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Abstract

In situations in which the social planner has to make several decisions over time,

before agents have observed all the relevant information, static mechanisms may not

su¢ ce to induce agents to reveal their information truthfully. This paper focuses on

questions of partial and full implementation in dynamic mechanisms, when agents�

beliefs are unknown to the designer (hence the term �robust�). It is shown that a

social choice function (SCF) is (partially) implementable for all models of beliefs if

and only if it is ex-post incentive compatible. Furthermore, in environments with

single crossing preferences, strict ex-post incentive compatibility and a �contraction

property� are su¢ cient to guarantee full robust implementation. This property

limits the interdependence in agents�valuations, the limit being tighter the stronger

the �intertemporal e¤ects�.

Full robust implementation requires that, for all models of agents beliefs, all

the perfect Bayesian equilibria of a mechanism induce outcomes consistent with

the SCF. This paper shows that, for a weaker notion of equilibrium and for a

general class of dynamic games, the set of all such equilibria can be computed by

means of a �backwards procedure�which combines the logic of rationalizability and

backward induction reasoning. It thus provides foundation to a tractable approach

to the implementation question, allowing at the same time stronger implementation

results.
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1 Introduction.

Several situations of economic interest present problems of mechanism design that are

inherently dynamic. Consider the problem of a public authority (or �social planner�) who

wants to assign yearly licenses for the provision of a public good to the most productive

�rm in each period. Firms�productivity is private information and may change over time;

it may be correlated over time, and later productivity may depend on earlier allocative

choices (for example, if there is learning-by-doing). Hence, the planner�s choice depends

on private information of the �rms, and the design problem is to provide �rms with the

incentives to reveal their information truthfully. But �rms realize that the information

revealed in earlier stages can be used by the planner in the future, a¤ecting the allocative

choices of later periods. Thus, in designing the mechanism (e.g. a sequence of auctions),

the planner has to take into account �intertemporal e¤ects�that may alter �rms�static

incentives.

A rapidly growing literature has recently addressed similar problems of dynamic mech-

anism design, in which the planner has to make several decisions over di¤erent peri-

ods, with the agents�information changing over time. In the standard approach, some

commonly known distribution over the stochastic process generates payo¤s and signals.1

Hence, it is implicitly assumed that the designer knows the agents�beliefs about their

opponents�private information and their beliefs, conditional on all possible realizations of

agents�private information. In that approach, classical implementation questions can be

addressed: For any given �model of beliefs�, we can ask under what conditions there ex-

ists a mechanism in which agents reveal their information truthfully in a Perfect Bayesian

Equilibrium (PBE) of the game (partial implementation), or whether there exists a mech-

anism in which, all the PBE of the induced game induce outcomes consistent with the

social choice function (full implementation).

It is commonly accepted that the assumption that the designer knows the agents�entire

hierarchies of beliefs is too strong. In dynamic settings in particular, the assumption of

a commonly known prior entails the planner�s knowledge of signi�cantly more complex

objects, such as agents�hierarchies of conditional beliefs: For instance, in the example

above, it means that the designer knows the �rms� conditional beliefs (conditional on

all possible realizations of private signals) over own future productivity and the other

�rms�current and future productivities and their beliefs, conditional on all realization

of their signals. Not only are these assumptions strong, but the sensitivity of game

1Among others, see Bergemann and Valimaki (2008), Athey and Segal (2007), Pavan, Segal and Toikka

(2009). Gershov and Moldovanu (2009a,b) depart from the �standard�approach described above in that

the designer does not know the �true�distribution, combining implementation problems with learning.
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theoretic results to the �ne details of agents�higher order beliefs is also well documented.

Weakening the reliance of game theoretic analysis on common knowledge assumptions

seems thus crucial to enable us �to conduct useful analysis of practical problems�(Wilson,

1987, p.34).2

This paper focuses on the question of whether partial and full implementation can

be achieved, in dynamic environments, when agents�beliefs are unknown to the designer

(hence the term �robust�). For the partial implementation question, building on the ex-

isting literature on static robust mechanism design (particularly, Bergemann and Morris,

2005) it is not di¢ cult to show that a Social Choice Function (SCF) is PBE-implementable

for all models of beliefs if and only if it is ex-post incentive compatible. The analysis of

the full implementation question instead raises novel problems: in order to achieve robust

full implementation we need a mechanism such that, for any model of beliefs, all the

PBE induce outcomes consistent with the SCF. The direct approach to the question is to

compute the set of PBE for each model of beliefs; but the obvious di¢ culties that this

task presents have been a major impediment to the development of a robust approach to

dynamic mechanism design.

This paper introduces and provides foundations to a methodology that avoids the

di¢ culties of the direct approach. The key ingredient is the notion of interim perfect

equilibrium (IPE). IPE weakens Fudenberg and Tirole�s (1991) PBE allowing a larger set

of beliefs o¤-the-equilibrium path. The advantage of weakening PBE in this context is

twofold: on the one hand, full implementation results are stronger if obtained under a

weaker solution concept (if all the IPE induce outcomes consistent with the SCF, then so

do all the PBE, or any other re�nement of IPE); on the other hand, the weakness of IPE

is crucial to making the problem tractable. In particular, it is shown that the set of IPE-

strategies across models of beliefs can be computed by means of a �backwards procedure�

that combines the logic of rationalizability and backward induction reasoning: For each

history, compute the set of rationalizable continuation-strategies, treating private histories

as �types�, and proceed backwards from almost-terminal histories to the beginning of the

game. (Re�nements of IPE would either lack such a recursive structure, or require more

complicated backwards procedures.)

The results are applied to study conditions for full implementation in environments

with monotone aggregators of information: In these environments information is revealed

dynamically, and while agents�preferences may depend on their opponents�information

(interdependent values) or on the signals received in any period, in each period all the

2In the context of mechanism design, this research agenda (sometimes referred to asWilson�s doctrine)

has been put forward in a series of papers by Bergemann and Morris, who developed a belief-free approach

to classical implementation questions, known as �robust�mechanism design.
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available information (across agents and current and previous periods) can be summarized

by one-dimensional statistics. In environments with single-crossing preferences, su¢ cient

conditions for full implementation in direct mechanisms are studied: these conditions

bound the amount of interdependence in agents� valuations, such bounds being more

stringent the stronger the �intertemporal e¤ects�.

The rest of the paper is organized as follows: Section 2 discusses an introductory

example to illustrate the main concepts and insights. Section 3 introduces the notion

of environments, which de�ne agents� preferences and information structure (allowing

for information to be obtained over time). Section 4 introduces mechanisms. Models

of beliefs, used to represent agents�higher order uncertainty, are presented in Section 5.

Section 6 is the core of the paper, and contains the main solution concepts and results for

the proposed methodology. Section 7 focuses on the problem of partial implementation,

while Section 8 analyzes the problem of full implementation in direct mechanisms. Proofs

are in the Appendices.

2 A Dynamic Public Goods Problem.

I discuss here an example introducing main ideas and results, abstracting from some

technicalities. The section ends with a brief discussion of the suitable generalizations of

the example�s key features.

Consider an environment with two agents (n = 2) and two periods (T = 2). In each

period t = 1; 2, agents privately observe a signal �i;t 2 [0; 1], i = 1; 2, and the planner

chooses some quantity qt of public good. The cost function for the production of the

public good is c (qt) = 1
2
q2t in each period, and for each realization � = (�i;1; �i;2; �j;1; �j;2),

i; j = 1; 2 and i 6= j, agent i�s valuation for the public goods q1 and q2 are, respectively,

�i;1 (�1)= �i;1 + 
�j;1

and

�i;2 (�1; �2)=' (�i;1; �i;2) + 
' (�j;1; �j;2)

where 
 � 0 and ' : [0; 1]2 ! R is assumed continuously di¤erentiable and strictly

increasing in both arguments. Notice that if 
 = 0, we are in a private-values setting; for

any 
 > 0, agents have interdependent values. Also, since ' is strictly increasing in both

arguments, there are �intertemporal e¤ects�: the �rst period signal a¤ects the agents�

valuation in the second period.

The notation �i;t is mnemonic for �aggregator�: functions �i;1 and �i;2 �aggregate�all

the information available up to period t = 1; 2 into real numbers ai;1, ai;2, which uniquely
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determine agent i�s preferences. Agent i�s utility function is

ui (q1; q2; �i;1; �i;2; �)=�i;1 (�1) � q1 + �i;1 (1)

+ [�i;2 (�1; �2) � q2 + �j;2] ,

where �i;1 and �i;2 represent the quantity of private good in period t = 1; 2. The optimal

provision of public good in each period is therefore

q�1 (�1)=�i;1 (�1) + �j;1 (�1) and (2)

q�2 (�)=�i;2 (�1; �2) + �j;2 (�1; �2) . (3)

Consider now the following direct mechanism: agents publicly report messages mi;t 2
[0; 1] in each period, and for each pro�le of reports m = (mi;1;mj;1;mi;2;mj;2), agent i

receives generalized Vickrey-Clarke-Groves transfers

��i;1 (mi;1;mj;1)=� (1 + 
)
�

 �mi;1 �mj;1 +

1

2
m2
j;1

�
and (4)

��i;2 (mi;1;mj;1)=� (1 + 
)
�

 � ' (mi;1mi;2) � ' (mj;1mj;2) +

1

2
' (mj;1mj;2)

2

�
, (5)

and the allocation is chosen according to the optimal rule, (q�1 (m1) ; q
�
2 (m1;m2)).

If we complete the description of the environment with a model of agents�beliefs, then

the mechanism above induces a dynamic game with incomplete information. The solution

concept that will be used for this kind of environments is �interim perfect equilibrium�

(IPE), a weaker version of Perfect Equilibrium in which agents�beliefs at histories imme-

diately following a deviation are unrestricted (they are otherwise obtained via Bayesian

updating).

