. Conversely, the planner increases the worker
social contribution (7") by a comparable amount to prevent an excessive reduction in the wage
targeted by unions (which would be costly) and to avoid heavily distorting household supply of
labor. These two sizable movements occur in both i the HA and RA cases. Finally, regarding
the labor tax (7%), it remains unaffected in the RA economy, as it is a redundant instrument
that provides no benefit .'* However, in the HA economy, 7% is slightly reduced on impact to

w

ease households’ budget constraints, which explains why the increase in 7'V on impact is slightly

larger in the HA economy than in RA one.

w

5.4 The economies when 7" is not available

Figure 2 plots the response of the HA and RA economies to a TFP and discount factor shocks,

E

when both the labor tax 7% and the employer social contribution, 77, are available to the planner.

w

For both shocks, the worker social contribution 7" remains unchanged by construction.

“1ndividual and government budget constraints can be combined inyo the resource constraint, where the
wage and the interest rates play no role. The wage rate w thus influences the Phillips curves (12)—(13) and the
consistency equation (19) between inflation rates. This role is analogous to that of w/(1 — 7%) making w and 7%
substitute.
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The outcomes differ across the two shocks. First, for the TFP shock as shown in Figure 2a,
the real effect of the shock is similar in the HA and RA economies, even despite the unavailability
of 7W. This is corroborated by the MVCC and DFW, which exhibit negligible movement.
Compared to the case where all instruments are available, there is a (small) inflation response,
observed both in prices and wages, but it remains similar across the HA and RA economies.
Unlike in the full-instrument case, the income tax sharply increases in the HA economy at impact,
while it had slightly decreased when all instruments were available. The reason is that this
increase acts as a substitute for the increase in the worker social contribution tax observed in
the full instrument case, as the worker social contribution is here constrained to remain constant.
The overall similarity between the full-instrument case and this one suggests that the labor

L

tax 7% can serve as a reasonably effective substitute for the unavailability of the worker social

contribution, 7.

Second, in the case of the discount factor shock plotted in Figure 2b, the picture is slightly
different. As in the full-instrument case, the real response differs between the HA and RA
economies. This shock continues to have no impact in the RA economy, as reflected in the MVCC
and DFW. However, the drop in consumption is much larger when 7" is not available, highlighting
the absence of this instrument. In the full-instrument case the worker social contribution had
sharply decreased, while the employer social contribution was kept constant and the income
tax increased. Here, the unavailability of a time-varying worker social contribution forces the
employer social contribution to act as a substitute, since the income tax must still increase at
impact and thus cannot fulfill this role. This explains why the employer social contribution now
decreases at impact. However, this instrument is a poor substitute for the missing worker social
contribution, because it affects the bargained wage differently. In addition to the larger real
effects observed, the planner must also deviate from price and wage stability to compensate for
the unavailability of the worker social contribution.

E are unavailable.

w

For the sake of conciseness, we do not report the cases where only 7% or 7
The absence of the labor tax 77 yields results broadly similar to those documented here whenr
is unavailable. This again shows that these two instruments are reasonably good substitutes.
When 7F is missing, the outcomes closely resemble the full-instrument case, indicating that this
instrument plays a less critical role than the other two. This finding is further confirmed in the

following section.

5.5 The economies when 7" and 7% are not available

Figure 3 illustrates the response of the HA and RA economies to a TFP and a discount factor

E s the sole labor fiscal instrument available

shock, when the employer social contribution, 7
to the planner. By construction, worker social contribution (") and labor tax (7%) remain

unchanged for both shocks.
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(b) Discount factor shock.

Figure 2: Dynamics of the economy when the worker social contribution 7" is the only unavailable
fiscal instrument, following a TFP and a discount factor shock. The HA economy is represented
in blue and the RA one in red. All variables are expressed in percentage proportional changes,
except for tax and inflation rates, which are presented in percentage level change.
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The results differ markedly from the full-instrument case presented in Figure 1, and even
from the scenario without the worker social contribution (") in Figure 2. For both shocks, the
real response differs between HA and RA economies when only 7 is available. This is again
reflected in the MVCC and DFW (Panel 8). Additionally, the planner deviates from price and
wage stability—for both shocks in the HA economy and for the TFP shock in the RA economy.

In response to the TFP shock, both price and wage inflations are used to implement a decline
in the real wage following a negative TFP shock, reflecting that 7 is not an effective instrument
for the planner. This adjustment occurs in both the RA and HA economies, but the deviation
from price stability is more pronounced in the HA economy. This experience suggests that when
no efficient tax is available to reduce the labor wedge, i.e the gap between the real wage and the
marginal productivity of labor, then the planner relies on monetary policy, using price and wage
inflations as substitutes for the missing instrument.

For the discount factor shock, both the allocation and the dynamics of price and wage inflation
differ between the HA and RA economies. The planner implements an increase in the real wage,
leveraging both price and wage inflation to achieve this adjustment. As for the TFP shock,
the departure frm price and wage stability is more pronounced in the HA economy, thereby

L is costlier.

illustrating that that the absence of 7V or 7
In summary, we find that allocations and price dynamics differ most significantly in response
to the discount factor shock (which directly affects the MVCC), and also when no efficient labor

tax is available to reduce the labor wedge.

5.6 The effect of missing instruments and other shocks

We now present results from additional simulations. To save some space, we summarize key
findings and refer to the IRFs in the Appendix.

First, we consider an economy in which the capital tax is held constant (TtK = rg ), while the
remaining labor fiscal instruments (77, 7}V, 7/) are optimally time-varying (see Figure XXX in
Appendix XXX). For the given calibration, inflation moves slightly on impact. When we further
reduce the coefficient of price stickiness from 100 to a low value of 1, = 10, inflation increases
significantly on impact for one period. This spike in inflation acts as a substitute for the missing
capital tax, as it lowers the real interest rate for one period through the Fisher effect, given
its unexpected nature. Thus, inflation can substitute for the unavailable capital tax on impact,
provided that prices are sufficiently flexible. This result aligns with the findings of LeGrand et al.
(2022).

