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Abstract
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1 Introduction

Motivation

Multiplex networks are complex systems that consist of multiple layers or networks

of interconnected nodes. Each layer can represent a different type of relationship

or interaction between the same set of nodes. For example, in a social network, we

could have one layer representing friendships between individuals, another layer

representing professional connections, and a third layer representing romantic rela-

tionships. In the case of online social networks, the different layers could represent

the different types of interactions that take place on a social media platform, such as

Facebook or Twitter. For instance, one layer could represent the friendship between

users, while another layer could represent the interactions between users based on

shared interests or groups. Multiplex networks can also be used to study the profes-

sional relationships between individuals, such as collaborations between researchers

or business partnerships. Different layers could represent different types of collabo-

rations, such as joint publications or shared patents.

A key feature of multiplex or multilayer networks is that they allow us to capture

the complexity and richness of real-world systems. In many cases, a single network

or layer is not enough to fully capture the different types of relationships that exist

between the nodes.1 By explicitly modeling and analyzing multiple layers, we can

better understand the structure of the system as a whole and the underlying mecha-

nism at play.

In this paper, we propose the first network-games model on multiplex networks

in which each agent has to decide how much effort is required in each layer. Indeed,

given a layer-specific value, each agent makes effort under either strategic comple-

mentarities or strategic substitutes. Agents are heterogeneous in terms of both their

endowments of resources and their network positions in different layers. Moreover,

agents have to take into account the “connection” between layers; for example, if

we interpret the different layers as social connections such as family, professional,

romantic, and religious networks, each agent needs to take into account the fixed

time/attention allocation across these different layers. For instance, if efforts are
1For example, Chandrasekhar et al. (2024), who studied the importance of multilayer networks

in diffusion, showed that some layers are more predictive than others. In particular, the advice,
kero/rice/money, and backbone networks are more predictive of diffusion of information/behavior than
others such as the socialize, temple, or decision help network.
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strategic complements, spillovers are large, and the player, who is central in one net-

work/layer, may exert considerable effort in this network but then, given their time

constraint, may reduce their effort in the other layers.

Main results

First, despite the high dimensionality of the strategy space and the heterogeneity of

social links across layers, we show that our multiplexity network game has a best-

reply potential. In particular, we make our model tractable by employing a method-

ology called sign equivalent transformation (SET) (Zenou and Zhou, 2022), which

transforms the equilibrium first-order conditions of the original game into optimality

conditions of maximizing a single function, called a best-reply potential. By exploit-

ing this approach, we provide conditions based on the spectral properites of each

graph/network to show the existence and uniqueness of a Nash equilibrium in our

game.

Second, we explicitly characterize our multilayer network equilibrium. We show

that, at any interior equilibrium, for each layer s, the effort of each agent i depends on

a layer-specific value αs and their weighted Katz-Bonacich centrality, whose weight

is equal to the multiplexity influence parameter µ∗i = 1/λ∗i , where λ∗i is the multi-

plier of i’s time/budget constraint. Importantly, the multiplier λ∗i is endogenously

determined in equilibrium by the agent’s resource constraints and the interactions

within and across layers. We call µ∗i the system-level centrality as it summarizes an

agent’s social influence in all layers and its budget resource. We provide an explicit

expression of the multiplexity influence and show that higher system-level centrality

µ∗i leads to higher equilibrium utility U∗i .

Third, we provide two main applications throughout the paper to illustrate our

main results. In the first one, we consider the management of multiple social re-

lationships in which each agent has to allocate their time/attention across different

layers of social interactions such as their family network, professional network, and

religious network. In the second application, we study multiple public goods in which

the first good is a local public good (any network), the second one is a pure private

good (the network is empty), and the third good is a global pure public good (the

network is complete).2 In this case, contrary to the monolayer case (Bramoullé and

Kranton, 2007; Allouch, 2015), we show that, in equilibrium, all agents obtain the
2It is straightforward to extend this model to any finite number of local public goods.
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same utility and consume the same amount of private and global public good. This is

because we add one layer in which the network is complete due to the nature of the

global public good, which induces all agents to consume the same amount of private

good and to obtain the same utility. We also show that a budget-balanced policy that

involves giving a transfer to each agent is neutral in the sense that, independently to

whom the transfer is given, it leaves unchanged the consumption of the private and

public goods of each consumer.

Fourth, when we restrict our analysis to the case of the same network structure

between different layers, we obtain sharper results in terms of equilibrium charac-

terization. In this case, we extend the principle component decomposition technique

of Galeotti et al. (2020) and Chen et al. (2022) to derive simpler equilibrium charac-

terizations in our multilayer setting. In particular, we show that different agents act

as if they were independent of each other. We can also derive simpler expressions for

the planner’s targeted problems.

Fifth, we consider regular multiplex networks in which, for each layer/network

s, the network is regular with degree ds. We obtain a clean characterization of the

agent’s effort in each layer, which only depends on the layer-specific preference weight

αs, and the scalar social multiplier in each network. We also find that the effort in

layer s increases with αs but decreases with αt, for t 6= s; increases (decreases) with

the degree ds in layer s when efforts are strategic complements (substitutes); and

decreases (increases) with degree dt, for t 6= s, when efforts are strategic complements

(substitutes).

Sixth, we determine the inefficiency of the equilibrium allocations—that is, the

gap between equilibrium and first-best allocations. The equilibrium is inefficient

because each agent i does not take into account the effects of their effort xsi on other

agents’ payoff in their layer as well as in other layers. When efforts are strategic com-

plements (substitutes), agent i overestimates (underestimates) the marginal welfare

effects of xsi . Since the total time budget is fixed for each player i, the discrepancy

between the equilibrium and first best boils down to the relative allocations across

different layers. If we consider regular networks, this discrepancy mostly depends on

the difference in the social multiplier effects between the layers.

Seventh, we explore the comparative statics results and policy implications of our

model, in particular, how an exogenous shock (such as the initial endowment of each

agent or the individual income) propagates within and between layers. We show that
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there is a direct negative effect of increasing the initial endowment (which is layer-

specific) on individual efforts in a given layer since endowment and efforts are sub-

stitutes. There is also an indirect effect since each individual must reallocate their

efforts on the other layers, which could be positive or negative depending on whether

the efforts are strategic substitutes or complements and on the weight each agent

puts on each layer. The effect of an increase in individual endowment and income

on utility and welfare depends on whether we assume positive or negative spillovers

between players. We also show that when the individual income (which is not layer

specific) increases, agents have more resources and thus can allocate their efforts

differently across layers. In that case, utility and welfare always increase. We illus-

trate these results using numerical simulations for the two applications mentioned

above and consider three cases: (i) the management of multiple social relationships

with strategic complements and negative spillovers, (ii) the management of multiple

social relationships with strategic substitutes and positive spillovers, (iii) multiple

public goods with one local public good (any network with strategic substitutes and

positive spillovers), one private good (empty network), and one global public good

(complete network with strategic substitutes and positive spillovers).

Finally, we revisit the standard targeting intervention problem analyzed in mono-

layer networks (Ballester et al., 2006; Galeotti et al., 2020; Kor and Zhou, 2022) to the

case of multilayer networks. We analyze either a subsidy/taxation on the endowment

or an income policy that determines which player to target to maximize welfare.

Importantly, the planner now needs to take into account the effect on both the current

layer and the other layers. For each policy, we provide an index formula that depends

on both the matrix of interactions between agents in a given layer and the interaction

between layers. We illustrate our results by running simulations using the three

cases mentioned above.

Related literature

Our paper is related to different strands of the literature.

Network games on a single-layer network
In the literature on network games, most papers assume a single-layer network

(e.g., Ballester et al., 2006; Bramoullé and Kranton, 2007; Bramoullé et al., 2014).3

3For an overview, see Jackson and Zenou (2015) and Bramoullé and Kranton (2016).
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Chen, Zenou, and Zhou (2018) were among the first to extend Ballester, Calvó-Armengol,

and Zenou (2006) study to analyze multiple interdependent activities among users

embedded on a single network. In this paper, we introduce a novel class of games

played on multiple layers of social links. Despite the high dimensionality of strat-

egy space and heterogeneity of social links across layers, we are able to characterize

the Nash equilibrium, and show that it exists and find conditions under which it is

unique. We also derive interesting comparative statics results and policy implica-

tions. We believe we are the first to propose a general model on games on multiplex

networks.