�Robust�implementation though is concerned with the possibility of implementing a

social choice function (SCF) irrespective of the model of beliefs. So, consider the SCF

f =
�
q�t ; �

�
i;t; �

�
j;t

�
t=1;2

that we have just described: We say that f is partially robustly

implemented by the direct mechanism if, for any model of beliefs, truthfully reporting

the private signal in each period is an �interim perfect equilibrium�(IPE) of the induced

game.

For each � = (�i;1; �i;2; �j;1; �j;2) and m = (mi;1;mi;2;mj;1;mj;2), de�ne

�i (�;m)=' (mi;1;mi;2)� ' (�i;1; �i;2)

�
 � [' (�j;1; �j;2)� ' (mj;1;mj;2)]

=�i;2 (m)� �i;2 (�) .

In words: given payo¤ state � and reports m (for all agents and periods), �i (�;m) is the

di¤erence between the value of the aggregator �i;2 under the reports pro�le m, and its

�true�value if payo¤-state is �.
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For given �rst period (public) reports m̂1 = (m̂i;1; m̂j;1) and private signals
�
�̂i;1; �̂i;2;

�
,

and for point beliefs (�j;1; �j;2;mj;2) about the opponent�s private information and report

in the second period, if we ignore problems with corner solutions, then the best response

m�
i;2 of agent i at the second period in the mechanism above satis�es:3

�i

�
�̂i;1; �̂i;2; �j;1; �j;2; m̂1;m

�
i;2;mj;2

�
= 0. (6)

Also, given private signal �̂i;1, and point beliefs about (�i;2; �j;1; �j;2;mj;1;mi;2;mj;2) ��
�n(i;1);mn(i;1)

�
, the �rst period best-response satis�es:

m�
i;1 � �̂i;1 = 
 (�j;1 �mj;1)

+
@'
�
m�
i;1;mi;2

�
@mi;1

��
�
�̂i;1; �n(i;1);m

�
i;1;mn(i;1)

�
(7)

This mechanism satis�es ex-post incentive compatibility: For each possible realization of

� 2 [0; 1]4, conditional on the opponents reporting truthfully, if agent i has reported

truthfully in the past (i.e. mi;1 = �i;1), then equation (6) is satis�ed if and only if

mi;2 = �i;2. Similarly, given that �(�;m) = 0 in the second period, the right-hand side

of (7) is zero if the opponents report truthfully in the �rst period, and so it is optimal

to report mi;1 = �i;1 (independent of the realization of �). Notice that this is the case

for any 
 � 0. Since such incentive compatibility is realized ex-post, conditioning to all

information being revealed, incentive compatibility will also be realized with respect to

any model of beliefs. Thus, for any such model of beliefs, there always exist an IPE that

induces truthful revelation, that is, f is robustly partially implementable if 
 � 0.
Even with ex-post incentive compatibility, it is still possible that, for some model of be-

liefs, there exists an IPE which does not induce truthful revelation: To achieve full robust

implementation in this mechanism we must guarantee that all the IPE for all models of

beliefs induce truthful revelation. We approach this problem indirectly, applying a �back-

wards procedure�to the �belief-free�dynamic game that will be shown to characterize the

set of IPE-strategies across models of beliefs. In the procedure, for each public history m̂1

(pro�le of �rst-period reports), apply rationalizability in the continuation game, treat-

ing the private histories of signals as �types�; then, apply rationalizability at the �rst

stage, maintaining that continuation strategies are rationalizable in the corresponding

continuations.

Before illustrating the procedure, notice that equation (6) implies that, conditional

on having reported truthfully in the �rst period (mi;1 = �i;1), truthful revelation in the

3We ignore here the possibility of corner solutions, which do not a¤ect the fundamental insights.

Corner solutions will be discussed in Section 8.
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second period is a best-response to truthful revelation of the opponent irrespective of the

realization of �. Now, maintain that the opponent is revealing truthfully (mj;t = �j;t for

t = 1; 2); if mi;1 6= �i;1, i.e. if i has misreported in the �rst period, the optimal report

in the second period is a further misreport (mi;2 6= �i;2), such that the implied value of

the aggregator �i;2 is equal to its true value (i.e.: �(�; m̂1;m2) = 0.) This is the notion

of self-correcting strategy, sci : a strategy that reports truthfully at the beginning of the

game and at every truthful history, but in which earlier misreports (which do not arise if

sci is played) are followed by further misreports, to �correct�the impact of the previous

misreports on the value of the aggregator �i;2. It will be shown next that, if 
 < 1, then

the self-correcting strategy pro�le is the only pro�le surviving the �backward procedure�

described above. Hence, given the results of Section 6, the self-correcting strategy is the

only strategy played in all IPE for all �models of beliefs�. Since sc induces truthful

revelation, this implies that, if 
 < 1, SCF f is fully robustly implemented.

For given m̂1 and �i = (�i;1; �i;2), let xi (�i) = [' (m̂i;1;mi;2)� ' (�i;1; �i;2)] denote type

�i�s �implied over-report� of the value of '. Then equation (6) can be interpreted as

saying that �the optimal over-report of ' is equal to �
 times the (expected) opponent�s
under-report of '�. Let x

¯
0
j and �x

0
j denote the minimum and maximum possible values

of xj. Then, if i is rational, his over-reports are bounded by xi (�i) � �x1i � 
�x
¯
0
j and

xi (�i) � x¯
1
i � �
 � �x0j . Recursively, de�ne �xki = �
�x¯

k�1
j and x

¯
k
i = �


P
j 6=i �x

k�1
j . Also,

for each k and i, let yki �
�
�xki � x¯

k
j

�
denote the distance between the maximum and lowest

possible over-report at step k. Then, substituting, we obtain the following system of

di¤erence equations:
yk= � � yk�1

where

yk=

 
yki
ykj

!
and � =

"
0 



 0

# (8)

Notice that the continuation game from m̂1 is dominance solvable if and only if yk ! 0

as k ! 1. In that case, for each �i, xi (�i) ! 0, and so truthtelling is the unique

rationalizable strategy. Thus, it su¢ ces to study conditions for the dynamic system

above to converge to the steady state 0. In this example, 0 is an asymptotically stable

steady state if and only if 
 < 1. Hence, if 
 < 1, the only rationalizable outcome in the

continuation from m̂1 guarantees that � = 0. Given this, the �rst period best response

simpli�es to

m�
i;1 � �̂i;1 = 
 (�j;1 �mj;1) :

The same argument can be applied to show that truthful revelation is the only rational-

izable strategy in the �rst period if and only if 
 < 1 (cf. Bergemann and Morris, 2009).
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Then, if 
 < 1, the self-correcting strategy is the only �backward rationalizable�strategy,

hence the only strategy played as part of IPE for all models of beliefs.

Key Properties and their Generalizations. The analysis in Section 8 generalizes

several features of this example: The notions of aggregator functions and of self-correcting

strategy have a fairly straightforward generalization. An important feature is that, in each

period, the marginal rate of substitutions between qt and the other goods is increasing in

�i;t for each i. This property implies that, for given beliefs about the space of uncertainty

and the opponents�messages, higher types report higher messages: such monotonicity,

allowing us to construct the recursive system (8). Several versions of single-crossing

conditions generalize this aspect in Section 8. Finally, the generalization of the idea that


 < 1 takes the form of a �contraction property�.4 Consider the �rst period: for any �1
and m1,

�i;1 (mi;1;mj;1)� �i;1 (�i;1; �j;1) = (mi;1 � �i;1) + 
 (mj;1 � �j;1) :

Thus, if 
 < 1, for any set of possible �deceptions�D there exists at least one agent

i 2 f1; 2g which can unilaterally sign
�
�i;1

�
m0
i;1;mj;1

�
� �i;1 (�i;1; �j;1)

�
by reporting some

message m0
i;1 6= �j;1, irrespective of �j;1 and mj;1. That is, for all �j;1 and mj;1 in D:

sign
�
�i;1

�
m0
i;1;mj;1

�
� �i;1 (�i;1; �j;1)

�
= sign

�
m0
i;1 � �i;1

�
:

Similarly, for public history m̂1 in the second period, 
 < 1 guarantees that there exists at

least one agent that can unilaterally sign
�
�i;2

�
m̂1;m

0
i;2;mj;2

�
� �i;2 (�i; �j)

�
, (uniformly

over �j and mj;2), by reporting some message m0
j;2 other than the one implied by the

self-correcting strategy, sci;2:

sign
�
m0
i;2 � sci;2

�
= sign

�
�i;2

�
m̂1;m

0
i;2;mj;2

�
� �i;2 (�i; �j)

�
:

This property will be required to hold at all histories.5

3 Environments.

Consider an environment with n agents and T periods. In each period t = 1; :::; T , each

agent i = 1; :::; n observes a signal �i;t 2 �i;t. For each t, �t := �1;t� :::��n;t denotes the
set of period-t signals pro�les. For each i and t, the set �i;t is assumed non-empty and

compact subset of a �nitely dimensional Euclidean space. For each agent i, ��i := �Tt=1�i;t
is the set of i�s payo¤ types: a payo¤-type is a complete sequence of agent i�s signals in

4The name, borrowed from Bergemann and Morris (2009), is evocative of the logic behind equation 8.
5The general formulation (Section 8) allows to accommodate the case analogous to the possibility of

corner solutions in the example above.
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every period. A state of nature is a pro�le of agents�payo¤ types, and the set of states

of nature is de�ned as �� := ��1 � :::���n.
In each period t, the social planner chooses an allocation from a non-empty subset of

a �nitely dimensional Euclidean space, �t (possibly a singleton). The set �� = �Tt=1�t
denotes the set of feasible sequences of allocations. Agents have preferences over sequences

of allocations that depend on the realization of ��: for each i = 1; :::; n, preferences are

represented by utility functions ui : ����� ! R. Thus, the states of nature characterize
everybody�s preferences over the sets of feasible allocations.