Second, we implement two other aggregate shocks: a public spending shock and a pure
idiosyncratic uncertainty shock. The latter is implemented through a time-varying, mean-
preserving change in idiosyncratic productivity y; ;. The allocations after a public spending shock

closely resemble those resulting from negative TFP shocks. This can be seen in Figure XXX of
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Figure 3: Dynamics of the economy when the employed social contribution 7 is the only
available labor fiscal instrument, following a TFP and a discount factor shock. The HA economy
is represented in blue and the RA one in red. All variables are expressed in relative deviations
from their steady-state values, except for tax and inflation rates which are presented in level
deviations from their steady-state values.
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Appendix XXX. Conversely, the effects of the uncertainty shock mirror those of a discount factor
shock, as both operate through the mechanism of a time-varying MVCC. In the RA economy, this
shock has no effect by construction, while in the HA economy, this shock induces time-varying
precautionary saving, which directly affects the MVCC. Results are reported in Figure XXX of
Appendix XXX.

Finally, we also derive two main results regarding instruments. First, the path of public
debt varies significantly between the HA and RA economies, even when allocations are similar.
The variation of public debt at impact (in absolute terms) is always lower in the HA economy
than in the RA one. Similarly, the optimal response of public debt is always less volatile in
the RA economy than in the HA one. This comes from the fact that public debt plays very
different roles in the two setups. In the HA economy, the planner adjusts public debt issuance
to agents’ demand for liquidity to facilitate self-insurance, while it has no such role in the RA
economy. Second, the income tax or the worker social contribution are substitute instruments
and both reasonably effective in maintaining price and wage stability, as well as keeping the HA
allocation close to the RA one—regardless of the shock. Conversely, when only the employer
social contribution is available, the departure from price and wage stability is sizable (except for
public spending shocks) and HA and RA allocations markedly differ for all shocks. This tends to

show that the employer social contribution is the least effective fiscal tool.

6 Conclusion

We have derived the optimal fiscal and monetary policy in an economy characterized by both
sticky prices and sticky wages, considering a range of fiscal instruments. We compare the
outcomes of a RA economy and a HA economy in response to four distinct shocks: a TFP shock,
discount factor shock, a public spending shock, and a shock to idiosyncratic risk. As a benchmark,
we first establish a complete fiscal system, defined as a set of fiscal instruments in which both
price and wage inflation are zero following any of the four shocks. In other words, under this
complete fiscal system, any potential benefits of inflation are more efficiently achieved through
time-varying taxes, thereby avoiding the additional costs associated to inflation. This complete
fiscal system serves as a theoretical benchmark, which we use to analyze both allocations and
inflation dynamics when certain fiscal instruments are fixed.

When all instruments are available, the allocation in the HA and RA economies are very
similar for both the TFP and the public spending shock, but they differ substantially in response
to the discount factor shock and the idiosyncratic risk shock. This result stems from the
differential effects of each shock on the average tightness of agents’ credit constraints, a statistic
we label the Marginal Value of Credit Constraint (MVCC). We demonstrate both theoretically
and quantitatively that this statistic explains the divergence in allocations between the HA and

RA economies. A time-varying MVCC induces changes in precautionary saving, which influence
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consumption and saving decisions in the HA economy—a mechanism absent in the RA economy.
This ingfind helps reconcile disparate results in the literature, which appear to be shock specific.

We then examine the effects of missing fiscal instruments on optimal inflation. Specifically, we
identify the fiscal tools necessary to achieve price stability. This analysis clarifies the wedges that
inflation affects to improve welfare, and offers insights for monetary policy in HA settings. We
find that persistent inflation is employed to reduce the labor wedge,—the gap between the real
wage rate and the marginal productivity of labor— when certain labor taxes are not-time-varying.
Additionally, short-lived inflation can act as a substitute for missing capital taxes, but only when
prices are sufficiently flexible.

Time-varying labor subsidies prove to be a valuable policy tool for reducing the labor wedge
following a TFP shock. Notably, such policies have been recently implemented in Europe to
stabilize employment. For instance, Germany’s kurzarbeit program and France’s activité partielle
scheme functioned as wage subsidies aimed at reducing layoffs during the Covid-19 crisis. We
refer to these instruments as non-Keynesian stabilizers, since their primary objective is not to
stimulate aggregate demand or boost economic activity through fiscal multipliers. Instead, they
directly target the labor wedge, which is the gap between the real wage and labor productivity..

From this analysis, we conclude that HA economies offer new insights into optimal stabilization
policy, which are highly dependent on the nature of the shock and the set of available fiscal

instruments.
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Appendix

A The simple model

The program of the planner in the economy with credit constraint (presented in Section 2) is:
oo
Coeonsinn ) ;) Oy (U(c@t, le) + U(Cug, 0)) (31)
St.Cep + e = Riay -1+ wile g, (32)
Cut + Qut = Riaei—1, (33)
Ue(cetslet) = BrRey1Uc(cut+1,0), (34)
Ue(cuts0) = BiRit1Uc(cets1, leg+1), with equality if a, >0, (35)
—Ul(Ce,t, le,t) = thc(Ce,t,le,t), (36)
RiBi_1 +wiley = Ziley + By. (37)
At = et + ayy, (38)
Ay = By, (39)
Qe ty Oyt 2> 0, (40)
(41)

Cety Cut > 0 and le g, ly s > 0.

We first assume that a,, = 0, and show below (in Section A.1) that it is the case.
If ay,+ = 0, using the GHH property, the first-order condition for labor supply is I; = (xw)?.
The Euler equation of employed agents is (using ¢y 141 = Rit1ae,):
1+
_1 (xwy)

1
B —1
Ty ) = BiRit1 (Rip10et)

(wt (th)w —Qet — X

One finds the saving function:
_ b I 14y
1+ Bt 14+ 2 t

Qe t

From that we get the relationships:
1
Cot = (1 _ b ) w; e (42)
’ 1+ 61+
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We will use the change of variables:

1 Bt
N 44
" o1+ 4, (44)
Tt ::wtlﬂo

1+

and z; 1= w, 11

1
, We have Tro14h — I+e — M-
Using B; = ae, the budget of the state can be written as:

_L
Gt + Rimi—1me1+ = Zpx, ™% — x4 + muxy.