Multilayer networks
The study of multilayer networks is growing.4 Cheng, Huang, and Xing (2021)

proposed a theory of multiplexity and showed how to sustain cooperation with mul-

tiple social relations. Billand et al. (2021) developed a network formation model on

multilayer networks, while Joshi et al. (2020) investigated the partial formation of

a strategically interacting two-dimensional multiplex in the framework of a linear

quadratic game. Joshi et al. (2023) examined how an initial seed layer influences

link formation on other layers and shapes their equilibrium topology. Finally, Tza-

vellas (2023) focused on macroeconomic issues by extending the monolayer network

concepts of systemic importance and microinduced aggregate fluctuations to their

multilayered counterparts. It is shown that idiosyncratic shocks can cascade in the

system through both intra- and inter-network margins.5

In the current paper, we take a different approach by not focusing on network for-

mation but rather take the multilayer networks as given and analyze the allocation

of efforts within and between different layers. In addition to establishing general

existence and uniqueness results, we also illustrate our results with different appli-

cations in terms of comparative statics and targeting.
4For a comprehensive survey from the perspective of complex networks, see Kivelä et al. (2014).
5There is an interesting literature in finance that constructs multilayer structures of different finan-

cial systems and markets and investigates their consequences on systemic risk (see e.g., Poledna et al.,
2015; Aldasoro and Alves, 2018; Bardoscia et al., 2019).
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2 Model setup

2.1 Preferences

Consider a simultaneous-move multilayer network game. Let N = {1, · · · , n} denote

the set of players and S = {1, · · · , s} the set of layers. Assume n ≥ 2, s ≥ 1. Each

agent i’s strategy is a vector xi = (x1
i , · · · , xsi ) ∈ Ki := {xi ∈ Rs

+ |
∑

s∈S x
s
i = Ti},

where xsi denotes agent i’s action on layer s ∈ S, and Ti > 0 is a cap on the aggregate

action of i; for example, Ti can be interpreted as a budget or time constraint for agent

i.

Given x−i = (x1, · · · ,xi−1,xi+1, · · · ,xn) ∈ K−i =
∏
j 6=iKj , the utility of agent i

from taking action xi ∈ Ki is equal to 6

Ui(xi,x−i) =
∑
s∈S

αs ln

vsi + xsi + φs
∑
j∈N

gsijx
s
j

 , (1)

where the parameter αs > 0 represents the preference weight of layer s, φs ∈ R

denotes the network spillover parameter on layer s, and gsij is the social tie between

i and j on layer s. The parameter vsi ∈ R is a constant and captures the idiosyncratic

heterogeneous endowment of each agent i, while φs
∑

j∈N g
s
ijx

s
j represents the impact

of the actions of the players linked to j on i’s utility.

We are interested in pure strategy Nash equilibrium (or simply equilibrium) of

this simultaneous-move game.

Before solving the model, we briefly discuss several features of the model setup.

1. For each layer s ∈ S, we let Gs = (gsij)1≤i,j≤s denote the adjacency matrix.

Following the literature, we assume that Gs is undirected with no self-loops,

i.e., gsij = gsji ≥ 0,∀i, j ∈ N and gsii = 0,∀i ∈ N . The social network could vary

across layers. An agent can be central in a layer s′ while being peripheral on

another layer s′′.

2. The parameter φs ∈ R can be positive or negative depending on the economic

6Alternatively, we can assume Ũi(xi,x−i) =
∏
s∈S

(
vsi + xsi + φs

∑
j∈N g

s
ijx

s
j

)αs

, which is the expo-
nential of Ui(xi,x−i) defined in (1). Clearly, under both specifications, players’ best reply functions and
equilibrium efforts must be the same. However, some welfare results may be different. To fix ideas, we
adopt the specification in (1) throughout the paper.
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contexts. Direct computation reveals that

sign

{
∂Ui
∂xsj

}
= sign

{
φs × gsij

}
, ∀i, j ∈ N , (2)

and

sign

{
∂2Ui
∂xsi∂x

s
j

}
= −sign

{
φs × gsij

}
,∀i, j ∈ N . (3)

Consequently, on a fixed layer s, when φs < 0, the efforts of two socially con-

nected players i, j are strategic complements but player j’s effort exerts a neg-
ative externality on i’s utility; in contrast, when φs > 0, the two efforts are

strategic substitutes but player j’s effort exerts a positive externality on i’s util-

ity.

3. The setting of a positive φs, that is, efforts are strategic substitutes and neigh-

bors exert positive externalities on each other, arises quite naturally in mod-

els of local public goods provision (e.g., Bramoullé and Kranton, 2007). For

instance, when individuals experiment with a new technology or information,

they exert positive externalities on each other but efforts are substitutes (the

more their neighbor experiments, the less an individual needs to experiment).

The case of a negative φs, that is, efforts are strategic complements and neigh-

bors exert negative externalities on each other, is less standard since the canon-

ical model (Ballester et al., 2006) assumes both complementarities and positive

spillovers. However, in many real-world situations, we observe these effects.

Consider, for example, the crime committed individually by criminals. Crimi-

nal efforts are clearly strategic complements since the more a criminal makes

an effort, the higher is the utility of a connected criminal in making effort.

Indeed, delinquents learn from other criminals who are connected to them on

how to commit crime in a more efficient way by sharing the know-how about

the technology of crime. Moreover, each criminal exerts a negative spillover

on other criminals because they compete for the same resources. For instance,

when someone commits a burglary or robs people, it has a negative external-

ity on other criminals in the same neighborhood since the common resources

have shrunk for the remaining criminals. In fact, Calvó-Armengol and Zenou

(2004) and Ballester et al. (2006) also considered this effect but assumed that it

is global; however, in this study, we assume it is local and through the network.
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Another interpretation of our assumptions is conspicuous consumption/social

status (Ghiglino and Goyal, 2010). By buying a “better” or more prestigious car

than other individuals in the network, an agent creates a negative externality

on these people. However, it also induces them to want to buy a “better” car

(strategic complementarity).

Furthermore, it is possible that φs′ > 0 on a layer s′ but φs′′ < 0 on a different

layer s′′.

4. Observe that xsi and vsi are strategic substitutes since

∂2Ui
∂xsi∂v

s
i

= − αs

(vsi + xsi + φs
∑

j∈N g
s
ijx

s
j)

2
< 0. (4)

In this respect, vsi can be interpreted as an endowment, so that when vsi in-

creases, the marginal benefit of increasing own effort vsi decreases.

5. In the baseline model, for simplicity, we do not allow spillovers across different

layers, i.e., whenever t 6= s,

∂2Ui
∂xsi∂x

t
j

= 0, ∀i, j ∈ N .

6. Regarding the Cobb-Douglas utility function (1), we can easily generalize it to

a CES utility function given by

Ui(xi,x−i) =

∑
s∈S

αs

vsi + xsi + φs
∑
j∈N

gsijx
s
j

ρ1/ρ

,

where 0 < ρ < 1. Our main results will remain the same under this CES

specification.

7. For each layer s, we assume that the set of agents N is the same. This is

without loss of generality since we allow for heterogeneous social networks. In

addition, we assume that αs is layer-specific and not individual-specific; that is,

each agent has the same preference weight for the same layer. This also implies

that agents care about all layers.

2.2 Interpretations/applications

The model allows for different interpretations, depending on the economic contexts.

Here we list two main applications:
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(i) Management of multiple social relationships: Agents allocate time/attention

across different layers of social connections, for instance, their family network,

professional network, and religious network. The utility takes the following

form:

Ui(xi,x−i) =
∑
s∈S

αs ln

vsi + xsi + φs
∑
j∈N

gsijx
s
j

 . (5)

Each individual i solves the following problem:

max
xi∈Rs

+

∑
s∈S

αs ln

vsi + xsi + φs
∑
j∈N

gsijx
s
j

 s.t.
∑
s∈S

xsi = Ti, (6)

where Ti is the maximum time each agent i has, so
∑

s∈S x
s
i = Ti is the time

constraint of agent i.

(ii) Multiple public goods: There are three goods: the first good is a local public

good x1
i with network G and spillover parameter φ1 > 0, the second good is a

pure private good x2
i (the corresponding network is thus empty), and the third

good is a global pure public good x3
i (the corresponding network structure is

thus complete with φ3 = 1). The utility function of each agent i is then given by

Ui(xi,x−i) = α1 ln

v1
i + x1

i + φ1
∑
j∈N

gijx
1
j

+ α2 lnx2
i + α3 ln

∑
k∈N

x3
k, (7)

where
∑

k∈N x
3
k is the total provision of the global public good. The income of

agent i is just Ti. Each individual i solves the following problem:7

max
x1i ,x

2
i ,x

3
i≥0

α1 ln

v1
i + x1

i + φ1
∑
j∈N

gijx
1
j

+ α2 lnx2
i + α3 ln

∑
k∈N

x3
k

 s.t. x1
i+x

2
i+x

3
i = Ti.

(8)

Our model nests these particular models as special cases. We will use these ap-

plications to illustrate our main results.

7Note that, for simplicity, we have normalized the prices of the three goods to 1.
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3 Equilibrium characterizations

3.1 A (best-reply) potential game approach

For each layer s, define xs = (xs1, · · · , xsn)T ∈ Rn as the action profile on layer s and

vs = (vs1, · · · , vsn)T ∈ Rn as the endowment vector. Define a function θ on K =
∏
iKi,

where

−θ(X) =
∑
s∈S

1

2αs

∑
i∈N

(xsi )(2v
s
i + xsi + φs

∑
j∈N

gsijx
s
j)

 =
∑
s∈S

(
1

2αs
)(xs)′(2vs + (In + φsGs)xs). (9)

From this construction, we note that this function θ of X depends only on the model

primitives: vs, αs,Gs, φs, s ∈ S.

Theorem 1. θ is a best-reply potential of the multiplexity network game. Specifically,

arg max
xi∈Ki

Ui(xi,x−i) = arg max
xi∈Ki

θ(xi,x−i), for any x−i ∈ K−i. (10)

Thus, any global maximizer X∗ of θ(X) in K is a pure strategy Nash equilibrium.