An environment is de�ned by a tuple

E =


N;��;��; (ui)i2N

�
,

assumed common knowledge.

Notice that an environment only represents agents�knowledge and preferences: it does

not encompass agents�beliefs. Each agent�s payo¤-type �i 2 ��i represents his knowledge
of the state of nature at the end of period T . That is, his knowledge of everyone�s

preferences about the feasible allocations.

For each t, let Y t
i := �t�=1��i denote the set of possible histories of player i�s signals

up to period t. For each t and private signals yti = (�i;1; :::; �i;t) 2 Y t
i , agent i knows that

the �true�state of nature �� 2 �� belongs to the set fytig �
�
�T�=t+1�i;t

�
����i.

At any point in time, agent form beliefs about the features of the environment they

don�t known. These beliefs should be interpreted here as purely subjective. Since ro-

bust mechanism design is concerned with problems of implementation as agents�model

of beliefs change, we maintain the description of the agents�beliefs separate from the

description of their information (which is part of the environment, and held constant).

Models of beliefs are presented in Section 5.

Social Choice Functions. The description of the primitives of the problem is com-

pleted by the speci�cation of a social choice function (SCF), f : �� ! ��.

Given the constraints of the environment, a necessary condition for a SCF to be

implementable is that period�t choices be measurable with respect to the information
available in that period. That is:

Remark 1 A necessary condition for a SCF f : �� ! �� to be implementable is that

there exist functions ft : Y t ! �t, t = 1; :::; T , such that for each � = (�1; :::�T ), f (�) =

(ft (�1; :::; �t))
T
t=1.

In the following, we will only consider SCF that satisfy such necessary condition. We

thus write f = (ft)
T
t=1.
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4 Mechanisms.

A mechanism is a tuple

M =
D�
(Mi;t)i2N

�T
t=1

; (gt)
T
t=1

E
where each Mi;t is a non-empty set of messages available to agent i at period t (i 2 N

and t = 1; :::; T ); gt are �outcome functions�, assigning allocations to each history at each

stage. As usual, for each t we de�ne Mt = �i2NMi;t.

Formally, let H0 := f�g (� denotes the empty history). For each t = 1; :::; T , the

period-t outcome function is a mapping gt : H t�1 �Mt ! �t, where for each t, the set of

public histories of length t is de�ned as:

H t =
��
ht�1;mt; �t

�
2 H t�1 �Mt � �t : �t = gt

�
ht�1;mt

�	
.

The set of public histories is de�ned as H = [T�=0H� . Throughout the paper we focus

on compact mechanisms, in which the setsMi;t are compact subsets of �nitely dimensional

Euclidean spaces.

4.1 Games with Payo¤Uncertainty.

An environment E and a mechanism M determine a dynamic game with payo¤ uncer-

tainty, that is a tuple

(E ;M) =


N; (Hi;�

�
i ; ui)i2N

�
:

Sets N , ��i and payo¤ functions ui are as de�ned in E , while sets Hi are de�ned as

follows: the set of player i�s private signals is given by Y t
i = (�t�=1�i;� ); sets H t (t =

0; 1; :::; T ) are de�ned as inM; player i�s set of private histories of length t (t = 1; :::; T )is

de�ned as H t
i := H t�1 � Y t

i , and �nally Hi := f�g [
�
[T�=1H�

i

�
denotes the set of i�s

private histories. Thus, each private history of length t is made of two components: a

public component, made of the previous messages of the agents and the allocations chosen

by the mechanism in periods 1 through t� 1; and a private component, made of agent i�s
private signals from period 1 through t.

It is convenient to introduce notation for the partial order representing the precedence

relation on the sets H and Hi: h� � ht indicates that history h� is a predecessor of ht

(similarly for private histories: (h��1; y�i ) � (ht�1; yti) if and only if h� � ht and y�i � yti .)

Remark 2 The tuple (E ;M) is not a standard incomplete information game (Harsanyi,

1967-68), because it does not encompass a speci�cation of agents� interactive beliefs. A

standard incomplete information game is obtained by appending a model of beliefs B,
introduced in Section 5. Concepts and notation for structures (E ;M;B) will be introduced
in Section 6.1.
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4.1.1 Strategic Forms.

Agents�strategies in the game (E ;M) are measurable functions si : Hi ! Mi such that

si (h
t
i) 2 Mi;t for each hti 2 Hi. The set of player i�s strategies is denoted by Si, and as

usual we de�ne the sets S = �i2NSi and S�i = �j 6=iSj. Payo¤s are de�ned as in E , as
functions ui : �� � �� ! R. For any strategy pro�le s 2 S, each realization of � 2 ��

induces a terminal allocation gs (�) 2 ��. Hence, we can de�ne strategic-form payo¤

functions Ui : S ��� ! R as Ui (s; �) = ui (g
s (�) ; �) for each s and �.

As the game unfolds, agents learn about the environment observing the private signals,

but they also learn about the opponents�behavior through the public histories: for each

public history ht and player i, let Si (ht) denote the set of player i�s strategies that

are consistent with history ht being observed. Clearly, since i�s private histories are

only informative about the opponents�behavior through the public history, for each i,

hti = (h
t�1; yti) 2 Hi and j 6= i, Sj (hti) = Sj (h

t�1).

For each ht, Sh
t

i denotes the set of strategies in the subform starting from ht, and

for each si 2 Si, sijht 2 Sh
t

i denotes the continuation si starting from ht. The notation

gsjh
t
(�) refers to the terminal history induced by strategy pro�le s from the public history

ht if the realized state of nature is �. Strategic-form payo¤ functions can be de�ned for

continuations from a given public history: for each ht 2 H and each (s; �) 2 S � ��,
Ui (s; �;h

t) = ui
�
gsjh

t
(�) ; �

�
. For the initial history �, it will be written Ui (s; �) instead

of Ui (s; �;�). Sets Hi and Si are endowed with the standard metrics derived from the

Euclidean metric on HT ���.6

4.2 Direct Mechanisms.

The notion of direct mechanism is based on the observation made in remark 1:

De�nition 1 A mechanism is direct, denoted by M�, if for each i and for each t =

1; :::; T , Mi;t = �i;t, and gt = ft.

In a direct mechanism, agents are asked to announce their signals at every period.

Based on the reports, the mechanism chooses the period-t allocation according to the

function ft : Y t ! �t, as speci�ed by the SCF. The truthtelling strategies are those that,

conditionally on having reported truthfully in the past, report truthfully the period-t

signal, �ti. Truthtelling strategies may di¤er in the behavior they prescribe at histories

following past misreports, but they all are outcome equivalent and induce truthful reve-

lation in each period. The set of such strategies is denoted by S�i , with typical element

s�i .

6See Appendix A.1 for details.
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5 Models of Beliefs.

A model of beliefs for an environment E is a tuple

B =


N;��; (Bi; �i)i2N

�
such that for each i, Bi is measurable space (the set of types), and �i : Bi ! �(�� �B�i)

is a measurable function.7

At period 0 agents have no information about the environment. Their (subjective)

�priors� about the payo¤ state and the opponents�beliefs is implicitly represented by

means of types bi, with beliefs given by �i (bi) 2 �(�� �B�i). In periods t = 1; :::; T ,

agents update their beliefs using their private information (the history of payo¤ signals),

and other information possibly disclosed by the mechanism set in place. The main dif-

ference with respect to standard (static) type spaces with payo¤ types, as in Bergemann

and Morris (2005) for example, is that players here don�t know their own payo¤-types

at the interim stage: payo¤-types are disclosed over time, and known only at the end of

period T . Thus, an agent�s type at the beginning of the game is completely described by

a �prior�belief over the payo¤ states and the opponents�types.

In standard models of dynamic mechanism design (e.g. Bergemann and Valimaki,

2008, and Athey and Segal, 2007, Pavan et al., 2009), the history of payo¤types completely

determines players�beliefs about the payo¤ states and the opponents�beliefs at each point

of the process.8 In the present setting this corresponds to the case where, for each i, Bi is

a singleton and supp
�
marg��i �i (bi)

�
= ��i : A unique �prior�describes the beliefs (of any

order) for each player, so that conditional beliefs are uniquely determined for all possible

realizations of the payo¤ types.

To summarize our terminology, in an environment with beliefs (E ;B) we distinguish
the following �stages�: in period 0 (the interim stage) agents have no information, their

(subjective) prior is represented by types bi, with beliefs �i (bi) 2 �(�� �B�i); T di¤erent

period-t interim stages, for each t = 1; :::; T , when a type�s beliefs after a history of signals

yti would be concentrated on the set�
yti
	
�
�
�T�=t+1�i;t

�
����i �B�i:

The term �ex-post� refers to hypothetical situations in which interim pro�les are

revealed: �period-t ex-post stage� refers to a situation in which everybody�s signals up

7For a measurable space X, �(X) denotes the set of probability measures on X, endowed with the

topology of weak convergence and the corresponding Borel sigma-algebra.
8Classical mechanism design focuses almost exclusively on the case of payo¤ type spaces. Neeman

(2004) shows how relaxing this assumption may crucially a¤ect the results.
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to period t are revealed. By �ex-post� stage we refer to the �nal realization, when

payo¤-states are fully revealed (or the period-T ex-post stage).

6 Solution Concepts.

This section is organized in two parts: the �rst, introduces the main solution concept

for environments with a model of beliefs; the second introduces the solution concept for

environments without beliefs, which will be used in the analysis of the full-implementation

problem in Section 8.