Using these relationships in the program of the planner, one finds

(o]
max Z =t (log x¢ + log Ry + log xt_1>
(Re,we) 10

0 Gy e
- Z St (X“D + Reng14-1 — Zywy 7 4 ap — 77t33t> .
t=0

The two first-order conditions and the budget constraint of the state form a system of 3 equations

in the three unknowns Ry, i, Ty

1 1
(14 Bg1) — = 11t (_Zt 4 A 77t> + B i1 Rep1me

Tt 1 + %2
1= Rypyme—171-1

_P
_ T+
Rimy1xi—1 = Zyxy 77 — xp + e

—(1+
Substituting for R; and p, one finds (1};}; (1-— 771:)) (1+e) Ztlﬂ" = z;. Then:
Tt 1
R = (1 —m) (45)

1w 1420

Then, using the expression of c.; and ¢, ; one finds % =14 2p and ¢t = (1 — ) 2.
Then:

I1+¢ \7% — 1
cHA = = () 1—n) Pz 1%, 46
t Ceit + Cut 1/2 ¥o ( nt) t < )

Steady-state interest rate

At the steady state, Z; =1 and n = ﬁ%, thus:

_ 1481+ 1 B 1+(1+8)¢ 1

R - = = X
6 1420 pB1+2p 14 2¢p 15}

As B <1, % <land R < %, and credit constraints are binding at the steady-state.

Comparison with RA economy\log\left(c_{e,t}-\frac{l_{e,t} {1+\frac{1}{\varphi}}}{1+\frac{1}{\va
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Using Cf*4 = Z!*% and the expression of CH4 in (46), we deduce:
C’tHA_(l—i—go )ﬂ@(l 1 B )—w
CfA\1/2+¢ 1+o1+ 6

A.1 An existence proof

We now prove that a,, = 0, and that credit constraints are binding at the steady state. The proof
is is related to the one presented in LeGrand and Ragot (2025), but it simpler, as we consider an
economy without capital. We first prove that, when credit constraints are not binding, then the
optimal level of public debt implements a,, = 0. Second, we show that when a, = 0, the planner
wants the credit constraint to bind and R < %

First, in a Ramsey equilibrium where credit constraint doesn’t bind, the economy is a simple
two-agents economy with distorting taxes. The planner minimizes distortions (i.e labor taxes) to
a level consistent with credit constraints not binding. This implies that B reached the minimum
level for which a,; > 0,and a, = Oin the Ramsey steady-state.

Second, the proof of the previous Section has assumed that a,; = 0 to conclude that in this
case, the planner wants to credit constraints to bind. In other words, starting from a,; = 0,
the previous proof shows that the optimal program implements R < % The gain of a marginal
increase in production efficiency by reducing labor taxes is higher that the marginal cost of

reducing allocation efficiency, by decreasing public debt and the real interest rate.

A.2 Expression of the MVCC
One can compute the value of Lagrange multiplier on the credit constraint of unemployed agent.

1p+1\ 71
v =cyy — PR (c t—Le’/f )
— tu,t €
’ T 1+ 1/e

Using (42)-(43), one finds, after some algebra

vy :1_(1+<P(1+5t+1))(1+90(1+5t))

MVCC, =
P (cug) (1+2¢)?

Note that MV CC; > 0 is equivalent to
L+ (14 B1)) 1+ (14 5) < (1+20)°

which is always true as 0 < Gry1 < 1.
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A.3 Expression of the DFW

First, the real interest rate in the HA economy is, from (45) and the expression of x; and n:

(1 1 B )—(H-«p)

RITA _ _ T TR < Z >1+*0 1 <1 LB > (47)
1 B ( 1 B >_(1+‘P) Zi1 1+ 2¢ 1+el+p5
1+ 1451 1+p 1451

%)

Asaslgas =z, the DFW B?Edge is defined by:

A e\ T
HA,t+1
o 8, 5vedoe G oV
RHA — Pt /e
t+1 CHA _ “HAt+1
t 1+1/p

Substituting for CfT4, CHA R4 one finds after some algebra:

wedge _ (1 + 1/()0) (1 + (1 + Bt—Fl)) - (1/2 + (P) (1 + 6t+1) x 142
! (1+1/0)(1+e1+8)) —(1/2+¢) 1+ B) 1+ ¢ (1+ Biy1)

A.4 Relationship between MVCC and DFW
Using the expression of MVCC, one finds:

wedge __ 1 ( _ 1+290
¢ 1-MVCC, 2(1+¢) +o(1+5)

MVCCt>

Assume MV CCy ~ 0, then:

L+ (14 6)
2(1+¢)+ (14 6)

wedge

t =1+

MVCCy

Thus at the first order BZ” edge (1 — m> MVCC,, where variables with tilda represent

proportional deviations.

B Derivation of the wage-Phillips curve

There is a continuum of unions of size 1 indexed by k and each union k supplies Lj; hours of
labor at date ¢t with nominal wage Wit Union-specific labor supplies are then aggregated into

aggregate labor supply by a competitive technology featuring a constant elasticity of substitution

ey —1 ESV%
L= ( / LW dk) : (48)
k

The competitive aggregator demands the union labor supplies (Ly;); that minimize the total

EW:

labor cost |, k WktLMdk: subject to the aggregation constraint (48), where Wi is the bargained
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nominal wage of the members of union k. The demand for labor of union k£ depends on the total

_ R B 1
) sw, where W; = (fk Wklt_swdk) "W i the total

labor cost paid by the firm Wy Ly, = ( A

. B
nominal wage index. As the labor demand depends on relative wages, and Wkt — Wi 1570 Wit
Wt Wt 1*7} Wt
total labor demand can be written as:
Wi\ "
Ly = ( A ) Ly, (49)
W