In Theorem 1, we establish that the multiplexity network game has a best-reply

potential θ. The main intuition behind Theorem 1 is to construct suitable transforma-

tions of the underlying equilibrium conditions of the orginal game such that the new

conditions exactly match the optimality conditions of maximizing θ onK. In the proof

of Theorem 1, we first establish a lemma (Lemma 1), which shows that the (unique)

solution of the optimization problem maxx∈∆
∑

s∈S α
s ln(vs + xs)8 is exactly the same

as that of the optimization problem maxx∈∆−
∑

s∈S
1

2αs (vs + xs)2. This implies that,

fixing any x−i, maximizing i’s utility function (1) under the constraint
∑

s∈S x
s
i = Ti

yields the same solution as maximizing the function θ defined in (9) over xi for the

same constraint. The construction of θ guarantees that we can apply Lemma 1 for

every agent i, which proves Theorem 1. Note that the game does not have an exact

potential in the sense of Monderer and Shapley (1996).

Theorem 1 is useful for both establishing equilibrium existence and identifying

conditions for uniqueness. Clearly, θ is continuous and the domain K is compact.

A global maximizer X∗ of θ(·) in K must exist, which, by Theorem 1, must be an

equilibrium. To obtain uniqueness, we need to impose some mild technical conditions.
8where ∆ is the set of nonnegative vectors x = (x1, · · · , xs) ≥ 0 satisfying

∑
s x

s = T > 0.
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Assumption 1. The quadratic form

Q(z1, · · · , zs) =
∑
s∈S

(
1

2αs

)
(zs)′(In + φsGs)zs (11)

is positive definite subject to the linear constrains
∑

s∈S z
s = 0n (here zs ∈ Rn, ∀s ∈ S).

Proposition 1.

(i) Under Assumption 1, the equilibrium is unique.

(ii) Suppose 1 + λmin(φsGs) > 0,∀s ∈ S. Then, Assumption 1 holds.

Proposition 1(i) is intuitive. Under the stated assumption, θ is strictly concave

on K as Q defined in (11) is the negative of the quadratic term of θ, and the linear

constraints in Assumption 1 are due to the binding budget equations of agents. The

condition in Proposition 1(ii) for each fixed layer s is standard in the monolayer net-

work literature. For instance, when φs < 0, it reduces to λmax(Gs) < 1
φs (Ballester

et al., 2006), while when φs > 0, it reduces to λmin(Gs) > −1
φs (Bramoullé and Kranton,

2007; Bramoullé et al., 2014). Furthermore, the condition in item (ii) is sufficient for

Assumption 1 but often not necessary.9 We maintain this assumption throughout the

paper.

3.2 Within-layer influence and cross-layer interaction

Agents’ incentives are quite complex in our multiplex network game as each agent,

while allocating efforts within their budget, needs to take into account externalities

imposed by other agents on every layer. To better understand these incentives, we

perform a decomposition into (i) the within-layer influence and (ii) the cross-layer

interaction.

The within-layer influence is a well-studied topic in the monolayer network liter-

ature. For each s ∈ S, we define the following inverse Leontief matrix:

Ms = [In + φsGs]−1. (12)
9For instance, when there are two layers (|S| = 2), Assumption 1 reduces to ( 1

α1 )(In + φ1G1) +

( 1
α2 )(In + φ2G2) being positive definite. Or, equivalently, λmin( φ

1

α1G
1 + φ2

α2G
2) > 1

1/α1+1/α2 . This re-
quirement is weaker than that imposed in Proposition 1(ii).
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This matrix (or its variant) appears in several monolayer network models (e.g., Ballester

et al., 2006; Bramoullé et al., 2014), as it counts the discounted number of walks be-

tween nodes in layer s. Formally, when 1 + λmin(φsGs) > 0 (see Proposition 1(ii)), we

obtain the following infinite series:

Ms =
∑
k≥0

(−φsGs)k.

To capture cross-layer linkages, we introduce a new multiplexity influence mea-
sure, defined as follows:

Definition 1. Define µ∗ = (µ∗1, · · · , µ∗n)′, the system-level centrality, with

µ∗ =

(∑
s∈S

αsMs

)−1(
T +

∑
s∈S

Msvs

)
, where T = (T1, · · · , Tn)′. (13)

For each agent i, µi depends on i’s influence on layer s as measured by the entries

in Ms, with some aggregation across all layers by preference weights αs taking into

account i’s constraint Ti and the endowments vs. Note that µ∗ depends only on the

model primitives.

The following proposition illustrates how the Leontief matrix Ms of within-layer

influence, endowments vs, and the system-level centrality µ∗ of between-layer link-

ages fully shape the equilibrium:

Proposition 2. At an interior equilibrium X∗, the following holds:10

(i) The action profile on layer s ∈ S is equal to

xs
∗

= Ms(αsµ∗ − vs), (14)

where µ∗ is defined by (13).

(ii) The equilibrium payoff of agent i satisfies

U∗i =

(∑
s∈S

αs

)
· ln(µ∗i ) +

∑
s∈S

αs ln(αs). (15)

Proposition 2 is instrumental for the subsequent comparative statics results as

it simplifies the analysis of the equilibrium. On each layer s, xs∗ is proportional to

the Katz-Bonacich centrality with weight vector αsµ∗ − vs. As shown in the proof of
10See Appendix B for a discussion on the interiority of the equilibrium efforts.
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Proposition 2, the weight for each agent i is µ∗i = 1/λ∗i , where λ∗i is the (Lagrangian)

multiplier of i’s budget constraint. Note that, on each layer s, the following identity

holds in an interior equilibrium:

vs + xs∗ + φsGsxs∗︸ ︷︷ ︸
:=qs∗

= αsµ∗.

That is, the “effective efforts” qs∗, which combine the endowments vs, own efforts

xs
∗ , and the spillover efforts from neighbors φsGsxs∗, must be proportional to the

multiplexity influence µ∗. This is intuitive given that an agent’s marginal utility of

efforts for any two layers s and t must be equal, that is, αs

qs
∗
i

= αt

qt
∗
i

. In vector form,
qs∗
αs = qt∗

αt . Thus, the equilibrium effective efforts are higher for layers with a larger

preference weight for the layer.

The multiplier λ∗i s, or µ∗i ’s, is endogenously determined in equilibrium by the

agent’s resource constraints and the interactions within and across layers. We can

then pin down µ∗i using i’s budget constraint, which leads to (13).

As a by-product, Proposition 2(ii) reveals that µ∗ is closely related to the agents’

equilibrium payoff:

Corollary 1. Under the same assumption as in Proposition 2, U∗i ≥ U∗j if and only if
µ∗i ≥ µ∗j .

That is, the player with the highest µi index obtains the highest payoff. Agents’

efforts are multidimensional; yet, µ∗i provides a summary statistics of equilibrium

payoffs. In particular, player i with the highest equilibrium payoff is the one with the

highest µ∗i .

The agents in our model are heterogeneous in terms of both their endowments

of resources and their network positions in different layers. Below, we will use the

results in Proposition 2 to illustrate the main mechanisms behind shock propagation

in multilayer networks. To do so, we first need to pin down the effects on µ∗ since,

once µ∗ is determined, the comparative statics results on each layer s follow from the

standard analysis with a single layer.
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3.3 Two applications

3.3.1 Management of multiple social relationships

Consider application (i) in Section 2.2. If we denote by λi the Lagrangian multiplier

of the time constraint, by solving (6), we easily obtain

vsi + xsi + φs
∑
j∈N

gsijx
s
j = αsµi, (16)

where µi := 1/λi. By writing this equation in vector-matrix form, we obtain (14).

By plugging this effort into utility (5), we obtain (15). Then, given the fact that∑
s∈S x

s = T, we get T =
∑

s∈SM
s(αsµ∗ − vs), which leads to equation (13).

3.3.2 Multiple public goods

Consider now application (ii) in Section 2.2.11 Solving (8) for each individual i leads

to the following first-order conditions in an interior solution:12

v1
i + x1

i + φ1
∑
j∈N

gijx
1
j = α1µi, (17)

x2
i = α2µi, (18)∑

k∈N
x3
k = α3µi. (19)

where µi := 1/λi. Note that layer s = 1 corresponds to the local public good, layer

s = 2 to the pure private good, and layer s = 3 to the global pure public good.

Since
∑

k∈N x
3
k = α3µi, it has to be the case that µ∗1 = ... = µ∗n = µ∗, which further

implies that x2
1 = ... = x2

n = x2. For the local public good, we have

x1 =
[
In + φ1G

]−1 (
α1µ∗1− v1

)
= M1

(
α1µ∗1− v1

)
.