6.1 Mechanisms in Environments with Beliefs: (E ;M;B).
A tuple (E ;M;B) determines a dynamic incomplete information game in the sense of
Harsanyi. Strategies are thus measurable mappings �i : Bi ! Si, and the set of strategies

is denoted by �i. At period 0, agents only know their own type. Hence, the set of agent i�s

private histories of length 0 coincides with the set of his types. It is therefore convenient

to identify types with such histories, and write h0i 2 Bi.
A system of beliefs consists of collections (pi (hti))hti2Hinf�g for each agent i, such that

pi (h
t
i) 2 �(�� �B�i): a belief system represents agents�conditional beliefs about the

payo¤state and the opponents�types at each private history. A strategy pro�le and a belief

system (�; p) form an assessment. For each agent i, a strategy pro�le � and conditional

beliefs pi induce, at each private history ht�1i , a probability measure P �;pi
�
ht�1i

�
over the

histories of length t.

De�nition 2 Fix a strategy pro�le � 2 �. A beliefs system p is consistent with � if for

each i 2 N :

8h0i 2 Bi; pi
�
h0i
�
= �i

�
h0i
�

(9)

8hti =
�
yti ; h

t�1� 2 Hin f�g
supp[pi

�
hti
�
] �

�
yti
	
�
�
�T�=t+1�i;�

�
����i �B�i (10)

and for each hti such that h
t�1
i � hti, pi (h

t
i) is obtained from pi

�
ht�1i

�
and P �;pi

�
ht�1i

�
via

Bayesian updating (whenever possible).

Condition (9) requires each agent�s beliefs conditional on observing type bi to agree

with that type�s beliefs as speci�ed in the model B; condition (10) requires conditional
beliefs at each private history to be consistent with the information about the payo¤ state

contained in the history itself; �nally, the belief system pi is consistent with Bayesian

updating whenever possible.

13



From the point of view of each i, for each hti 2 Hin f�g and strategy pro�le �, the
induced terminal history is a random variable that depends on the realization of the state

of nature and opponents�type pro�le (agent i�s type h0i is known to agent i at h
t
i, h

0
i � hti).

This is denoted by g�jh
t
i (�; b�i). As done for games without a model of beliefs (Section

4.1), we can de�ne strategic-form payo¤ functions as follows:

Ui
�
�; �; b�i;h

t
i

�
= ui

�
g�jh

t
i (�; b�i) ; �

�
.

De�nition 3 Fix a belief system p. A strategy pro�le is sequentially rational with respect

to p if for every i 2 N and every hti 2 Hin f�g, the following inequality is satis�ed for
every �0i 2 �i: Z

���B�i
Ui
�
�; �; b�i;h

t
i

�
� dpi

�
hti
�

(11)

�
Z
���B�i

Ui
�
�0i; ��i; �; b�i;h

t
i

�
� dpi

�
hti
�
.

De�nition 4 An assessment (�; p) is an Interim Perfect Equilibrium (IPE) if:9

1. � is sequentially rational with respect to p; and

2. p is consistent with �.

If inequality (11) is only imposed at private histories of length zero, the solution

concept coincides with interim equilibrium (Bergemann and Morris, 2005). IPE re�nes

interim equilibrium imposing two natural conditions: �rst, sequential rationality; second,

consistency of the belief system.

The notion of consistency adopted here imposes no restrictions on the beliefs held at

histories that receive zero probability at the preceding node.10 Hence, even if agents�initial

beliefs admit a common prior, IPE is weaker than Fudenberg and Tirole�s (1991) perfect

Bayesian equilibrium. Also, notice that any player�s deviation is a zero probability event,

and treated the same way. In particular, if history hti is precluded by �i
�
ht�1i

�
alone,

9I avoid the adjective �Bayesian�(preferring the terminology �interim� perfect equilibrium) because

the models of beliefs under consideration are not necessarily consistent with a common prior. For the

same reason, Bergemann and Morris (2005) preferred the terminology �interim� to that of Bayes-Nash

equilibrium.
10IPE is consistent with a �trembling-hand� view of unexpected moves, in which no restrictions on

the possible correlations between �trembles� and other elements of uncertainty are imposed. Unlike

other notions of weak perfect Bayesian equilbrium, in IPE agents�beliefs are consistent with Bayesian

updating also o¤-the-equilibrium path. In particular, in complete information games, IPE coincides with

subgame-perfect equilibrium.
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hti =2suppP �;pi
�
ht�1i

�
, and agent i�s beliefs at hti are unrestricted the same way they would

be after an unexpected move of the opponents. This feature of IPE is not standard,

but it is key to the result that the set of IPE-strategies across models of beliefs can be

computed by means of a convenient �backwards procedure�: Treating own deviations the

same as the opponents� is key to the possibility of considering continuation games �in

isolation�, necessary for the result. In Penta (2009) I consider a minimal strengthening of

IPE, in which agents�beliefs are not upset by unilateral own deviations, and I show how

the analysis that follows adapts to that case: The �backwards procedure� to compute

the set of equilibria across models of beliefs must be modi�ed, so to keep track of the

restrictions the extensive form imposes on the agents�beliefs at unexpected nodes. Losing

the possibility of envisioning continuation games �in isolation�, the modi�ed procedure is

more complicated, essentially undoing the advantages of the indirect approach.

Furthermore, for the sake of the full-implementation analysis, it can be shown that in

the framework considered in Section 8, the set of IPE-strategies across models of beliefs

coincides with the set of strong IPE -strategies across models of beliefs. Thus, from the

point of view of the full-implementation results of Section 8, this point is not critical.

6.2 Mechanisms in Environments without Beliefs: (E ;M).

This section introduces a solution concept for dynamic games without a model of beliefs,

backward rationalizability (BR), and shows that it characterizes the set of IPE-strategies
across models of beliefs (proposition 1). It is also shown that BR can be conveniently

solved by a �backwards procedure�that extends the logic of backward induction to envi-

ronments with incomplete information (proposition 2).

In environments without a model of beliefs we will not follow a classical equilibrium

approach: no coordination of beliefs on some equilibrium strategy is imposed. Rather,

agents form conjectures about everyone�s behavior, which may or may not be consistent

with each other. To avoid confusion, we refer to this kind of beliefs as �conjectures�,

retaining the term �beliefs�only for those represented in the models of Section 5.

Conjectures. Agents entertain conjectures about the space �� � S. As the game un-

folds, and agents observe their private histories, their conjectures change. For each private

history hti = (h
t�1; yti) 2 Hi, de�ne the event [hti] � �� � S as:�

hti
�
=
�
yti
	
�
�
�T�=t+1�i;�

�
����i � S

�
ht�1

�
:

(Notice that, by de�nition, [hti] �
�
ht�1i

�
whenever ht�1i � hti.)

De�nition 5 A conjecture for agent i is a conditional probability system (CPS here-

after), that is a collection �i = (�i (hti))hti2Hi
of conditional distributions �i (hti) 2 �(�� � S)
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that satisfy the following conditions:

C.1 For all hti 2 Hi, �i (hti) 2 �([hti]);

C.2 For every measurable A � [hti] �
�
ht�1i

�
, �i (hti) [A] � �i

�
ht�1i

�
[hti] = �i

�
ht�1i

�
[A].

The set of agent i�s conjectures is denoted by �Hi (�� � S).11

Condition C.1 states that agents�are always certain of what they know; condition C.2

states that agents�conjectures are consistent with Bayesian updating whenever possible.

Notice that in this speci�cation agents entertain conjectures about the payo¤ state, the

opponents�and their own strategies. This point is discussed in Section 6.3.

Sequential Rationality. A strategy si is sequentially rational with respect to conjec-

tures �i if, at each history hti 2 Hi, it prescribes optimal behavior with respect to �i (�;hti)
in the continuation of the game. Formally: Given a CPS �i 2 �Hi (�� � S) and a history

hti = (h
t�1; yti), strategy si expected payo¤ at h

t
i, given �

i, is de�ned as:

Ui
�
si; �

i;hti
�
=

Z
���S�i

Ui
�
si; s�i; �;h

t�1� � dmarg���S�i�i �hti� . (12)

De�nition 6 A strategy si is sequentially rational with respect to �i 2 �Hi (�� � S),

written si 2 ri (�i), if and only if for each hti 2 Hi and each s0i 2 Si the following inequality
is satis�ed:

Ui
�
si; �

i;hti
�
� Ui

�
s0i; �

i;hti
�
: (13)

If si 2 ri (�i), we say that conjectures �i �justify�strategy si.

6.2.1 Backward Rationalizability.

We introduce now the solution concept that will be shown (proposition 1) to characterize

the set of IPE-strategies across models of beliefs, Backwards Rationalizability (BR). The
name is justi�ed by proposition 2, which shows that BR can be computed by means

of a �backwards procedure� that combines the logic of rationalizability and backwards

induction.
11The general de�nition of a CPS is in appendix A.2.
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De�nition 7 For each i 2 N , let BR0
i = Si. De�ne recursively, for k = 1; 2; :::

BRk
i =

8>>>>>>>>>>><>>>>>>>>>>>:
ŝi 2 BRk�1

i :

9�i 2 �Hi (�� � S) s.t.

(1) ŝi 2 ri (�i)
(2) supp (�i (�)) � �� � fŝig � BRk�1

�i

(3) for each hti = (h
t�1; yti) 2 Hi:

s 2 supp (margS�i (hti)) implies:
(3.1) sijhti = ŝijhti, and
(3.2) 9s0�i 2 BRk�1

�i : s
0
�ijht�1 = s�ijht�1

9>>>>>>>>>>>=>>>>>>>>>>>;
Finally, BR :=

T
k�0
BRk.12

BR consists of an iterated deletion procedure. At each round, strategy si survives if

it is justi�ed by conjectures �i that satisfy two conditions: condition (2) states that at

the beginning of the game, the agent must be certain of his own strategy si and have

conjectures concentrated on opponents�strategies that survived the previous rounds of

deletion; condition (3) restricts the agent�s conjectures at unexpected histories: condition

(3.1) states that agent i is always certain of his own continuation strategy; condition

(3.2) requires conjectures to be concentrated on opponents�continuation strategies that

are consistent with the previous rounds of deletion. However, at unexpected histories,

agents�conjectures about �� are essentially unrestricted. Thus, condition (3) embeds two

conceptually distinct kinds of assumptions: the �rst concerning agents�conjectures about

��; the second concerning their conjectures about the continuation behavior. For ease of

reference, they are summarized as follows:

� Unrestricted-Inference Assumption (UIA): At unexpected histories, agents�
conjectures about�� are unrestricted. In particular, agents are free to infer anything

about the opponents� private information (or their own future signals) from the

public history.