1
where W, = ( [ & W,CI;EW dk) '7*W is the bargained nominal wage index. Each union k sets its wage
Wi so as to maximize the intertemporal welfare of its members subject to fulfilling the demand
of equation (49). We assume the presence of quadratic utility costs related to the adjustment of

the nominal wage and equal to wTW(Wkt/Wkt_l —1)2dk. The objective of union k is thus:

max [, iﬁs /i(u(cm) —v(lis) — %Z)TW (Wks — 1) 2>£(di)7

(Wks)s s=t Wks—l

max E; iﬁs /Z(U(CZS) —v(lis) — 77[2"’( Wis _ 1) 2>E(di),

Wks )s s=t Wks— 1

subject to (49) and where ¢;; and [;; are the consumption and labor supply of agent i. The

first-order condition with respect to Wj; thus writes as:

W ac; al;
W W kt / it / it ' W W
) (m) +1)=—= (uci — —v'(l; = )ﬁdz—i—E[ﬂ T +1], 50
Fnt? 1) = 58 [ () gt —of ) gt ) 6ai) + = ity 1) (50
where the wage inflation rate is denoted by:
TI'F/: SALEE )
Wi i—1

The labor supply [l;; of agent 4 is the sum of her hours l;;; supplied to union k, summed over
all unions: l;; = |, i liktdk. Each union is assumed to request its members to supply an uniform
number of hours, such that: ;5 = Lg;. We thus deduce from (49):

W G _ QU () ™ Ludk) = —ewlL (51)
kt 8Wkt kt aWkt WLkt

ch
Wiy’ R
derivative of its net total income. The net total income of agent i writes as (1 — TtW)Wktymli,t /Py,

To compute the derivative of consumption it should observed that it is equal to the
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where 7}V is the labor tax. Formally:

1 Dy 1 —i—i Ol; ¢
Cit 8Wkt Wkt liﬂf aWkt

1 ew Lt
Wkt szt li,t
A 862 A
Wit ——- = (1 — ew) (1 — V) Wieyislis/ P (52)
oWyt

We focus on the symmetric equilibrium where all unions choose to set the same wage Wkt = Wt,
hence all households work the same number of hours, equal to l;; = L;. Combining (50) with the

partial derivatives (51) and (52), we deduce the following Phillips curve for wage inflation:

€ ew — 1 . ,
wnl + 1) = (20 = PR 1= Yo [l () d) ) L + BBy

ﬂ-XVFl(Wg/Kl + 1)]7

labor gap ( )
53

where w; = W, /P, is the real pre-tax wage.

C Characterization of the Ramsey allocation in the RA case

We solve for the Ramsey allocation in the RA case, for both demand and supply shocks.

C.1 First-best allocation

In the first-best allocation, the resource constraint imposes that total consumption is financed
out of production: Gy + Cy = Z;L;. The labor supply is thus determined by the solution to the
following program: maxr, u(Z;L; — G¢) — v(L¢). The first-order condition defines the first-best

labor supply LB as the solution of:
Zod (Z,LEB — Gy) = (LB, (54)

which can be shown to admit a unique solution under standard assumption (u increasing concave
with 4/(0) = oo and u/(c0) = 0 and v increasing convex).

Consider the following particular case. We set Gy = 0, /(¢) = ¢~ 7, and v/(L) = x 'LY/?¢
such that v > 0 is the inverse of the IES and ¢ > 0 is the Frisch elasticity of labor supply. We

1 7%*7
. 1 =+
obtain: Lf'B =x+" 7272 .

C.2 Representative-agent model with a full set of instruments

We show that when the planner has access to the full set of instrument, the first-best allocation

w

can be implemented for both demand and supply shocks. This requires 7'V = 7¥ = 0, to avoid
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price or wage adjustment costs. The equations defining the equilibrium allocation are

wy=(1-7F) 1 =7")(1-7F) Z,
(1-7) (1=7)

€W—]. W

v'(Ly) — u' (C) =0 (55)

EW l—TtL

1 Wt
AU-0- -8 o

wy (11— Ttvill)

T w (1—7Y) (57)

Cy=Z Ly — Gy
Gi+ (1470) By + (ws — Z) L = By (58)
u' (Cp) = B(1+7re41) 0’ (Cri1) (59)

Note that the Euler equation (59) determines the real interest ' ¢ > 1 from the first-best
path of consumption CtF B Importantly, this equations don’t determine the period-0 interest rate
0.

Equation (58a is the budget constraint of the government.

Equation (57) implies that there is a a such that 1 — 7}V := aw;. For the allocation to be
the first best, equations (55) and (54) implies that

EW — 1 W
1-7f = —
Tt EW Zt
Then equation (56) implies
1-7F = ew 1

ew — 1 aw,
Then the budget of the government implies

Gi+ (1 +r)Bi—1 — By

I, (60)

’LUt:Zt—

Implementation results: For any path of G, Z; and path of public debt By, for ¢t > 0, the
first best can be implemented.

The proof is direct. Consider a path Gy, Z;, B; and the first-best labor supply L{'Z. Tt gives
a path of consumption determining the real interest rate ry, ¢ > 1. For any 7o (which is an
additional free variable), the equation (60) determines a path for the real wage rate. Then for
E _ _ew 1

1—77 = —— is a market equilibrium.
ew 4t ew—1 awt

Note thus that public debt is not determined in this implementation.

any a, 1 — 7V = qwy, 1 — 7} = sw=lw
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Note that in a steady-state equilibrium (where Z =1 and B, G, w are constant) , we have

B
1-p

Bgs = ((1 —w) L§§ — GSS)

C.3 RA model : Representative agents without time-varying 7/

We assume that the economy is in steady state, where public debt is Bgg. and hit by the shock

at period 0. In the previous analysis, we can impose TtL = T§S.

wtzgvivzl(l—T )Zt

Then, 1 -7V = o228 (1-75) 2, , 1= 7 = oty
The budget of the state implies (for ¢ > 0, with the notation B_; = Bgg)

(14+7r) Bty — By =0y

with

Oy = (1—6;1/‘:1(1—7' ))ZtLF Sye?

The variable ©; is uniquely determined. This uniquely determines the path of public
converging back to the steady state. To see that, first observe that the period-0 interest rate 0 rg

is a free parameter determined by period-0 capital tax %()K .