By plugging these three different good consumptions into utility (5), we easily obtain

lnU∗i = lnµ∗
s=3∑
s=1

αs +

s=3∑
s=1

αs lnαs, (20)

11In this application, Assumption 1 holds if and only if 1 + φ1λmin(G) > 0.
12Proposition 2 is not applicable here as when φ3 = 1, the matrix In + φ3G3 is composed of 1 ev-

erywhere, which is singular (rank = 1) and thus not invertible. Therefore, M3 = (In + φ3G3)−1 is not
well-defined. This is why here we solve the model in a different way. Furthermore, in the simulations,
the unique equilibrium is indeed interior.
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which implies that the equilibrium utility is the same for all players, i.e., U∗1 = ... =

U∗n = U∗ (Corollary 1). Finally, by using the budget constraint x1
i + x2

i + x3
i = Ti, we

find that

µ∗ =

∑
i∈N Ti + 1TM1v1

α11TM11 + nα2 + α3
. (21)

In summary, in this multiple public-goods application, we find that, in equilibrium,

all agents have the same utility, consume the same amount of private and global

public goods, but differ in their contribution of local public good.

Remark 1. It is the presence of the global public good that equalizes the consumptions
of agents. Therefore, the result that all agents obtain the same utility and consume the
same amount of private and global public goods would still be true even if we had k

local public goods with k different networks instead of one local public good and one
network.

Remark 2. The standard models of public good are special cases in this study. In-
deed, when α3 = 0, we obtain both the models of Bramoullé and Kranton (2007) and
Allouch (2015)13 and when α1 = 0, we obtain the model of Bergstrom et al. (1986). In
the case of α3 = 0, we do not obtain the result that all agents obtain the same utility
and consume the same amount of private and global public goods. It is the network
multiplexity of our model that introduces a new network of global public good that
yields this result.

Consider a policy in which the planner who maximizes aggregate welfare (the

sum of the utilities of all agents) has to decide to which player i they want to give an

income transfer. Let ti denote the income transfer made to consumer i, which may

be either a tax (ti < 0) or a subsidy (ti ≥ 0), and let the transfer vector be denoted by

t = (t1, ..., tn)′, which lists all income transfers made to consumers. Every transfer is

budget balanced, that is,
∑

i∈N ti = 0. The new budget for each individual i is now

Ti + ti.

Definition 2. A transfer t is neutral if it leaves unchanged the consumption of the
private and public goods for each consumer i.

Remark 3. As can be seen from (20) and (21), the utility of each agent only depends
on
∑

i∈N Ti. Thus, the planner is indifferent to which individual to give the transfer;

13Their utility function is more general but the results will be similar.
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any budget-balanced transfer t is neutral.14

Remark 4. If we assume that 0 < φ3 < 1 instead of φ3 = 1, as we do here, then
these results do not hold anymore. If φ3 < 1, we obtain qualitatively the same results
as in the application of the management of multiple social relationships described in
Section 3.3.1.

3.4 Same network between layers

Consider the special case in which the network is the same between layers, i.e., Gs =

G for all s ∈ S. Observe that we can have any network structure and φ can be

different between layers, i.e., φs 6= φs
′ , for s 6= s′.

In this case, we can extend the principle component decomposition technique of

Galeotti et al. (2020) and Chen et al. (2022) to derive simpler equilibrium character-

izations in our multilayer setting.15 By the spectral theorem of symmetric matrices,

we have

G = Z diag(γ1, · · · , γn)Z−1,

with Z = (z1, · · · , zn) and where each column zk is the normalized eigenvector of G

for the eigenvalue γk, i.e., Gzk = γkzk, k = 1, · · · , n.16

Define T̂ = Z−1T, µ̂∗ = Z−1µ∗, x̂s∗ = Z−1xs
∗ , and v̂s = Z−1vs, for each s ∈ S. We

have the following result:

Proposition 3. In the eigenspace of G, the equilibrium allocation of agent i is given
by:

x̂s∗i =
1

1 + φsγi
(αsµ̂∗i − v̂si ) , (22)

where

µ̂∗i =

(∑
s∈S

αs

1 + φsγi

)−1(
T̂i +

∑
s∈S

1

1 + φsγi
v̂s

)
. (23)

First, observe that µ∗i , defined by (23), only depends on agent i’s information

through v̂si and T̂i, but not on the information of agent j through v̂sj and T̂j for j 6= i. In

14As pointed out by Bergstrom et al. (1986), the transfer should be local, i.e., not too big to affect the
set of contributors in equilibrium.

15We can apply a similar method for the case with heterogeneous networks Gs, s ∈ S as long as these
set of network matrices commute, i.e., GsGt = GtGs, ∀t, s.

16Note that Z is orthogonal by construction.
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other words, in the eigenspace of G, different agents act as if they were independent

of each other.

Second, the expression of xs∗i in (22)17 is much simpler than the one obtained

in the general case (see equation (14) in Proposition 2) because instead of having

Ms = [In + φsGs]−1, a complex matrix of within-layer influence, which counts the

discounted number of walks between nodes in layer s, we have instead (1 + φsγi)
−1,

which only depends on φs, the intensity of spillover effects, and γi, the eigenvalue

associated with the eigenvector of the ith column of Z. Clearly, using this simpler

expression, we could obtain sharper results, in particular, in Section 4.3 below on

targeting.18

Remark 5. Consider the more restrictive case in which (i) for each s ∈ S, φsGs =

φG,19 and vs = 0 for any s ∈ S. Then, there exists an equilibrium in which

xs∗i =
αs∑
k∈S α

k
Ti, ∀i ∈ N, s ∈ S.

In this setting, we have Ms = Mt for any s and t. Due to the symmetry of network

influence across layers, the agents allocate efforts purely based on preference weights

α. This example shows that network influence, in itself, does not always affect effort

allocation between layers.

3.5 Regular networks

To obtain even more explicit results, let us focus on regular networks.20 We impose

the following conditions:

• For each s ∈ S, Gs is a regular network with degree ds, i.e., Gs1 = ds1;

• Ti = T, ∀i ∈ N ;

• vs = 0 for any s ∈ S.
17Using µ̂∗ = Z−1µ∗, x̂s∗ = Z−1xs

∗
, and v̂s = Z−1vs, it is straightforward to obtain xs∗i from x̂s∗i

defined in (22).
18We can have simpler targeting indices η and τ s defined in Proposition 6. The details are available

upon request.
19A special case is φs = φ,Gs = G for any s.
20This assumption does not imply that the regularity (i.e., the degree of each agent) is the same

between layers.
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These assumptions lead to some symmetry of the players, but still allow for layer

heterogeneity in terms of {ds, φs, αs}. See Figure 1 for an illustration with four play-

ers where layer 1 is a complete network, layer 2 is composed of two dyads, and layer

3 is the empty network; all networks are regular.

4

1

2

3

4

1

2

3

4

1

2

3

Figure 1: An example with a regular network in each layer.

In the general case of regular networks, it is easy to show that there exists an

equilibrium in which xsi = xs∗, ∀i ∈ N, s ∈ S, where

x∗s =
αs/[1 + φsds]∑

s′{αs
′/[1 + φs′ds′ ]}

T. (24)

In particular, in equilibrium, for two layers s and t,

xs∗

xt∗
=
αs/[1 + φsds]

αt/[1 + φtdt]
. (25)

In other words, the common equilibrium action in a layer s ∈ S is proportional to the

product of the utility weight αs and the social multiplier 1/[1 + φsds].

Proposition 4. Consider regular networks. Then,

1. xs∗ increases with αs and decreases with αt, for t 6= s;

2. xs∗ decreases (increases) with ds when φs > (<)0.

3. xs∗ increases (decreases) with dt when φt > (<)0, for t 6= s.

Quite naturally, the effort in each layer is increasing in the utility weight in the

same layer and decreasing with the weight in any other layer. In addition, if there

are strategic complementarities in efforts, the effort in a given layer increases with

the number of links in this layer and decreases with the number of links in the other

layers. The result is reversed for strategic substitutes.
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3.6 Inefficiency of equilibrium allocations

Define

W (X) :=
∑
i∈N

Ui(X)

as the aggregate payoff in equilibrium (total welfare). That is,

W (X) =
∑
i∈N

∑
s∈S

αs ln

vsi + xsi + φs
∑
j∈N

gsijx
s
j

 . (26)

An allocation X̂ ∈ K =
∏
i∈N Ki is called efficient if W (X̂) ≥ W (X) for any X ∈∏

i∈N Ki. The efficient allocation exists and it must be unique given the strict con-

cavity of W (·) and the convexity and compactness of the choice set K. Determining

the first-order conditions with respect to xsi , i ∈ N , s ∈ S leads to the next proposition:

Proposition 5. An interior allocation X̂ is efficient if and only if it satisfies the fol-
lowing equality:

αs

(vsi + xsi + φs
∑

j∈N g
s
ijx

s
j)

+
∑
j 6=i

αsφsgsji
(vsj + xsj + φs

∑
k∈N g

s
jkx

s
k)

= λ̂i, ∀i ∈ N , s ∈ S (27)

where λ̂i is the multiplier of agent i’s budget constraint.

Comparing the conditions for an equilibrium allocation and those for the efficient

allocation gives the discrepancy between these two allocations as each agent i in

equilibrium does not take into account the effects of xsi on other agents’ payoff. Ba-

sically, the first-order condition for each agent i at the Nash equilibrium corresponds

to (27) without the second term on the left-hand side of this equation (see (16) with

µi := 1/λ̂i). When φs is positive (negative), agent i underestimates (overestimates)

the marginal welfare effects of xsi . Since the aggregate budget is fixed for each player

i, the discrepancy boils down to the relative allocations across different layers. Given

the wedge between different private returns of effort and the social return, X∗ is

unlikely to be efficient in general.