For example, conditional conjectures may be such thatmarg���i�
i (�jhti) is concentrated

on a �type�yt�i for which some of the previous moves in h
t�1 are irrational. Nonetheless,

condition (3.2) implies that it is believed that yt�i will behave rationally in the future.

From an epistemic viewpoint, it can be shown that BR can be interpreted as common

certainty of future rationality at every history.

12It goes without saying that whenever we write a condition like �i (Xjhti) � � and X is not measurable,

the condition is not satis�ed.
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� Common Certainty in Future Rationality (CCFR): at every history (ex-
pected or not), agents share common certainty in future rationality.

Thus, CCFR can be interpreted as a condition of belief persistence on the continuation

strategies.13

6.3 Results.

We discuss now the two main results which are useful to tackle the problem of full im-

plementation in Section 8. The �rst result shows that BR characterizes the set of IPE-

strategies across models of beliefs; the second result shows that this set can be computed

by means of a convenient �backwards procedure�.

Characterization of the set of IPE. As emphasized above, in BR agents hold con-

jectures about both the opponents�and their own strategies. First, notice that conditions

(2) and (3.2) in the de�nition of BR maintain that agents are always certain of their

own strategy; furthermore, the de�nition of sequential best response (def. 6) depends

only on the marginals of the conditional conjectures over ���S�i. Hence, this particular
feature of BR does not a¤ect the standard notion of rationality. The fact that conjectures
are elements of �Hi (�� � S) rather than �Hi (�� � S�i) corresponds to the assumption,

discussed in Section 6.1, that IPE treats all deviations the same; its implication is that

both histories arising from unexpected moves of the opponents and from one�s own devia-

tions represent zero-probability events, allowing the same set of conditional beliefs about

�� � S�i, with essentially the same freedom that IPE allows after anyone�s deviation.

This is the main insight behind the following result (the proof is in Appendix B.1):

Proposition 1 (Characterization) Fix a game (E ;M). For each i: ŝi 2 BRi if and

only if 9B, b̂i 2 Bi and (�̂; p̂) such that: (i) (�̂; p̂) is an IPE of (E ;M;B) and (ii) ŝi 2supp
�̂i

�
b̂i

�
:

An analogous result can be obtained for the more standard re�nement of IPE, in

which unilateral own deviations leave an agents�beliefs unchanged, applying to a modi�ed

version of BR: such modi�cation entails assuming that agents only form conjectures about
���S�i (that is: �i 2 �Hi (�� � S�i)) and by consequently adapting conditions (2) and

(3) in the de�nition of BR. (See Penta, 2009.) Hence, the assumption that IPE treats
anyone�s deviation the same (and, correspondingly, that in BR agents hold conjectures

13In games of complete information, an instance of the same principle is provided by subgame perfection,

where agents believe in the equilibrium continuation strategies both on- and o¤-the-equilibrium path. The

belief persistence hypothesis goes hand in hand with the logic of backward induction, allowing to envision

each subgame �in isolation�. (cf. Perea, 2009, and discussion below, Section 9.)
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about their own strategy as well) is not crucial to characterize the set of equilibrium

strategies across models of beliefs. As already discussed in Section 6.1, it is crucial instead

for the next result, which shows that such set can be computed applying a procedure that

extends the logic of backward induction to environments with incomplete information

(proposition 2 below).

The �Backwards Procedure�. The backwards procedure is described as follows: Fix

a public history hT�1 of length T � 1. For each payo¤-type yTi 2 ��i of each agent, the
continuation game is a static game, to which we can apply the standard notion of �-

rationalizability (Battigalli and Siniscalchi, 2003). For each hT�1, let RhT�1
i denote the

set of pairs
�
yTi ; sijhT�1

�
such that continuation strategy sijhT�1 is rationalizable in the

continuation game from hT�1 for type yTi . We now proceed backwards: for each public

history hT�2 of length T � 2, we apply again �-rationalizability to the continuation game
from hT�2 (in normal form), restricting continuation strategies sijhT�2 2 Sh

T�2
i to be

�-rationalizable in the continuation games from histories of length hT�1. RhT�2
i denotes

the set of pairs
�
yT�1i ; sijhT�2

�
such that continuation strategy sijhT�2 is rationalizable

in the continuation game from hT�2 for �type� yT�1i . Inductively, this is done for each

ht�1, until the initial node � is reached, for which the set R�
i is computed. We can now

introduce the �backwards procedure� result (the proof and the formal de�nition of R�

are in appendix B.2):

Proposition 2 (Computation) BRi = R�
i for each i.

Properties UIA and CCFR provide the basic insight behind this result. First, notice

that under UIA, the set of beliefs agents are allowed to entertain about the opponents�

payo¤ types (i.e. the support of their marginal beliefs over ���i) is the same at every

history (equal to ���i). Hence, in this respect, their information about the opponents�

types in the subform starting from (public) history ht�1 is the same as if the game started

from ht�1. Also, CCFR implies that agents� epistemic assumptions about everyone�s

behavior in the continuation is also the same at every history. Thus, UIA and CCFR

combined imply that, from the point of view of BR, a continuation from history ht�1 is

equivalent to a game with the same space of uncertainty and strategy spaces equal to the

continuation strategies, which justi�es the possibility of analyzing continuation games �in

isolation�.14

14Hence, BR satis�es a property that generalizes the notion of �subgame consistency�, according to

which �the behavior prescribed on a subgame is nothing else than the solution of the subgame itself�

(Harsanyi and Selten, 1988, p.90).
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7 Partial Implementation.

Under our assumption that the designer can commit to the mechanism, it is easy to show

that a revelation principle holds for dynamic environments, so that restricting attention

to direct mechanisms (de�nition 1) entails no loss of generality for the analysis of the

partial implementation problem.

The notion of implementation adopted by the classical literature on static mechanism

design is that of interim incentive compatibility:

De�nition 8 A SCF is interim implementable (or interim incentive compatible) on B =

N;��; (Bi; �i)i2N

�
if truthful revelation is an interim equilibrium of (E ;M�;B). That is,

9�� 2 �� such that for each i 2 N and bi 2 Bi, for all �i 2 �i,Z
���B�i

Ui (�
�; �; b�i; bi) � d� (bi)

�
Z
���B�i

Ui
�
�i; �

�
�i; �; b�i; bi

�
� d� (bi) :

(Recall that �� denotes the set of truthtelling strategies.) Bergemann and Morris

(2005) showed that a SCF is interim incentive compatible on all type spaces, if and only

if it is ex-post incentive compatible, that is:

De�nition 9 A SCF f is ex post implementable (or ex post incentive compatible) if for
each i, for each � 2 �� and s0i 2 Si

Ui (s
�; �) � Ui

�
s0i; s

�
�i; �

�
:

We say that a SCF is Strictly Ex-Post Incentive Compatible if for any s0i =2 S�i , the

inequality holds strictly:

Interim incentive compatibility imposes no requirement of perfection: If players cannot

commit to their strategies, more stringent incentive compatibility requirements must be

introduced, to account for the dynamic structure of the problem. We thus apply the solu-

tion concept introduced in Section 6.1, IPE: A mechanism is interim perfect implementable

if the truthtelling strategy is an IPE of the direct mechanism.

De�nition 10 A SCF is interim perfect implementable (or interim perfect incentive

compatible) on B =


N;��; (Bi; �i)i2N

�
if there exist beliefs (pi)i2N and �� 2 �� such

that, (��; p) is an IPE of (E ;M�;B).
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For a given model of beliefs, interim perfect incentive compatibility is clearly more de-

manding than interim incentive compatibility. But, as the next result shows, the require-

ment of �perfection�is no more demanding than the �ex-ante�incentive compatibility if

it is required for all models of beliefs:

Proposition 3 (Partial Implementation) A SCF is perfect implementable on all mod-
els of beliefs if and only if it is ex post implementable.

Hence, as far as �robust�partial implementation is concerned, assuming that agents

can commit to their strategies is without loss of generality: The dynamic mechanism can

be analyzed in its normal form.

On the other hand, in environments with dynamic revelation of information, agents�

signals are intrinsically multidimensional. Hence, given proposition 3, the negative result

on ex-post implementation by Jehiel et al. (2006) can be interpreted as setting tight limits

for the Wilson�s doctrine applied to dynamic mechanism design problems. However, the

literature provides examples of environments of economic interest where ex-post imple-

mentation with multidimensional signals is possible (e.g. Picketty, 1999; Bikhchandani,

2006; Eso and Maskin, 2002).

8 Full Implementation in Direct Mechanisms.

We begin by focusing on direct mechanisms. Unlike the static case of Bergemann and

Morris (2009), in environments with dynamic revelation of information direct mechanisms

may not su¢ ce to achieve full robust implementation: Section 8.4 shows how simple

�enlarged�mechanisms, can improve on the direct ones, yet avoiding the intricacies of

the �augmented mechanisms�required for classical Bayesian Implementation.15

De�nition 11 SCF f is fully perfectly implementable in the direct mechanism if for

every B, the set of IPE-strategies of (E ;M�;B) is included in
P�.

The following proposition follows immediately from proposition 1.

Proposition 4 SCF f is (fully) robustly perfect-implementable in the direct mechanism
if and only if BR � S�.