G, By
B (l4m) = Z < Roy A R

To have limp_, o % = 0, we must choose the initial capital tax such that

(1+170) i O + lim Br
e (1 +7’fB> T [y (1477

Br

HT:t+1(1+rj)
back to the steady state. The unique period 0 allowingj the public debt to converge back to the

(with the notation Hz':t 41 =1). The term limp_, = 0 if the economy converges

steady state is

X

Bgss ’

1+7‘0

which is uniquely determined.
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C.4 RA with Demand shock

We now show that whatever the fiscal system (economy 3 and 4), the first-best allocation can be

implemented with demand shocks. The proof follows the consideration of the previous Section.
We now assume that 7% = T§S and 7% = Tgs. We now focus on the case where 1 — 7% = 8‘(’5‘/_1,
w

to determine uniquely the path of the instruments. Any other value would not quantitatively

change the allocation, and qualitatively the path of the instruments.
FE _ _Ew

In this case, we have w = Z = 1. Then 1 — 7/ =a,and 1 — 7

and

1—ﬁ§: Gi/Gss

1+ ro = ’
b= L (1 + TJFB)
implements the first-best allocation.

C.5 The RA economy without time-varying 7/ and 7, with optimal 7}V and

supply shocks

The first-best cannot be implemented, and we must solve for the Ramsey allocation. We provide
equations for both demand and supply shocks and then discuss each case in turn.

The program is:

o
YW w2
max i Eo B (u(cr) —v(Ly)) — —==(mV)?],
(TtVV,TtE,TtI(,Bt,Tt,ﬂ'tP,ﬂ'XV,’wt,Tt,Qt,Riv,Lt,Ct,at)tZO [% 2 t
Gi+ (1 +7r) B +wily < (1 - %(ny)ztlzt + By,

ct+ar = (14+1)Bi—1 + wely,

() = OB | (L4 re ) ()

)

€ ew—1 w
Al (Y 1) = (L)~ P () ) e+ BB

W oW
7rt+1(7rt+1 + 1)}»

¢W ew 11— 88
P py_¢ep—1.1 wy P P \Zir1lin
m (147 ) = — — 1)+ BE¢ (7 1+7 —,
P = G a—g VY (et 755
Wt—1 we P
14 m = 1
()T g = e (),

Define

Ti=1+4+r)Bi—1 — By
Wy
Tt —

1— TtW
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Then the program is (using % =1-r7L)

max E
(weTeml smV swe,Lesce)

(=)
——
8
=
&
—~
g
—~
%)
~~
~
\
c
—
h
~+
SN—
~
\
—~
s
3
SN—
[\
1

t>0 t=0

GitTi+ (1= ") oLy < (1- %(nfﬁ)ZtLt,

e =T + (1 — TtW) Ly,

m (m +1) = W (U/(Lt) — (1 - TtW) ﬂ?tul(Ct)>Lt + BE;

W W
T (T + 1)}7

w
ep—1, ew 1 Ziy1Liq
m(+7)) = op (5W_1Z$t_1)+ﬁEt(W£_1(1+Fﬁl)ﬁ>7

A+ e = a1+ 7)),
while the corresponding Lagrangian becomes ¢; = T + (1 — TtW) xeLy

D (2 )2)

L=Eo> Bulct) —v(Le) — 9

t=0

[o¢]
—Eo > By —wa—0)m 1+ 7")
=0

N €7WEO iﬁt’YW,t (UI(Lt) _ (1 _ TtW> xtu’(ct)) L,
t=0

Y
0 ep—1_ & €
—Eo > B'"(vps — vpa-1)mt (1 +7) ZiLy + £ Eo Y B'vpy ( =
=0 vp t=0 ew — 1

+Eo Zﬁt“t((l - 77Z%P(Wfﬁ)ztlzt -G =T — (1 - TtW) a:tLt>
t=0

+Eo YA ((L+m )zt — (1 + 7))
t=0

We now turn to the computation of the FOCs.

Consider
dC EW
¢t = % = ul(Ct) — wiw’ywﬂg (1 — TtVV) l'tLtu”(Ct)
effect on wage inflation
FOC wrt «}".
—wmt” — (ywe — -1 (2m + 1) + Ay = 0.
FOC wrt 7f.

A
—(vpe = vpe—1)@nf + 1) — pbprl — a2 = 0.
t
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FOC wrt x.

€ ep—1 €
0= (1 — TtW) Ly — w%VW,t (1 — TtW) u' (e) Ly + Plbp ’)/P7t€Wm: 1Lt

—pe (1Y) Lo = M )+ B (L ).

FOC wrt L;.
0= (]_ — TtW> $t¢t — U/(Lt) + Mt ((1 — QIZ)?P(TF;)Z)Zt — (1 — ’TtW> J,‘t>
€
+ w%’yw,t (v"(Lt)Lt + v/ (L) — (1 - TtW> xtu'(ct))
P P eEp — 1 EW
— (ype —vpi—1)m (L + 7 )2 + VPt Ty — 2t ).
Yp ew — 1
FOC wrt T;.
pe = ' (ct).

FOC wrt 1 —1V.

Ew
0 = Lyzyy — —ywaazp (¢r) Ly — puxi Ly
bw

Simplifying

FOC wrt T;.
pe = ' (ct).
FOC wrt 1 —7/V.

ew
0=t — —ywt' () — e

bw
_ew ey (1 (= T u(er)
0= T/fwvw’t (ct) (1 u/(cy) )

In this case, one can check that one has vy = 0 (The wage Phillips curve is not a constraint)

FOC wrt 7).

—pwr)’ + Apxe_q = 0.

FOC wrt Wf.
A
—(vpe = vPi-1) 2] +1) — pppmf — ———ay = 0.
t
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FOC wrt x;.