To obtain some intuition, we consider again regular networks (Section 3.5).

Example 1. Consider regular networks with vsi = 0. Then, the unique efficient allo-
cation satisfies x̂si = x̂s, ∀i ∈ N , where

x̂s =
αs∑
t∈S α

t
T.
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In particular, for two layers s 6= t,

x̂s

x̂t
=
αs

αt
. (28)

The equilibrium allocation X∗ (25) satisfies xsi = x∗s,∀i ∈ N, s ∈ S, where

x∗s

x∗t
=
αs/[1 + φsds]

αt/[1 + φtdt]
. (29)

By comparing (28) and (29), we observe a discrepancy between xs∗ and x̂s. Interest-
ingly, the efficient allocation X̂s does not depend on the degrees ds and the network
effect parameters φs while the equilibrium allocation X∗ depends on these two param-
eters.

4 Policy implications and shock propagations

4.1 General results

Consider a planner that chooses the level of subsidies vsi and income Ti for each agent

i in each layer s to maximize aggregate welfare (26). In particular, we can study how

vs, s ∈ S and T affect the equilibrium allocation, payoffs, and aggregate welfare.

Denote U∗ = (U1, · · · , Un)T as the equilibrium payoff vector.

Theorem 2. At an interior equilibrium X∗, the following relationships hold

(i) Effects of vs:

∂µ∗

∂vs
=

(∑
t∈S

αtMt

)−1

Ms. (30)

∂xs∗

∂vs
= −Ms + αsMs

(∑
t∈S

αtMt

)−1

Ms. (31)

∂xs
′∗

∂vs
= αs

′
Ms′

(∑
t∈S

αtMt

)−1

Ms, for s′ 6= s. (32)

∂U∗

∂vs
=

(∑
s∈S

αs

)
diag(1/µ∗1, · · · , 1/µ∗n)

(∑
t∈S

αtMt

)−1

Ms. (33)

∂W ∗

∂vs
=

(∑
s∈S

αs

)
(1/µ∗1, · · · , 1/µ∗n)

(∑
t∈S

αtMt

)−1

Ms. (34)
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(ii) Effects of T:

∂µ∗

∂T
=

(∑
t∈S

αtMt

)−1

. (35)

∂xs∗

∂T
= αsMs

(∑
t∈S

αtMt

)−1

. (36)

∂U∗

∂T
=

(∑
s∈S

αs

)
diag(1/µ∗1, · · · , 1/µ∗n)

(∑
t∈S

αtMt

)−1

. (37)

∂W ∗

∂T
=

(∑
s∈S

αs

)
(1/µ∗1, · · · , 1/µ∗n)

(∑
t∈S

αtMt

)−1

. (38)

Theorem 2 is a direct consequence of the equilibrium characterization results in

Proposition 2. The intuition of the results is relatively simple. First, consider the

effect of a change in vs on xs∗, the individual efforts in the same layer s. By differen-

tiating (14), we obtain
∂xs∗

∂vs
= −Ms + αsMs∂µ

∗

∂vs
.

That is, when the planner increases vs, there is a direct negative effect on xs captured

by the matrix Ms, defined in (12), because vs and xs are strategic substitutes. The

new part is the second term that captures the indirect effects from the other layers

through the impact of vs on µ∗. When someone decreases their effort in one layer,

they need to adjust their effort in the other layers depending on the attractiveness

of each layer. This is captured by ∂µ∗

∂vs , which is obtained by differentiating (13) in

Definition 1. Second, consider the effect of a change in vs on another layer s′ 6= s. In

this case, only the indirect effect through µ∗ matters. Finally, since there is a one-to-

one relationship between equilibrium payoff and µi (Corollary 1), the impacts of vs

on utility U∗ and welfare W ∗ are similar.

Consider now the effect of a change in T. First, the impact of T on xs∗ is only

through µ∗. When T increases, agents have more resources and thus can allocate

their efforts differently across layers, which affects their shadow prices of the budget.

Indeed, differentiating (13) with respect to T yields ∂µ∗

∂T =
(∑

t∈S α
tMt

)−1, which, by

(14), leads to ∂xs∗

∂T = αsMs ∂µ∗

∂T . Second, the effects of T on utility U∗ and welfare W ∗

are similar to those of µ∗.

To better understand these results, we will now run some simulations for the two

applications in Section 2.2.
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4.2 Applications and simulations

Let us illustrate Theorem 2 with our two main applications in Section 2.2 with five

agents (N = {1, 2, 3, 4, 5}) and three layers (S = {1, 2, 3}). For all simulations, we

denote qsi = vsi +xsi +φs
∑

j∈N g
s
ijx

s
j , for i = 1, · · · , 5 and s = 1, 2, 3. We assume initially

that vsi = 0, for i = 1, · · · , 5, s = 1, 2, 3, α1 = α2 = α3 = 1/3, and T = (2, 2, 2, 2, 2)′.

4.2.1 Management of multiple social relationships

Consider application (i) in Section 2.2, such that each agent, given their time con-

straint, has to allocate their efforts among the three layers. The three layers are as

follows. Layer 1 (with adjacency matrix G1) is a star network in which player 1 is

the star/center, layer 2 (with adjacency matrix G2) is a circle network in which each

player has two direct links, and layer 3 (with adjacency matrix G3) is the complete

network. See Figure 2.
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1
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5
layer 3

layer 2

layer 1

Figure 2: An example of multiple social relationships with three different layers.

Case 1: Strategic complementarities: Assume that φ1 = φ2 = φ3 = −0.2.21 Re-

member that when φs is negative, efforts between two connected players i and j are

strategic complements (i.e., the higher is j’s effort, the higher is the increase in i’s
21We can verify that Assumption 1 holds in this case. Furthermore, the equilibrium is unique and

interior. The same comment applies to all other simulations.
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effort on its marginal utility) but each individual exerts a negative spillover on the

other (i.e., the higher is j’s effort, the lower is the utility of i).

We obtain the following equilibrium values:

x∗ =



0.471 0.356 1.174

0.353 0.415 1.232

0.349 0.423 1.228

0.349 0.423 1.228

0.353 0.415 1.232


, q∗ =



0.190 0.190 0.190

0.259 0.259 0.259

0.255 0.255 0.255

0.255 0.255 0.255

0.259 0.259 0.259


, µ∗ =



0.569

0.778

0.765

0.765

0.778


, U∗ =



−1.662

−1.350

−1.366

−1.366

−1.350


.

The aggregate welfare is equal to W ∗ = −7.094. Observe that in x∗, columns corre-

spond to layers and rows to players (there are five rows/players and three columns/layers).

For example, the first column corresponds to layer 1, that is, x1∗ =
(
x1∗

1 , x
1∗
2 , · · ·x1∗

5

)′.
The same interpretation holds for q∗.

We see that, quite naturally, because of their location (the star), player 1 makes

the highest effort in layer 1 but reduces their efforts in layers 2 and 3 (due to their

time constraint T1 = 2). Interestingly, even though players 2 and 5 have the same

positions as players 3 and 4 in layer 1, they exert higher effort because they are di-

rectly linked to player 1 in layer 2 (strategic complentarities) while players 3 and 4

are not (in layer 3, they all have the same positions). However, if we look at effec-

tive equilibrium efforts q∗, which captures own effort plus that of connected agents’

efforts, player 1 has the lowest qsi in all layers because of the negative spillovers ex-

erted by their neighbors. In other words, contrary to the standard theory of strategic

complementarities in network games (Ballester et al., 2006), even though player 1

has a locational advantage in layer 1 and no locational disadvantage in the other

layers, they end up having the lowest total effort qsi because of the negative spillovers

from their neighbors. Thus, agent 1 obtains the lowest utility among the five players:

U∗1 < U∗3 = U∗4 < U∗2 = U∗5 .22

Consider now the policy implications. First, we study the marginal effects on
22Agents 3 and 4 as well as agents 2 and 5 have symmetric positions.
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increasing subsidies to all players on layer 1,23 that is, v1.