15Classical references are Postlewaite and Schmeidler (1988), Palfrey and Srivastava (1989) and Jackson

(1991).
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8.1 Environments with Monotone Aggregators of Information.

In this Section it is maintained that each set �i;t = [�li;t; �
h
i;t] � R, so that, for each

t = 1; :::; T , Y t � Rnt. Environments with monotone aggregators are characterized by
the property that for each agent, in each period, all the available information (across

time and agents) can be summarized by a one-dimensional statistic. Furthermore, such T

statistics uniquely determine an agent�s preferences. (This notion generalizes properties

of preferences discussed in the example in Section 2).

De�nition 12 An Environment admits monotone aggregators (EMA) if, for each i, and
for each t = 1; :::; T , there exists an aggregator function �ti : Y

t ! R and a valuation
function vi : �� � RT! R such that �ti and vi are continuous, �ti is strictly increasing in
�i;t and for each (�

�; ��) 2 �� ���;

ui (�
�; ��) = vi

�
��; (��i (y

� (��)))T�=1

�
:

Assuming the existence of the aggregators and the valuation functions, per se, entails

no loss of generality: the bite of the representation derives from the continuity assump-

tions and the further restrictions on the aggregator functions that will be imposed in the

following.

The self-correcting strategy. The analysis is based on the notion of self-correcting

strategy, sc, which generalizes what we have already described in the leading example of

Section 2: at each period-t history, sci reports a message such that the implied period-t

valuation is �as correct as it can be�, given the previous reports. That is: conditional on

past truthful revelation, sci truthfully reports i�s period-t signal; at histories that come

after previous misreports of agent i, sci entails a further misreport, to o¤set the impact

on the period-t aggregator of the previous misresports.16 Formally:

De�nition 13 The self-correcting strategy, sci 2 Si, is such that for each t = 1; :::; T and
public history ht�1 = (~yt�1; xt�1), and for each private history hti = (h

t�1; yti ; ),

sci
�
hti
�
= arg min

mi;t2�i;t

(
max
yt�i2Y t�i

���ti �yti ; yt�i�� �ti
�
~yt�1i ;mi;t; y

t
�i
���) : (14)

Clearly, sc induces truthful reporting (that is: sc 2 S�): if ht�1 = (~yt�1; xt�1) and

yti =
�
~yt�1i ; �i;t

�
, then sci (h

t�1; yti) = �i;t. Also, notice that sci (h
t
i) only depends on the

component of the public history made of i�s own reports, ~yt�1i . Let ~yt�i be such that:

~yt�i 2 arg max
yt�i2Y t�i

���ti �yti ; yt�i�� �ti
�
~yt�1i ; sci

�
hti
�
; yt�i

��� .
16An earlier formulation of the idea of self-correcting strategy can be found in Pavan (2007). I thank

Alessandro Pavan for pointing this out.
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Then, by de�nition of sci and the fact that �
t
i is strictly increasing in �i;t, we may have

three cases:

�ti
�
yti ; y

t
�i
�
=�ti

�
~yt�1i ; sci

�
hti
�
; yt�i

�
for all yt�i 2 Y t

�i; (15)

�ti
�
yti ; ~y

t
�i
�
>�ti

�
~yt�1i ; sci

�
hti
�
; ~yt�i

�
and sci

�
hti
�
= �+i;t, (16)

�ti
�
yti ; ~y

t
�i
�
<�ti

�
~yt�1i ; sci

�
hti
�
; ~yt�i

�
and sci

�
hti
�
= ��i;t. (17)

Equation (15) corresponds to the case in which strategy sci can completely o¤set the

previous misreports. But there may exist histories at which no current report can o¤set

the previous misreports. In the example of Section 2, suppose that the �rst period under-

(resp. over-) report is so low (resp. high), that even reporting the highest (lowest) possible

message in the second period is not enough to �correct�the implied value of '. This was

the case corresponding to the possibility of corner solutions, and corresponds cases to (16)

and (17) respectively.

The Contraction Property. The results on full implementation are based on a con-

traction property that limits the dependence of agents�aggregator functions on the private

signals of the opponents. Before formally introducing the contraction property, some ex-

tra notation is needed: for each set of strategy pro�les D = �j2IDj � S and for each

private history hti, let

Di

�
hti
�
:=
�
mi;t : 9si 2 Di; s.t. si

�
hti
�
= mi;t

	
and

Di

�
ht�1

�
:=

[
yti2Y ti

Di

�
ht�1; yti

�
.

De�ne also:

si
�
Di

�
ht�1

��
:=
��
mi;t; y

t
i

�
2Mi;t � Y t

i : mi;t 2 Di

�
ht�1; yti

�	
and

sci
�
ht�1

�
:=
��
mi;t; y

t
i

�
2Mi;t � Y t

i : mi;t = sci
�
ht�1; yti

�	
De�nition 14 (Contraction Property) An environment with monotone aggregators
of information satis�es the Contaction Property if, for each D � S such that D 6= fscg
and for each ht�1 = (~yt�1; xt�1) such that s [D (ht�1)] 6= sc [ht�1], there exists yti and

m0
i;t 2 Di (h

t�1; yti), m
0
i;t 6= sci (h

t�1; yti), such that:

sign
�
sci
�
ht�1; yti

�
� �0i;t

�
= sign

�
�ti
�
yti ; y

t
�i
�
� �ti

�
~yt�1; �0i;t; �

0
�i;t
��

(18)

for all yt�i =
�
yt�1�i ; ��i;t

�
2 Y t

�i and m
0
�i;t 2 D�i

�
ht�1; yt�i

�
.
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To interpret the condition, rewrite the argument of the right-hand side of (18) as

follows:

�ti
�
yti ; y

t
�i
�
� �ti

�
~yt�1;m0

i;t;m
0
�i;t
�

=
�
�ti
�
~yT�1; sci

�
hT�1; yTi

�
; sc�i

�
hT�1; yT�i

��
� �ti

�
~yt�1;m0

i;t;m
0
�i;t
��

+�
�
ht�1; yti ; y

t
�i
�

(19)

where

�
�
ht�1; yti ; y

t
�i
�
= �ti

�
yti ; y

t
�i
�
� �ti

�
~yt�1; sc

�
ht�1; yti ; y

t
�i
��

(20)

The term in the �rst square bracket in (19) represents the impact, on the period-t aggre-

gator, of a deviation (in the setD) from the self-correcting pro�le at history ht�1; the term

�
�
ht�1; yti ; y

t
�i
�
represents the extent by which the self-correcting pro�le is incapable of

o¤setting the previous misreports. Suppose that �
�
ht�1; yti ; y

t
�i
�
= 0, i.e. strategy pro�le

sc fully o¤sets the previous misreports (in particular, this is the case if ht�1 is a truthful

history: ~yt�1 = yt�1), then, the contraction property boils down to the following:

(Simple CP) For each public history at which the behavior allowed by

the set of deviations D is di¤erent from sc, there exists at least one player�s

�type�yti of some agent i, for which for some m
0
i;t 2 Di (h

t�1; yti), �
t
i

�
yti ; y

t
�i
�
�

�ti
�
~yt�1;m0

i;t;m
0
�i;t
�
is unilaterally signed by

�
sci (h

t�1; yti)�m0
i;t

�
, uniformly

over the opponents private information and current reports.

From equations (15)-(17) it is easy to see that �
�
ht�1; yti ; y

t
�i
�
= 0 whenever sci (h

t
i) 2�

��i;t; �
+
i;t

�
. Hence, this corresponds precisely to the case considered in the example of Sec-

tion 2. For histories such that the self-correcting strategy is not su¢ cient to o¤set the

previous misreports, then the simple CP must be strengthened so that the sign of the

impact of deviations from sc at ht�1 on the aggregator �ti is not upset by the previous

misreports, �. So, in principle, the bound on the interdependence in agents�valuations

may depend on the histories of payo¤ signals. Section 8.4 though will show how simple

�enlarged�mechanisms, in which agents�sets of messages are extended at every period

so that any possible past misreport can be �corrected�, eliminate this problem, induc-

ing �
�
ht�1; yti ; y

t
�i
�
= 0 at all histories. Given the simplicity of their structure, such

mechanisms will be called �quasi-direct�.

8.2 Aggregator-Based SCF.

Consider the SCF in the example of Section 2 (equations 2-5): the allocation chosen by

the SCF in period t, is only a function of the values of the aggregators in period t. The

notion of aggregator-based SCF generalizes this idea:
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De�nition 15 The SCF f = (ft)
T
t=1 is aggregator-based if for each t, �

t
i (y

t) = �ti (~y
t)

for all i implies ft (yt) = ft (~y
t).

The next proposition shows that, if the contraction property is satis�ed, an aggregator-

based SCF is fully implementable in environments that satisfy a single-crossing condition:

De�nition 16 (SCC-1) An environment with monotone aggregators of information sat-
is�es SCC-1 if, for each i, valuation function vi, is such that: for each t, and �; �

0 2 �� :
�� = �0� for all � 6= t, then for each a�i;�t 2 RT�1 and for each �i;t < �0i;t < �00i;t,

vi
�
�; �i;t; a

�
i;�t
�
>vi

�
�0; �i;t; a

�
i;�t
�
and vi

�
�; �0i;t; a

�
i;�t
�
= vi

�
�0; �0i;t; a

�
i;�t
�

implies : vi
�
�; �00i;t; a

�
i;�t
�
< vti

�
�0; �00i;t; a

�
i;�t
�

In words: For any two allocations � and �0 that only di¤er in their period-t component,

for any a�i;�t 2 RT�1, the di¤erence �i;t (�; �0; �i;t) = vi
�
�; �i;t; a

�
i;�t
�
� vi

�
�0; �i;t; a

�
i;�t
�
as

a function of �i;t crosses zero (at most) once (see �gure 1.a, p. 27). We are now in the

position to present the �rst full-implementation result:

Proposition 5 In an environment with monotone aggregators (def. 12) satisfying SCC-
1 (def. 16) and the contraction property (def. 14), if an aggregator-based social choice

function satis�es Strict EPIC (de�nition 9), then BR = fscg.