Ep—l EW
0= VPt
€W—1

Yp
Using the FOC wrt to 7', we have:

— At( + Tt ) + 5At+1<1 + 7Tt+1)

FOC wrt L;.
Yp
0= (Lt)"i_,ut(l_i(Wt ) )Zt
—1 €
— (vpr — i)t L+ 7Y 24 + i ’YP,t( W xt—Zt)-
Yp ew — 1
Simplifying
1/)W7TtW = Nywy 1.
and
FOC wrt /.
A
~(ypt = pa—1) 21 + 1) = ppprf + ———a.
7L
FOC wrt x;.
ep—1 e

0= dep Ypi— 7Lt = Ae(1+mg )+ BAa(1+ 7).

FOC wrt L;.
v'(Ly) = Mt(l - @(7& ) )Zt
—1 €
— (vpt — ype—1)mi L+ 7Y 2, + i VPt ( LA Zt) :
Yp ew — 1

Determining the path of public debt from the path of T;

The dynamics of public debt is
Bi=1+7mr)Bi—1+Ti

At the moment of the shock, at period 0, the planner can change capital tax.

Z Ty
P (1)

o= Bss ’
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C.6 RA analysis without (time-varying) 7/, 7/V, with time-varying 77

With the same change of variable as in the previous case,

. Yw w2
max E Bt (u(cr) — v(Ly)) €(di) — = (n ,
(‘rtW,TtE,TtL,TtK,ﬂtP,ﬂF’,wt,m,Lt,(cz',t,ai,t,w,t)i)t>0 ° [Z 2 (L)) (i) 2 (m)
Gt +T+’tht S (1 — wl(ﬂ't ) )ZtLt,
ct = Ty +wi Ly,
€ )

1) = 2 (v’(Lt) - wtu’(ct)ﬁ(dz))Lt 4 BE, |« (1, + 1)],

P py_ep—1.1 wy P P \Zit+1Lip
m (147 ) = — — 1)+ BE(= 14+7 —,

t ( t ) wP (Zt (1 _ T;g/)(l - TtE)(]. _ TSI'/S) ) B t( t-‘rl( t+1) ZtLt )

1+ 7wy = wi(1 + 7).

Define
1 178

Q-1 —E)1—rk)  1-7F

Zt =

£=Eo Y B (uler) — (L) - D (x)?)
t=0
—Eo Y _ B (ywie — ywa—1)mi 1+ m")
t=0
+ %Eo > Bl (v(Le) = wi () Iy

—Eo > Bvps — ypa—1)m] L+ ) ZeLe + PR, > Biap (wzy — Zy) Ly
=0

t=0

+ Eo Zﬁ%( (1- @(7& )?)ZiLy — Gy — Ty — tht)
t=0

+Bo > AN (147 )ws — wi(14 7))
t=0

FOC wrt 7"

FOC wrt /.
A
~(ypt —pa—1)27L + 1) — pppr] — ———wy = 0.
t
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FOC wrt w;.

€ ep—1
0 = Lyt — ——qwytl (cr) Lt + —=—ps Ly — Ly — M(1+ 7)) + B (1 + 7Y ).
Yw Yp
FOC wrt Lt.
€
0 = withy — ' (Ly) + ((1 L wt> g (L) /(L) = (@)
P P ep—1
— (ypr —vPp—1)m (L + 7 ) 2 + op v (W2 — Zy)
FOC wrt T;.
pe = ' (ct).
FOC wrt z.
0= YP,t-
Simplifying
FOC wrt )"
Ywr = —(ywe — ywe—1)(2m + 1) + Apwe_y.
FOC wrt /.
Ay
—HtleWf = mwtfl
FOC wrt w;.
EW ! P w
0 = —wiw"}/wtu (Ct)Lt — At(l + Tt ) -+ ﬁAt—l-l(]- -+ 7Tt+1)‘
FOC wrt L;.
€
V(L) = (1= L2 (D)) 2+ oy (0 (L) L+ v (L) — wid(er)
2 Yw
Mt = U/(Ct)-
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D Ramsey program for HA models

D.1 Flexible-price equilibrium

We here assume here that the planner must choose a common labor supply for all agents, in a

flexible price economy: 7TtP = 7rg/v = 0. The program is:
m . .
max Eo B /w(yé) u(ey) —wv(Ly)) €(di)|
(TtW@EﬁK7wtJ”t,Lt,(Ci,t,ai,t,l/i,t)i)tzo fz:% i ( )

Gt + (1 + Tt) /a@t_lﬂ(di) +welly + Ty < Zy Ly + /ai7t€(di),

3 (2

foralli € Z: ¢y 4+ ajp = (1 +1¢)ai—1 + wyi Ly,

aiy > —a,vi(air+a) =0, vy >0,

u'(c;r) = PE {(1 + 1)U (Cipg1) | + Vi

p
u'(ci) = T MVeC, [(1 + 1) W (Cier1)

The Lagrangian can be written as:
L=EY f / wi(u(eig) — v(Le)(di) —Eo 3 B! / it — (1 70)Asr 1) ' (cig)£(di)
t=0 ( t=0 ¢

+ E() Z ﬁt/,ét (ZtLt -+ /amﬁ(dz) — Gt — (1 + T’t) /am_lg(di) — tht — Tt) .

t=0

We recall that 1; + = wiv/(cit) — (Nier — (14 71)Nict—1) u”(cit). Compared to (30), we drop the
F' P subscript for the sake of simplicity. We compute the FOCs wrt four independent instruments:

T, we, Ly and (a;);. The other instruments can be recovered from the constraints.

FOC wrt 7;.
/ai,tlﬁi,té(dz’) + /)\¢,C7t1u'(ci,t)€(di) =0. (61)

FOC wrt w;.
/yi,tl/;i,tg(di) =0.

FOC wrt L;. Using the FOC on w;:

/Wi,té(di)v/(lzt) = w2y = Z /yi,twi,tf(di).

)
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FOC wrt a; ;.

Piy = BBy [(1 + Tt+1)¢z‘,t+1] .