∂x1∗

∂v1
=



−0.818 −0.199 −0.177 −0.177 −0.199

−0.199 −0.728 −0.097 −0.075 −0.079

−0.177 −0.097 −0.721 −0.094 −0.075

−0.177 −0.075 −0.094 −0.721 −0.097

−0.199 −0.079 −0.075 −0.097 −0.728


,
∂U∗

∂v1
=



1.751 −0.016 0.109 0.109 −0.016

−0.136 1.201 −0.239 −0.153 −0.149

−0.052 −0.226 1.231 −0.229 −0.138

−0.052 −0.138 −0.229 1.231 −0.226

−0.136 −0.149 −0.153 −0.239 1.201


,

(39)

and
∂W ∗

∂v1
=
(

1.376 0.671 0.719 0.719 0.671
)
. (40)

In ∂x1∗

∂v1 , we only look at the effect of a change in the subsidy in layer 1 (from v1
i = 0 to a

positive value) on the efforts on layer 1, so that each row i corresponds to player i in layer
1 while each column j corresponds to the subsidy of player j in layer 1. For example, the
second row (i = 2) third column (j = 3) corresponds to ∂x1∗

2

∂v13
= −0.097. The same is true for

∂U∗

∂v1 . Increasing the subsidy of player i in layer 1 (i.e., v1
i ) always reduces the effort v1

i of any
player i in layer 1 because v1

i and x1
i are strategic substitutes (see (14)). This explains the

negative signs on the diagonals of ∂x1∗

∂v1 in (39). The off diagonals capture the total effect of
v1
i on x1

j with i 6= j, which are also negative due to strategic complementarity between effort
x1
i and x1

j (recall φ1 < 0). For example, if v1
3 increases, individual 3 decreases their effort x1∗

3

due to the strategic substitutability between v1
3 and x1

3, which leads to a decrease in efforts
of all other agents in layer 1 (that is, the efforts of agents 1, 2, 4, and 5 in layer 1) because of
strategic complementarities in efforts due to φ1 = −0.2 < 0.

Concerning the impact of v1 on U∗, the values in the diagonal are now positive, which
means that a subsidy to agent i is always beneficial for this agent (see (1)). The off diagonals
capture the effects of v1

i on the utility of agent j, j 6= i, which, in this case, can be positive or
negative. For instance, ∂U

∗
1

∂v12
= −0.016, while ∂U∗1

∂v13
= 0.109. This is partially due to the different

positions taken by agents 2 and 3 relative to agent 1: agent 2 is linked to agent 1 in all layers,
while agent 3 is not linked to agent 1 on layer 2. Thus, when v1

2 increases, x1∗
2 decreases,

which creates a positive externality on agent 1 on layer 1. However, because x2∗
2 increases,

it has a negative externality on player 1 on layer 2. The net effect of v1
2 on the equilibrium

payoff U∗1 is negative. With the same reasoning, we can understand why the effect of v1
3 on

the utility of player 1 is positive. This is because agent 3 is not directly linked to agent 1 on
layer 2 and thus does not exert a negative externality on agent 1 on layer 2. Observe that if
we had only layer 1 (monolayer), then the effects of v1

2 on U∗1 would be positive.
Now, we study the marginal effects of increasing T on all players in layer 1. We obtain:

23For the sake of the presentation, in this section, we only study the policy implications of increasing
subsidies or income on layer 1, since the effects on the other two layers are similar and have the same
intuition. The simulation results of the impact on layers 2 and 3 are available upon request.
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∂x1∗

∂T
=



0.332 −0.035 −0.013 −0.013 −0.035

−0.003 0.311 −0.058 −0.035 −0.039

0.021 −0.062 0.314 −0.058 −0.040

0.021 −0.040 −0.058 0.314 −0.062

−0.003 −0.039 −0.035 −0.058 0.311


,
∂U∗

∂T
=



1.714 −0.366 −0.241 −0.241 −0.366

−0.268 1.228 −0.212 −0.126 −0.122

−0.179 −0.216 1.241 −0.219 −0.128

−0.179 −0.128 −0.219 1.241 −0.216

−0.268 −0.122 −0.126 −0.212 1.228


,

(41)

and
∂W ∗

∂T
=
(

0.820 0.396 0.444 0.444 0.396
)
. (42)

When Ti increases, agent i has more time and thus increases their efforts on all layers;
therefore, U∗i increases (see the diagonals of ∂x1∗

∂T and ∂U∗

∂T ). This implies that U∗j decreases
for j 6= i due to negative spillovers (see the off-diagonals of ∂U

∗

∂T ), while the efforts of agents j
decrease or increase depending on their positions in the different layers (see the off-diagonals
of ∂x1∗

∂T ).

Case 2: Strategic substitutes: Assume now that φ1 = 0.31, φ2 = 0.25, φ3 = 0.25. Remember
that when φs is positive, efforts between two connected players i and j are strategic substi-
tutes (that is, the higher is j’s effort, the lower is an increase in i’s effort on their marginal
utility) but each individual exerts a positive spillover on the other (that is, the higher is j’s
effort, the higher is the utility of i). We assume that the intensity of spillover effects in layer
1 is higher than that in layers 2 and 3 (i.e., φ1 > φ2 = φ3).

In this case, we obtain the following equilibrium values:

x∗ =



0.131 1.008 0.861

0.958 0.582 0.460

0.926 0.657 0.417

0.926 0.657 0.417

0.958 0.582 0.460


, q∗ =



1.299 1.299 1.299

0.999 0.999 0.999

0.967 0.967 0.967

0.967 0.967 0.967

0.999 0.999 0.999


, µ∗ =



3.898

2.996

2.900

2.900

2.996


, U∗ =



0.262

−0.001

−0.034

−0.034

−0.001


.

The aggregate welfare is given by W ∗ = 0.191.
Compared to case 1 with strategic complementarity, we obtain the reverse results. Player

1 has the lowest effort on layer 1 (free-riding) and the highest on layers 2 and 3. Furthermore,
player 1 has the highest equilibrium utility, i.e., U∗1 > U∗2 > U∗3 . The intuition is similar but
reverse to that of case 1 since efforts are now strategic substitutes but generate positive
externalities on the equilibrium utility of the other agents.

Let us now examine the policy implications. First, we study the impact of increasing the
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subsidies on all players in layer 1. We obtain

∂x1∗

∂v1
=



−0.897 0.227 0.183 0.183 0.227

0.227 −0.737 0.006 −0.023 −0.032

0.183 0.006 −0.720 0.014 −0.023

0.183 −0.023 0.014 −0.720 0.006

0.227 −0.032 −0.023 0.006 −0.737


,
∂U∗

∂v1
=



0.275 −0.013 −0.031 −0.031 −0.013

−0.051 0.334 0.062 0.034 0.039

−0.098 0.078 0.349 0.073 0.049

−0.098 0.049 0.073 0.349 0.078

−0.051 0.039 0.034 0.062 0.334


,

(43)

and
∂W ∗

∂v1
=
(
−0.023 0.488 0.487 0.487 0.488

)
. (44)

Giving a positive subsidy to any player but 1 leads to a decrease in U∗1 because agent 1,
who is connected to everyone on layer 1, obtains lower spillovers from the other players. On
the contrary, increasing the subsidy of any player but 1 always has a positive impact on the
utility of all players but 1. For example, when v1

2 increases, player 2 reduces their effort,
which only hurts player 1 on layer 1. This, in turn, implies that player 2 increases their
efforts on the other two layers, which create positive externalities on all other players. For
player 1, the negative impact of increasing v1

2 on layer 1 outweighs the positive impact of v1
2

on the other layers. Thus, ∂W
∗
1

∂T1
< 0 and ∂W∗i

∂T > 0 for all other players.
Now, we study the effect of the marginal increase in income T on all players in layer 1.

∂x1∗

∂T
=



0.357 −0.051 −0.095 −0.095 −0.051

−0.017 0.334 0.076 0.048 0.039

−0.041 0.062 0.337 0.070 0.034

−0.041 0.034 0.070 0.337 0.062

−0.017 0.039 0.048 0.076 0.334


,
∂U∗

∂T
=



0.248 0.072 0.054 0.054 0.072

0.094 0.318 0.047 0.018 0.023

0.072 0.048 0.318 0.042 0.019

0.072 0.019 0.042 0.318 0.048

0.094 0.023 0.018 0.047 0.318


,

(45)

and
∂W ∗

∂T
=
(

0.581 0.480 0.479 0.479 0.480
)
. (46)

When T increases, all agents have more income and all agents benefit; thus, ∂U
∗

∂T > 0 and
∂W∗

∂T > 0. Moreover, the effect of an increase in Ti on the effort of agent i in layer 1, i.e., x1
i , is

always positive (see the diagonal entries of ∂x1∗

∂T ). The effect of Ti on x1
j , i 6= j, can be positive

or negative depending on how the agents reallocate their efforts on layers 2 and 3 (see the
off-diagonals of ∂x1∗

∂T ).

4.2.2 Multiple public goods

Consider now application (ii) in Section 2.2. Assume that φ1 = 0.2, φ2 = 0, φ3 = 1. The
three layers are as follows. Layer 1 (with adjacency matrix G1) is a star network in which
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player 1 is the star, layer 2 is the empty network, and layer 3 (with adjacency matrix G3)
is the complete network. Observe that apart from player 1, all other players have the same
positions in all layers. See Figure 3.

1

2

3 4

5

1

2

3 4

5

1

2

3 4

5
layer 3

layer 2

layer 1

Figure 3: An example of multiple public goods with three different layers.

In this case, we obtain the following equilibrium values:

x∗ =



0.237 0.995 0.768

0.948 0.995 0.057

0.948 0.995 0.057

0.948 0.995 0.057

0.948 0.995 0.057


, q∗ =



0.995 0.995 0.995

0.995 0.995 0.995

0.995 0.995 0.995

0.995 0.995 0.995

0.995 0.995 0.995


, µ∗ =



2.986

2.986

2.986

2.986

2.986


, U∗ =



−0.005

−0.005

−0.005

−0.005

−0.005


.