The argument of the proof is analogous to the argument presented in Section 2: For

each history of length T � 1, it is proved that the contraction property and SCC-1 imply
that agents play according to sc in the last stage; then the argument proceeds by induction:

given that in periods t + 1; :::; T agents follow sc, a misreport at period t only a¤ects

the period-t aggregator (because the SCF is �aggregator-based�). Then, SCC-1 and the

contraction property imply that the self-correcting strategy is followed at stage t.

An Appraisal of the �aggregator-based� assumption. Consider the important

special case of time-separable preferences: Suppose that, for each i and t = 1; :::; T , there

exist an �aggregator�function �ti : Y
t ! R and a valuation function vti : �t�R! R such

that for each (��; ��) 2 �� ���,

ui (�
�; ��) =

TX
t=1

vti
�
��t ; �

t
i

�
yt (��)

��
:

In this case, the condition that the SCF is aggregator-based (def. 15) can be interpreted as

saying that the SCF only responds to changes in preferences: If two distinct payo¤ states

� and �0 induce the same preferences over the period-t allocations, then the SCF chooses
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the same allocation under � and �0 in period t. This is the case of the example in Section

2.17 These preferences though cannot accommodate phenomena of �path-dependence�

such as �learning-by-doing�. For instance, in the context of the example of Section 2,

suppose that agents�preferences are the following:

ui (q1; q2; �i;1; �i;2; �)=�i;1 (�1) � q1 + �i;1 (21)

+ [�i;2 (�1; �2) � F (q1) � q2 + �j;2] .

The marginal utility of q2 now also depends on the amount of public good provided

in the �rst period. Then, the optimal policy for the second period is to set q�2 (�) =

[�i;2 (�) + �j;2 (�)] � F (q1). This rule is not aggregator-based, as the period-2 allocation
choice depends on both the period-2 aggregators and the previous period allocation. Thus,

to allow the SCF to respond to possible �path-dependencies�in agents�preferences (such

as �learning-by-doing�e¤ects) it is necessary to relax the �aggregator-based�assumption.

In environments with transferable utility (such as the example above) our notion of

SCF includes the speci�cation of the transfers scheme: ft (�) = (qt (�) ; �i;t (�) ; �j;t (�))

for each t. Since the requirement that the SCF is aggregator-based applies to all its

components, it also applies to transfers. In general, it is desirable to allow for arbitrary

transfers, not necessarily aggregator-based. The general results of the next section can

be easily adapted to accommodate the possibility of arbitrary transfers in environments

with transferable utility (Section 8.3.1).

8.3 Relaxing �Aggregator-Based�.

In the proof of proposition 5, the problem with relaxing the assumption that the SCF is

�aggregator-based�is that a one-shot deviation from sc at period-t may induce di¤erent

allocations in period-t and in subsequent periods. Hence, the �within period� single-

crossing condition (SCC-1) may not su¢ ce to conclude the inductive step, and guarantee

that strategy sc is played at period-t: Some bound is needed on the impact that a one-shot

deviation has on the outcome of the SCF. The next condition guarantees that the impact

of a one-shot deviation is not too strong.

De�nition 17 (SCC-2) An environment with monotone aggregators of information sat-
is�es SCC-2 if, for each i: for each �; �0 2 �� such that 9t 2 f1; :::; Tg : y� (�) = y� (�0)

for all � < t and for all j, ��j (�) = ��j (�
0) for all � > t, then for each a�i;�t 2 RT�1 and

17In that example the set of allocations includes the transfers, hence for each t the social choice function

is: ft (�) =
�
q�t (�) ; �

�
i;t (�) ; �

�
j;t (�)

�
. The �rst component is clearly aggregator-based (see equations 2 and

3); Furthermore, if 
 2 [0; 1), the values of the aggregators uniquely determine the size of the transfers
(equations 4 and 5). The social choice function is thus �aggregator-based�.
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for each �i;t < �0i;t < �00i;t,

vi
�
f (�) ; �i;t; a

�
i;�t
�
>vi

�
f (�0) ; �i;t; a

�
i;�t
�
and vi

�
f (�) ; �0i;t; a

�
i;�t
�
= vi

�
f (�0) ; �0i;t; a

�
i;�t
�

implies : vi
�
f (�0) ; �00i;t; a

�
i;�t
�
< vti

�
f (�0) ; �00i;t; a

�
i;�t
�

SCC-2 compares the allocations chosen for any two �similar�states of nature: states

� and �0 are �similar�in the sense that they are identical up to period t � 1, and imply
the same value of the aggregators at all periods other than t. Since agents�preferences

are uniquely determined by the values of the aggregators (de�nition 12), the preferences

induced by states � and �0 only di¤er along the dimension of the period-t aggregator.

The condition requires a single-crossing condition for the corresponding outcomes to hold

along this direction. The condition is easily interpretable from a graphical viewpoint:

suppose that � and �0 are as in de�nition 17. Then, if the SCF is �aggregator-based�

and the environment satis�es SCC-1 (de�nition 16), the di¤erence in payo¤s for f (�) and

f (�0) as a function of the period-t aggregator crosses zero (at most) once. (Figure 1.a). If

f is not �aggregator based�, allocations at periods � > t may di¤er under f (�) and f (�0),

shifting (or changing the shape) of the curve �i;t (f (�) ; f (�
0) ; �i;t). SCC-2 guarantees

that such shifting maintains the single-crossing property (�gure 1.b).

(The �path-dependent�preferences in equation (21) satisfy SCC-2 for any choice of

F : R! R.)

Proposition 6 (Full Implementation) In an environment with monotone aggregators
(def. 12) satisfying the contraction property (def. 14), if a SCF f is Strictly EPIC

(de�nition 9) and satis�es SCC-2 (def. 17), then BR = fscg :

Corollary 1 Since sc 2 S�, if the assumptions of propositions 5 or 6, then f is fully

robustly implementable.
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8.3.1 Transferable Utility.

A special case of interest is that of additively separable preferences with transferable

utility: For each t = 1; :::; T , the space of allocations is �t = Qt � (�ni=1�i;t), where
Qt is the set of �common components� of the allocation and �i;t � R is the set of

transfers to agent i (i�s �private component�). Maintaining the restriction that the en-

vironment admits montone aggregators, agent i�s preferences are as follows: For each

�� = (qt; �1;t; :::; �n;t)
T
t=1 2 �� and �

� 2 ��;

ui (�
�; ��) =

TX
t=1

vti
�
(q� )

t
�=1 ; �

t
i

�
yt (��)

��
+ �i;t,

where for each t = 1; :::; T , vti : (�t�=1Q� ) � R! R is the period-t valuation of the

common component. Notice that functions vti : (�t�=1Q� ) � R! R are de�ned over the
entire history (q1; :::; qt): this allows period-t valuation of the current allocation (qt) to

depend on the previous allocative decisions (q1; :::; qt�1). This allows us to accommodate

the �path dependencies�in preferences discussed above.18

In environments with transferable utility, it is common to de�ne a social choice function

only for the common component, �t : Y
t ! Qt (t = 1; :::; T ), while transfer schemes

�i;t : Y
t ! R (i = 1; :::; n and t = 1; :::; T ) are speci�ed as part of the mechanism. Not

assuming transferable utility, social choice functions above were de�ned over the entire

allocation space (ft : Y t ! �t), they thus include transfers in the case of transferable

utility. The transition from one approach to the other is straightforward. Any given pair

of choice function and transfer scheme
�
�t; (�i;t)

n
i=1

�T
t=1

trivially induces a social choice

function f�;�t : Y t ! �t (t = 1; :::; T ) in the setup above: for each t and yt 2 Y t,

f�;�t (yt) =
�
�t (y

t) ; (�i;t (y
t))

n
i=1

�
.

It is easy to check that, in environments with transferable utility, if agents�preferences

over the common component Q� = �Tt=1Qt satisfy (SCC-1), and � : �� ! Q is aggregator-

based, then for any transfer scheme (�i;t (yt))
n
i=1, the �full� social choice function f�;�

satis�es (SCC-2). More generally, if � and agents�preferences over Q� satisfy (SCC-2),

then f�;� satis�es (SCC-2) for any transfer scheme (�i;t (yt))
n
i=1.

Given this, the following corollary of proposition 6 is immediate:

Corollary 2 In environments with monotone aggregators of information and transferable
utility, if agents�preferences over Q� and � : �� ! Q� satisfy: (i) the contration property;

(ii) the single crossing condition (SCC-2); and (iii) there exist transfers � that make �

strictly ex-post incentive compatible; then f�;� is fully robustly implemented.

18The special case of �path-independent�preferences corresponding to the example in section 2 is such

that period-t valuation are functions vti : Qt � R! R.
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8.4 �Quasi-direct�Mechanisms.

This section shows how simple �enlarged�mechanisms may avoid incurring into corner

solutions, which allows us to relax the bite of the contraction property (de�nition 14) by

guaranteeing that the sign condition holds with � (ht�1; yt) = 0 at every history (equation

20), thus weakening the su¢ cient condition for full implementation.