D.2 The HA economy with all instruments

The program is:

o0
; i . wW W2
max Eq gt /w(y’) u(cy) —o(Ly)) (di) — —(m;" )*|,
(Tt‘/V»TtE7TtL7TtK77rtP»7Tt‘/V»wt77't7Lt7(ci,taa’i,talli,t)i)tzo [hzo 7 K ( K ) 2 ¢

Gt + (1 + Tt) /au_lé(di) + tht S (1 — lgi(ﬁf)z)ZtLt + /CLZ‘VtE(dZ'),
foralli € Z: ¢4+ air = (1 + 1¢)ai—1 + weyi e Le,

ajt+ > —a,vi(air+a) =0, vy >0,

+ Vg,

u'(ciyp) = PR {(1 + rep1)u (Cigg)

€ ew—1 w )
(el 1) = S () = St [y e ) L+ BBt (vl + 1)
t 1
P py_ep—1.1 wy P p \Zt+1Lli41
1 - - ~ 1)+ BE 1 Zitiitl
mi (4 Yp (Zt 1-7") Q=) —1f) )+ P t(ﬂtﬂ( i) ZiLy )7
(1+7rtW) W1 wtw(1+7rf).

=
We can set:

_ FE . FE _ 1 w- 1 w o P _
¢ such that 1 — 7" = & —a—h El_TtL)’ hence - (1—TtW)(1—tTt15)(1—T}) 1 and my = 0.

— 7l is a free parameter that can be deduced from 7" and the allocation. Hence, the wage

Phillips curve is not a constraint.

— 7}V only reduces utility and is an independent parameter that can be set through 7",

hence 7}V =0

The program then reduces to the same one as in the flexible-price economy without union:

Recovering taxes from the allocation We then have

L_EW— 1w fiyi,tu’(ci7t)£(di)

1—
Tt v U V(L)
1—-7" =aw
1 Wi
1—-7F ==
! Z (1 - TtW)(l - TtL)



D.3 The HA economy without 7/

We impose 7 = 0. The program is otherwise the same as in Section D.2. In particular, 77

only appears in the price Phillips curve. As consequence, this equation is not a constraint and
7F is set, such that 7 = 0. Inflation indeed only destroys resources here. We then obtain the

following program:

max Eo

w P_W .
(Tt Bt Ty,m, 7} 7wtart»Lt7(Ci,t7ai,tyl/z,t)z)t>0

— i i . ¢W

S5 [t (u(eh) — o(0)) i) - .
t=0 Vi

Gt + (1 + T't) /ai7t_1€(di) + tht + ’I% < ZtLt + /aiytf(di),

foralli € I: ¢y +a;p = (1+ T't)ai7t_1 + yigwi Ly + T,

/ / Zt v
uw(cit) = BE (1 + rg)u (Cipsr) | +vie = 5 )

71'2/‘/( + 1) Ibw ( ,<Lt) — EVZ — 1wt /ymu’(ci,t)ﬁ(di))l}t + ,BEt

w

W W
T (T + 1)}7

Because of TtL = 0, we cannot have simultaneously optimal labor supply and 7724/ = 0: the planner

has to balance the relative costs of wage inflation with the suboptimal provision of labor supply.
The Lagrangian is:

£=Bo3 [itutenn) = ozayetn - O ¥y

7

—Eg Z B / it — 1 + Tt))\i7c7t—1) ul(ciﬂf)ﬁ(di)

—E025t(7Wt YWt~ 1)7Tt (1+7Tt )
t=0

€ > ew — 1 ,
+ w%EO ;}Bt,th <’U’(Lt) — VZW Wi /iy@tu'(ci,t)ﬁ(dz)) Lt

+ EO Zﬁt,u,t (ZtLt + /ai,té(di) — Gt — (1 + Tt) /am_lé(di) — tht — Tt> .

t=0 7 7

We recall that in this economy, we have 1;+ = wiv'(cit) — Nier — (14 71)Nict—1) u”(cit) —

%"W Ywrweyicu” (¢ ) Ly, where we also drop the superscript.

FOC wrt }".
—pwml — (ywe — ywe—1)(2m +1) = 0.

FOC wrt 7y.
/ai,tﬂzi,tadi) + /)\i,c,tlu,(ci,t)f(di) =
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FOC wrt w;.
EW — 1

/yi,t%,tf(di) = YW /yi,tu/(ci,t)f(di)-

wW i

FOC wrt L;. Using the FOC wrt wy:

. S
— /wi,tf(dz)v'(Lt) + ,UtZt + w%VW,t (’U”(Lt)Lt + ’U/(Lt)) =0.

FOC wrt a; 4.

Pis = BE {(1 + rt+1)7zi,t+1] .

D.4 The HA economy without 7/ and 77 with 7V

In this case, there is no obvious simplification and the program is:

o
; i . wW W2
max Ey |3 gt /w(y’) w(e) — v(Ly)) £(di) — 2V (7 )2|
(TtVV77}E:TtKuBt7Tt77rfﬂryvthﬂ't,QtyRiV,Lty(Ci,t,ai,t,l/i,t)i >0 LZO i ¢ ( ¢ ) 2 ¢
Gt + (1 + ’I”t) /ai7t_1€(di) + tht + Tt S (1 — LZ;P (7Ttp)2)ZtLt + /ai7t£(di),
[ 7

for all 7 € Z: Cit + At = (1 + Tt)am_l + wtyivtLt,

aip > —a,vi(ai; +a) =0, vy >0,

U/(Ci,t) = BE; [(1 + 7’t+1)ul(Cz‘,t+1) + Vg,

-1

€ €
WXV(WXV +1)= 1;::/(1/([40 — VZ

w, / yi,tu%ci,t)e(di))u + BE:

WK1(7TK1 + 1)}7

P py_cep—1. 1 —w P P L1l
7Tt (1 + ﬂ-t ) — ¢P (Zt (1 _ TtW) 1) + /BEt (7Tt+1(1 + 7Tt+1)7ZtLt )7
We—1 Wt P
1+ = 1
(1+m )1_7_2/1/1 1_TtW( +m ),
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while the corresponding Lagrangian becomes:

£=E0Y 6 [ wiluleir) —v(L)eai) - T3 )P
t=0 g

~Eo ) p /()‘i,c,t — (L4 re)Nici—1) u'(cig)l(di)
=0

)

—Eo)_ B (v — ywe-1)m (1 +7)")

=0
+ ELVEO iﬁtVW,t (U/(Lt) i 1wt /yi,tul(ci,t)f(di)) Ly
vw Ew i

© ep—1 s w
~Eo Y B vee —vpe—)ml (L) 2Ly + L —"Eo Y Blapy (tW - Zt> Ly
t=0 ¥p t=0 (1- Tt )

= wP P\2 . .
+E E Blug( (1 — == (7)) Ze Ly + [ aigl(di) — Gy — (L +11) [ ajp—1£(di) — wiL
Ot:o t( 5 \Tt tla /l t t t /Z t—1 t t)

e Wy w
FEY BN (L) — (L))

We now turn to the computation of the FOCs.