The aggregate welfare is W ∗ = −0.024.
Player 1, who is the star, free-rides on layer 1 (local public good) by providing the lowest

effort but compensates this by making the highest effort on layer 3 (global public good). As
shown in Section 3.3.2, all agents exert the same effort on layer 2 (private good) and obtain
the same utility, i.e., U∗1 = · · · = U∗5 . The same is true for q∗ and µ∗.

Let us now examine the policy implications. First, we study the marginal effect of in-
creasing the subsidies v1 to all players in layer 1. We get

∂x1∗

∂v1
=



−1.185 0.261 0.261 0.261 0.261

0.261 −0.957 0.043 0.043 0.043

0.261 0.043 −0.957 0.043 0.043

0.261 0.043 0.043 −0.957 0.043

0.261 0.043 0.043 0.043 −0.957


,
∂U∗

∂v1
=



0.024 0.095 0.095 0.095 0.095

0.024 0.095 0.095 0.095 0.095

0.024 0.095 0.095 0.095 0.095

0.024 0.095 0.095 0.095 0.095

0.024 0.095 0.095 0.095 0.095


,

(47)
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and
∂W ∗

∂v1
=
(

0.119 0.476 0.476 0.476 0.476
)
. (48)

First, due to the substitutability between x1∗
i and v1

i , the diagonal of ∂x1∗

∂v1 is always neg-
ative. On the contrary, the off-diagonal of ∂x1∗

∂v1 is always positive because of strategic sub-
stitutability in efforts. Second, increasing the subsidy of a player i always leads to the same
utility increase for all agents because the equilibrium utility is the same for everyone (see
each row of ∂U

∗

∂v1 ). Observe that an increase in v1
1 (first row) has a lower impact on the equilib-

rium utility of all agents than an increase of v1
j for j 6= 1 (second to fifth row) because player

1 has the lowest effort on layer 1.
Next, we study the marginal increase in income T on all players in layer 1. We have

∂x1∗

∂T
=



0.024 0.024 0.024 0.024 0.024

0.095 0.095 0.095 0.095 0.095

0.095 0.095 0.095 0.095 0.095

0.095 0.095 0.095 0.095 0.095

0.095 0.095 0.095 0.095 0.095


,
∂U∗

∂T
=



0.100 0.100 0.100 0.100 0.100

0.100 0.100 0.100 0.100 0.100

0.100 0.100 0.100 0.100 0.100

0.100 0.100 0.100 0.100 0.100

0.100 0.100 0.100 0.100 0.100


,

(49)

and
∂W ∗

∂T
=
(

0.500 0.500 0.500 0.500 0.500
)
. (50)

First, increasing Ti for agent i has the same impact on equilibrium utility as increasing Tj

for agent j due to the neutrality result established in Section 3.3.2. Second, the effects of
increasing Ti on the efforts of all agents are different for player 1 (see the first row of ∂x1∗

∂T )
than for the other players (see the other rows of ∂x1∗

∂T ) because player 1 has a more central
position on layer 1 and thus makes less effort on this layer.

4.3 Targeting problems

Suppose the social planner can design interventions to maximize aggregate welfare W ∗. De-
fine a row vector η = (η1, · · · , ηn) := ∂W∗

∂T as the effect of marginal changes in T on the
aggregate welfare.24 By Theorem 2,

η = (1, · · · , 1)
∂U∗

∂T
=

(∑
s∈S

αs

)
(1/µ∗1, · · · , 1/µ∗n)

(∑
t∈S

αtMt

)−1

. (51)

24Here we focus on the marginal effects of interventions. Another valuable venue is to analyze the
social planner’s constrained targeting intervention program, along the lines of Galeotti et al. (2020).
We leave this for future work.
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Proposition 6.

(i) Consider the problem in which the planner can only allocate income Ti to a player i
that marginally increases welfare. Then, the planner should target the player with the
highest ηi.

(ii) Consider the problem in which the planner can only allocate subsidy vsi to a player i on
layer s that marginally increases welfare. Then, the planner should target the player
with the highest τsi , where

τ s = (1, · · · , 1)
∂U∗

∂vs
= ηMs. (52)

Let us provide some intuition of the targeting results shown in Proposition 6. Consider
case (i). The maximization problem can be formulated as

max
i∈N

∂W ∗

∂Ti
=
∂
∑
j∈N U

∗
j

∂Ti
, (53)

which is equivalent to choosing player i with the highest ηi.
Now, consider case (ii). The planner needs to solve the following problem

max
i∈N ,s∈S

∂W ∗

∂vsi
=
∂
∑
j∈N U

∗
j

∂vsi
. (54)

The solution of this problem can be obtained in two steps. First, for each layer s, we can
derive the key player on that layer by solving the following problem: maxi∈N τ

s
i . In the second

step, we optimize over s.
Compared to the standard targeting intervention problems analyzed in monolayer net-

works (Ballester et al., 2006; Galeotti et al., 2020; Kor and Zhou, 2022), the planner now
needs to take into account both the effect on the current layer and that on the other layers.
One can see from η (see (51)) and τ s (see (52)) that these indices depend on Ms, the matrix of
interactions between agents in a given layer s, as well as on the interaction between layers
through µ∗.

Let us now illustrate these results with our numerical simulations.
Consider first case 1 with strategic complementarities and negative spillovers (φ1 = φ2 =

φ3 = −0.2). The player with the highest ηi is player 1 (see (42)), and the player with the
highest τ1

i is also player 1 (see (40)). This is because the direct impact of T1 or v1
1 is the

highest one on player 1 because player 1 has the lowest utility and the indirect negative
spillovers that player 1 exerts on all other players are relatively small.

Consider now case 2 with strategic substitutes and positive spillovers (φ1 = 0.31, φ2 =

0.25, φ3 = 0.25). The player with the highest ηi is again player 1 (see (46)), while the player
with the highest τ1

i is not player 1 (see (44)) but player 2 or 5. Indeed, for the impact of
T1, the direct effect on player 1 is smaller compared to the other players, but the indirect
positive spillover effects on all other players are much larger. Therefore, the planner should
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target player 1 in terms of income Ti. This is not true for the subsidy policy, in which case
the planner should not target player 1. Indeed, when the planner gives the subsidy v1

1 to
player 1, only player 1 benefits in terms of utility while all the other players experience a
decrease in their utility (see the first row of ∂U∗

∂v1 in (43)). On the contrary, when the planner
gives the subsidy to any player but 1, the reverse is true; that is, all agents see an increase
in their utility while player 1 experiences a decrease (see rows second to fifth of ∂U∗

∂v1 in (43)).
Because the former positive effect is smaller than the latter negative effect, the planner needs
to target any player but 1.

Finally, consider the case with multiple public goods (φ1 = 0.2, φ2 = 0, φ3 = 1). For
the income policy Ti, due to neutrality, it does not matter whom the planner targets since
η1 = · · · = η5 (see (50)). For the subsidy policy, the planner should not target player 1 (see
(48)). By comparing the first and the other rows of ∂U∗

∂v1 in (47), we see that both the direct
and indirect effects are much smaller when targeting player 1 rather than anyone else (see
(21)).

5 Conclusion

Multiplex networks are a powerful tool for understanding and analyzing complex systems.
They allow us to capture the richness and complexity of real-world relationships and inter-
actions, and they provide a framework for developing new insights and understanding into
a wide range of phenomena. In this paper, by using multiplex networks, we capture the
rich complexity of social interactions, which lead to new insights and understanding of social
phenomena.

We develop a simple model of network multiplexity and establish the equilibrium proper-
ties of this model using best-reply potential techniques. We characterize the unique Nash
equilibrium and show that efforts depend on the specificity of the layer, the intensity of
spillovers, and the individual position in each layer. We perform some comparative statics
exercises by studying within-layer and cross-layer shock propagation. We also examine tar-
geted interventions such as finding the key player in a multilayer network in which a planner
takes into account both the impact of its policy on a given layer and that on the other inter-
connected layers.

Different extensions are possible. First, we consider discrete (Leister et al., 2022) instead
of continuous actions and examine how this changes our results. Second, we extend our model
to large population (or graphon) games (Parise and Ozdaglar, 2023) and derive new results
for multilayer networks. We leave these exciting topics for future research.
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Appendix

A Proofs

Proof of Theorem 1: The second part immediately follows from the first part. So it suffices
to establish (10). To this end, we need the following Lemma:

Lemma 1. Fixing parameters vs > 0,∀s. Define a set ∆ as the set of nonnegative vectors
x = (x1, · · · , xs) ≥ 0 satisfying

∑
s x

s = T > 0. Consider two optimization problems (P1) and
(P2), where

(P1) max
x∈∆

∑
s∈S

αs ln(vs + xs) (55)

and
(P2) max

x∈∆
−
∑
s∈S

1

2αs
(vs + xs)2. (56)

The solution to (P1) coincides with that to (P2).

To show Lemma 1, we note that in each problem (Pi), i = 1, 2, the objective function is
strictly concave, and the constraint set is compact and convex. Therefore, for each problem
(Pi), i = 1, 2, a unique solution exists, which must satisfy the local necessary conditions.