FOC wrt 7).
Wy—
—pwn = (ywe — ywe—1) (2 + 1) + Ay ] tTII/V =0.
— T
FOC wrt 7f.
~(pe — e @7F 1) — el —
YPt — YPt—1 t HtYpTy ZiLi 1 — TtW :
FOC wrt r;.
/ai7t_11/3i,t€(di) + /)\i,gt_lu/(ci,t)ﬁ(di) = 0
FOC wrt w;. Using the FOC wrt to 7V, we have:
~ . EW — 1 ’ .
0= [ yititl(di) — yw Yiu (i) l(di).
i Yw o J;
FOC wrt L;. Using the FOC wrt w;:
. €
0=_ / (i)' (L) + (1 = 22 (w02 2+ oy (0 (L) Lo+ v/ (L)
i 2 Yw
ep—1 w
_ (’YP,t - ’YP,t—l)?Tf(l + Ff)Zt + Pl’ﬁp ’)’P7t <(1—;W) — Zt> .
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FOC wrt a; ;.
Pis = BE [(1 + T’t+1)¢z‘,t+1] .

FOC wrt 7/V. We derive wrt 1—1TW and obtain:
t

ep—1

Yp

0= YpeLe — M(1+ 7)) + BEy {At+1(1 + Wﬁl)] '

D.5 The HA economy without time-varying 7/ and 7V with 7F

-1
I consider 75 = (%) and 7V = 7%V

In this case, there is no obvious simplification and the program is:

oo
; ; . 1/1W W2
max By |3 8" i) (u(eh) - o(L0)) la) - 3 12

(Tf,Tf,Bt,TtJrf,ﬂXV,wt,T’t,Qt,Ri\f7Lt7(ci,t7ai,t7w,t)i)t20 [; i ¢ ( ! ) 2 !
Git (1+7) / as-10(di) +we Ly + T, < (1 %P(Wf)?) Zily + / ail(di),

i i
foralli € I: ¢y +aiy = (1 +re)ai—1 + weyi L,

ait > —a,Vi(ai +a) =0, vy >0,

W (cia) = BB (1 res)u (cuai)| + v

€ .
7TXV(7T;/V +1)= w—I;VV (v’(Lt) —wy /yi7tu’(ci’t)€(dz)>Lt + GE; Wﬁl(ﬂﬁl + 1)],
(A
P P ep—1.1 Wt P p \Ziv1Lin
1 - = — 1)+ fE 1 ST

Tt ( +7Tt) wP (Zt (1*7-W)(1*’TtE) (177_8{;) )+/B t(ﬂ-t—l-l( +7Tt+1) ZtLt )

(1+ wfv)wt_l =we(1l+ Wf),
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while the corresponding Lagrangian becomes:

z:mfﬂ?/@www o(La)) ) — 2 (=}F)?

(2

—Eo Z Bt / it — (L1 Niei—1) ' (i) 0(di)

—EOZﬁt(’YWt TWit— 1)7rt (1+7Tt )

t=0
W 3 t ! / .
+ Eo ZB YWt <v (Lt) — wy /yiﬂgu (ci,t)f(dz)) L,
vwo S i

(o]
ep
~Eo Y B'(vpe = ype-1)mi (L+ ) 2Ly +
t=0

+ EO Z ﬁt,ut< ¢P( tP)2)ZtLt + /al,tﬂ(dz) - Gt - (]. + T’t) /ai7t_1€(di) - tht>

-1 s Wt
Eo 5t7P,t ( - Zt) L
t:ZO (1 - 785 &) (1 — 1)

g5)(1 — 75

FE0 > B ((1+ o — w1+ 7))
t=0

We now turn to the computation of the FOCs.

FOC wrt 7. We derive wrt — and obtain:

t

€P—1 Wi

0= YP, L
yp M- (k)

or

vpt = 0.

FOC wrt 7/ .

A
—(vpt — vpi—1)2nl + 1) — wbprl — —w =0,
Zi Ly

FOC wrt m}".
Wi—
—pwri’ — (ywe — ywe—1) (2 + 1) + Atﬁ —0.
— Tt

FOC wrt r,.
/ai,t—ll/;i,tg(di) + /)\i,cvt_1ul(ci7t)€(di) =0.

FOC wrt w;.

~ . e .
0= /yi,t¢i,t£(dz) —’YW,tiw /yi,tU/(Ci,t)f(dl)-

Yw J;
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FOC wrt L;.

£=EyY B [ wilu(eir) — v(L)eai) - T3 l')?
t=0

(2

CE Y / Mot — (14 r)hicrr) ' (cr)E(di)
t=0

(2

—Eo Z B (ywy — ’)’W,t—l)ﬂfv(l + V)

=0
€ > £ ,
+ ﬁEo ; Brywie (U/(Lt) - %wt /iyi,tul(ci,t)f(dl)) Ly

+ Eo Z B (ZtLt + /ai,tf(di) -G — (141) /az‘,tlﬁ(di) — tht>

t=0

. g
0= / Wil (L) + e Zy + T}VVVV e (0" (L) Ly + o' (Ly))
~ . EW ’ .
+wr ( / s s £ — g 2 / i <ci,t>e<dz>)
i 1/JW 7

Using the FOC wrt w:

. IS
0=-— /w@té(dz)v’(Lt) + MtZt + w%’}/mt (U//(Lt)Lt + U’(Lt))

FOC wrt a; ;.

Vit = BEy {(1 + Tt+1)¢z‘,t+1] .
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