The Lagrange to the first problem (P1) is

L =
∑
s∈S

αs ln(vs + xs)− λ(
∑
s

xs − T )

where λ > 0 is the multiplier to the constraint
∑
s x

s = T > 0. The first-order condition (FOC)
with respect to xs yields

αs

(vs + xs)
− λ ≤ 0 (= 0 if xs > 0). (57)

The unique solution x∗ to (P1) is the unique solution to the FOCs (57) (recall that x∗ is in ∆).
Similarly, the Lagrange to the second problem (P2) is

L = −
∑
s∈S

1

2αs
(vs + xs)2 − µ(

∑
s

xs − T )

where µ < 0 is the multiplier to the constraint
∑
s x

s = T > 0. The FOC with respect to xs

yields

− (vs + xs)

αs
− µ ≤ 0 (= 0 if xs > 0). (58)

We claim that (x∗, λ∗) solves the corresponding FOCs (57) of problem (P1) if and only
if (x∗, µ∗ = −1/λ∗) solves the corresponding FOCs (58) of problem (P2). This immediately
implies

αs

(vs + xs)
≤ λ⇐⇒ (vs + xs)

αs
≥ 1

λ
⇐⇒ − (vs + xs)

αs
−
(
− 1

λ

)
≤ 0.
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To show (10), we note that, given x−i ∈ K−i, agent i’s utility is strictly concave in xi with

∂Ui
∂xsi

=
αs

(vsi + xsi + φs
∑
j∈N g

s
ijx

s
j)
,∀s ∈ S. (59)

Due to strict concavity, agent i’s best response arg maxxi∈Ki
Ui(xi,x−i) is unique, and it satis-

fies the following FOCs:

αs

(vsi + xsi + φs
∑
j∈N g

s
ijx

s
j)
− λi ≤ 0 (= 0 if xsi > 0), (60)

where λi is the multiplier to i’s constraint
∑
s∈S x

s
i = Ti. Furthermore, given x−i, θ(·,x−i) is

quadratic in xi with

− ∂θ

∂xsi
=

(vsi + xsi + φs
∑
j∈N g

s
ijx

s
j)

αs
,∀s ∈ S (61)

and a negative definite Hessian matrix −( ∂2θ
∂2xs′

i x
s′′
i

)1≤s′,s′′≤s = −diag(1/α1, · · · , 1/αs). Hence,
θ(·,x−i) is strictly concave in xi, and thus, arg maxxi∈Ki

θ(xi,x−i) is unique and must satisfy
the following FOCs:

−
(vsi + xsi + φs

∑
j∈N g

s
ijx

s
j)

αs
− µi ≤ 0 (= 0 if xsi > 0), (62)

where µi is the multiplier to i’s constraint:
∑
s∈S x

s
i = Ti. The rest just follows from the argu-

ment behind the proof of Lemma 1 and the construction of θ. �

Proof of Proposition 1: By Theorem 1, X∗ = (x∗1, · · · ,x∗n) is an equilibrium if and only if,
for any i ∈ N ,

θ(x∗1,x
∗
−i) ≥ θ(x1,x

∗
−i),∀xi ∈ Ki.

Since θ is strictly concave in xi, for each fixed x−i, we can replace the above optimality condi-
tion using the corresponding FOCs and then summarize them over all i as a solution to the
following variational inequality:

〈−∇θ(X∗),X−X∗〉 ≥ 0, ∀X ∈
∏
i∈N

Ki. (63)

Here ∇θ is the gradient of θ. It is straightforward to check that Assumption 1 is equivalent
to the fact that −∇θ is a monotone operator on K, which immediately implies the uniqueness
of the solution to VI in (63) (see Nagurney (1999)).25 So Proposition 1(i) is proved.

25To see the intuition, recall that θ is a quadratic function defined on a convex compact set K. The
quadratic form

Q(z1, · · · , zs) =
∑
s∈S

(
1

2αs

)
(zs)′(In + φsGs)zs

is only the quadratic term of −θ. Meanwhile, the linear constrains
∑
s∈S z

s = 0 are due to binding
budget constraints for agents. Consequently, under Assumption 1, θ is strictly concave on K, implying
the uniqueness of the global maximizer of θ on K.
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Consider now the proof of Proposition 1(ii). When 1+λmin(φsGs) > 0,∀s ∈ S, the quadratic
form Q is positive definite without the linear constraints. The rest just follows from Proposi-
tion 1(i). �

Proof of Proposition 2: At an interior equilibrium X∗, the FOCs of agent i yield

αs

(vsi + xs∗i + φs
∑
j∈N g

s
ijx

s∗
j )

= λ∗i ,∀s ∈ S,

where λi equals the multiplier of i’s resource constraint. As a result,

(vsi + xs∗i + φs
∑
j∈N

gsijx
s∗
j ) = αs (1/λ∗i )︸ ︷︷ ︸

:=µ∗i

, (64)

implying that, for each layer s, vs + xs∗ + φsGsxs∗ = αsµ∗, or, equivalently, xs
∗

= [In +

φsGs]−1(µ∗−αsvs) = Ms(µ∗−αsvs).Here µ∗ = (µ∗1, · · · , µ∗n)′. Using the constraints
∑
s∈S x

s∗ =

T, we solve for µ∗ as given in Definition 1.
Part (ii) is obvious as the equilibrium payoff of agent i, using (64), is equal to U∗i =∑

s∈S α
s ln(αsµ∗i ). Hence, we finish the proof. �

Proof of Corollary 1: By Proposition 2(ii), lnU∗i − lnU∗j = (
∑
s∈S α

s)
(
ln(µ∗i )− ln(µ∗j )

)
. The

result just follows. �

Proof of Proposition 3: We have

Ms = Z diag

(
1

1 + φsγ1
, · · · , 1

1 + φsγn

)
Z−1, for each s ∈ S.

This implies that Ms commutes with Mt for any s and t. Then,

µ̂∗ = Z−1µ∗ = Z−1

(∑
s∈S

αsMs

)−1(
T +

∑
s∈S

Msvs

)
.

=

(∑
s∈S

αsdiag

(
1

1 + φsγ1
, · · · , 1

1 + φsγn

))−1(
T̂ +

∑
s∈S

diag

(
1

1 + φsγ1
, · · · , 1

1 + φsγn

)
v̂s

)
.

In other words, in this eigenspace of G, we have

µ̂∗i =

(∑
s∈S

αs

1 + φsγi
)

)−1(
T̂i +

∑
s∈S

1

1 + φsγi
v̂s

)
,

which is equation (23) in Proposition 3.
Now, we can rewrite the equilibrium allocations in the eigenspace of G as follows:

x̂s∗ = Z−1xs∗ = Z−1Ms(αsµ∗ − vs),

= diag

(
1

1 + φsγ1
, · · · , 1

1 + φsγn

)(
αsµ̂∗ − v̂s

)
,
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Therefore,
x̂s∗i =

1

1 + φsγi
(αsµ̂∗i − v̂si ),

which is (22) in Proposition 3. �

Proof of Theorem 2: It follows from the discussion after Theorem 2 in the main text. �

Proof of Proposition 4 : The results directly follow from (24) and (25). �

Proof of Proposition 5: An interior efficient allocation X∗ must satisfy the correspond-
ing FOCs with equalities, which lead to the system of equations in (27). Furthermore, W is
strictly concave in X. Thus, a solution to FOCs must be globally optimal. �

Proof of Proposition 6: It follows from the discussion in the main text. �

B Interiority of the equilibrium effort

Under Assumption 1, there exists a unique equilibrium. If, for each s ∈ S, xs∗ defined in (14)
is interior, then X∗ = (xs∗, s ∈ S) must be a unique equilibrium by Proposition 2. To this end,
we derive first-order approximations of the equilibrium objectives when the φss are small.

For simplicity, assume vs = 0. In this case, we obtain the following Taylor expansions:

Ms ≈ I− φsGs,

µ∗ ≈ 1

ᾱ

(
I +

∑
t∈S

αt

ᾱ
φtGt

)
T,

xs∗ ≈ αs

ᾱ

(
I− φsGs +

∑
t∈S

αt

ᾱ
φtGt

)
T,

where ᾱ =
∑
s∈S α

s > 0. These approximations are correct up to quadratic or higher-order
terms of φss. When T = 1, we can further simplify these expressions. For each i ∈ N , we
obtain

µ∗i ≈ 1

ᾱ

(
1 +

∑
t∈S

αt

ᾱ
φtdti

)
, (65)

xs∗i ≈ αs

ᾱ

(
1− φsdsi +

∑
t∈S

αt

ᾱ
φtdti

)
, (66)

where dti is the degree of agent i ∈ N in layer t ∈ S. These expressions are useful to see the
effects of spillovers φs on the equilibrium payoff U∗i , which has a one-to-one relationship to
µ∗i by Corollary 1, and equilibrium efforts.
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In particular, when φs ≈ 0, for all s, from the above approximations, we see that xs
∗

i

and µ∗i must all be positive. By continuity, this shows that the equilibrium efforts must be
interior when the spillovers are not too large. In all the simulations, we verify that, indeed,
the equilibrium efforts are always strictly positive (see Section 4.2).
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Bramoullé, Y. and R. Kranton (2016). Games played on networks. In: Bramoullé, Yann, An-
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