Let �̂i;t : Rnt ! R be a continuous extension of �i;t : Y t ! R from Y t to R, strictly
increasing in the component that extends �i;t and constant in all the others on RnY t

(from de�nition 12 �i;t is only assumed strictly increasing in �i;t on Y t
i :) Set m

�
i;1 = ��i;1

and m+
i;1 = �+i;1, and for each t = 1; :::; T , let �̂i;t =

�
m�
i;t;m

+
i;t

�
, and Ŷ t

i = �t�=1�̂i;� where
m�
i;t and m

+
i;t are recursively de�ned so to satisfy:

m+
i;t=max

(
mi 2 R : max

(yti ;yt�i)2Y t

������̂i;t �yti ; yt�i�� min
ŷt�12Ŷ t�1i

�̂i;t
�
ŷt�1;mi; y

t
�i
������ = 0

)

m�
i;t=min

(
mi 2 R : max

(yti ;yt�i)2Y t

������̂i;t �yti ; yt�i�� max
ŷt�12Ŷ t�1i

�̂i;t
�
ŷt�1;mi; y

t
�i
������ = 0

)
Set the message spaces in the mechanism such that Mi;t = �̂i;t for each i and t. By

construction, for any private history hti = (h
t�1; yti), the self-correcting report s

c
i (h

t
i) sat-

is�es equation (15), that is sc is capable of fully o¤set previous misreports: messages in

�̂i;tn�i;t are used whenever equations (16) or (17) would be the case in the direct mecha-
nism. (Clearly, such messages never arise if sc is played.) To complete the mechanism, we

need to extend the domain of the outcome function to account for these �extra�messages.

Such extension consists of treating these reports in terms of the implied value of the aggre-

gator: For given sequence of reports ŷt 2 Ŷ t such that some message in �̂i;tn�i;t has been
reported at some period � � t, let gt (ŷt) = ft (�) for some � such that �i;� (�) = �i;� (ŷ

� )

for all i and � � t, ft (�) = ft (�
0).

9 Further Remarks on the Solution Concepts.

Backwards procedure, Subgame-Perfect Equilibrium and IPE. In games with

complete and perfect information, the �backwards procedure�R� coincides with the back-

ward induction solution, hence with subgame perfection.19 The next example (borrowed

from Perea, 2009) shows that if the game has complete but imperfect information, strate-

gies played in Subgame-Perfect Equilibrium (SPE) may be a strict subset of R�:

Example 1
19For the special case of games with complete information, Perea (2009) independently introduced a

procedure that is equivalent to R�, and showed that R� coincides with the backward induction solution

if the game has perfect information.
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Consider the game in the following �gure:

R�
1 = fbc; bd; acg and R�

2 = ff; gg. The game though has only one SPE, in which
player 1 chooses b: in the proper subgame, the only Nash equilibrium entails the mixed

(continuation) strategies 1
2
c + 1

2
d and 3

4
f + 1

4
g, yielding a continuation payo¤ of 11

4
for

player 1. Hence, player 1 chooses b at the �rst node.�

In games with complete information, IPE coincides with SPE, but R� in general is

weaker than subgame perfection. At �rst glance, this may appear in contradiction with

propositions 1 and 2, which imply that R� characterizes the set of strategies played in

IPE across models of beliefs. The reason is that even if the environment has no payo¤

uncertainty (�� is a singleton), the complete information model in which Bi is a singleton

for every i is not the only possible: models with redundant types may exist, for which IPE

strategies di¤er from the SPE-strategies played in the complete information model. The

source of the discrepancy is analogous to the one between Nash equilibrium and subjective

correlated equilibrium (Aumann, 1974). We illustrate the point constructing a model of

beliefs and an IPE in which strategy (ac) is played with positive probability by some type

of player 1.20 Let payo¤s be the same as in example 1, and consider the model B such
that B1 =

�
bbc1 ; b

bd
1 ; b

ac
1

	
and B2 =

n
bf2 ; b

g
2

o
, with the following beliefs:

�1 (b1)
h
bf2

i
=

(
1 if b1 = bbc1 ; b

ac
1

0 otherwise

and

�2 (b
g
2)
�
bad1
�
=1, �2

�
bf2

� �
bbc1
�
= 1

20It is easy to see that such di¤erence is not merely due to the possibility of zero-probability types.

Also the relaxation of the common prior assumption is not crucial.
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The equilibrium strategy pro�le � is such that 8i;8bi, �i (bsii ) = si. The system of beliefs

agrees with the model�s beliefs at the initial history, hence the beliefs of types bg2 and b
ac
1

are uniquely determined by Bayesian updating. For types bsii 6= bg2; b
ac
1 , it is su¢ cient to

set pi (b
si
i ; ai) = �i (b

si
i ) (i.e. maintain whatever the beliefs at the beginning of the game

were) Then, it is easy to verify that (�; p) is an IPE.

On the other hand, if j��j = 1 and the game has perfect information (no stage with
simultaneous moves), then R� coincides with the set of SPE-strategies. Hence, in envi-

ronments with no payo¤ uncertainty and with perfect information, only SPE-strategies

are played in IPE for any model of beliefs.

10 Concluding Remarks.

On the Solution Concepts. Proposition 1 can be seen as the dynamic counterpart of

Brandenburger and Dekel�s (1987) characterization of correlated equilibrium. As discussed

above, the adoption of IPE in this paper is motivated by the result in proposition 2,

which makes the full implementation problem of Section 8 tractable. The weakness of

IPE (relative to other notions of perfect Bayesian equilibrium) is key to that result:

the heart of proposition 2 is BR�s property of �subgame consistency� (cf. foonote 14),
which allows us to analyze continuation games �in isolation�, in analogy with the logic

of backward induction. The CCFR and UIA assumptions (p. 18) provide the epistemic

underpinnings of the argument. To understand this point, it is instructive to compare

BR with Battigalli and Sinicalschi�s (2007) weak and strong versions of extensive form

rationalizability (EFR), which correspond respectively to the epistemic assumptions of

(initial) common certainty of rationality (CCR) and common strong belief in rationality

(CSBR): BR is stronger than the �rst, and weaker than the latter. The strong version of

EFR fails the property of �subgame consistency�because it is based on a forward induction

logic, which inherently precludes the possibility of envisioning continuations �in isolation�:

by taking into account the possibility of counterfactual moves, agents may draw inferences

from their opponents� past moves and re�ne their conjectures on the behavior in the

continuation. The weak version of EFR fails �subgame consistency�for opposite reasons:

an agent can make weaker predictions on the opponents�behavior in the continuation

than he would make if he envisioned the continuation game �in isolation�, because no

restrictions on the agents�beliefs about their opponents� rationality are imposed after

an unexpected history. Thus, the form of �backward induction reasoning� implicit in

IPE (which generalizes the idea of subgame perfection) is based on stronger (respectively,

weaker) epistemic assumptions than CCR (respectively, CSBR).
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Dynamic Mechanisms in Static Environments. Consider an environment in which

agents obtain all the relevant information before the planner has to make a decision. The

designer may still have reasons to adopt a dynamic mechanism (e.g. an ascending auc-

tion).21 In the context of an environment with complete information, Bergemann and

Morris (2007) recently argued that dynamic mechanisms may improve on static ones by

reducing agents�strategic uncertainty: They showed how the backward induction outcome

of a second-price clock-auction guarantees full robust implementation of the e¢ cient al-

location for a larger set of parameters than the rationalizable outcomes of a second price

sealed-bid auction. The approach of this paper allows us to extend the analysis to in-

complete information settings: It can be shown that, with incomplete information, the

ascending clock-auction does not improve on the static one. The reason is that the

logic of backward induction loses its bite when the assumption of complete information

is relaxed.22 In incomplete information environments, the case for the role of dynamic

mechanisms in reducing strategic uncertainty must rely on stronger solution concepts (e.g.

based on forward induction reasoning), that allow agents to draw stronger inferences on

their opponents�private information from their past moves (see Mueller, 2009).

Appendix
A Topological structures and Conditional Probability Systems.

A.1 Topological structures.

Sets �i;t � Rni;t, �t � Rltand Mi;t � R�i;t are non-empty and compact, for each i and
t (Sections 3 and 4). Let nt =

P
i2N ni;t and �t =

P
i2N �i;t. For each h

t
i =, � < t,

let �� (hti) denote the triple (�i;� ;m� ; �� ) consisting of i�s private signal at period � , the

message pro�le and allocation chosen at stage � along history hti. For each k 2 N, let d(k)
denote the Euclidean metric on Rk. We endow the sets Hi with the following metrics,

di(i 2 N), de�ned as: For each hti; h�i 2 Hi (w.l.o.g.: let � � t)

di
�
hti; h

�
i

�
=

t�1X
k=1

d(ni;k+�k+lk)
�
�k
�
hti
�
; �k (h

�
i )
�
+ dni;t

�
�i;t; �

0
i;t

�
+

�X
k=t+1

1:

It can be checked that (Hi; d
i) are complete, separable metric spaces.

Sets of strategies are endowed with the supmetrics dSi de�ned as:

dSi (si; s
0
i) =

TX
t=1

 
sup

hti2Ht�1�Y ti
d�i;t

�
si
�
hti
�
; s0i
�
hti
��!

21In the formal setup of the paper, this amounts to a situation in which j�tj = 1 for all t > 1 and

j�tj = 1 for all t < T .
22See Kunamoto and Tercieux (2009) for a related negative result.
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Under these topological structures, the following lemma implies that CPSs introduced

in Section A.2 are well-de�ned.

Lemma 1 For all public histories h 2 H, Si (h) is closed.
Proof. See lemma 2.1 in Battigalli (2003).

A.2 Conditional Probability Systems

Let 
 be a metric space and A its Borel sigma-algebra. Fix a non-empty collection of

subsets C � An;, to be interpreted as �relevant hypothesis�. A conditional probability

system (CPS hereafter) on (
;A; C) is a mapping � : A� C ! [0; 1] such that:

Axiom 1 For all B 2 C, � (B) [B] = 1

Axiom 2 For all B 2 C, � (B) is a probability measure on (
;A).

Axiom 3 For all A 2 A, B;C 2 C, if A � B � C then � (B) [A] � � (C) [B] = � (C) [A].

The set of CPS on (
;A; C), denoted by �C (
), can be seen as a subset of [� (
)]C

(i.e. mappings from C to probability measures over (
;A)). CPS�s will be written as
� = (� (B))B2C 2 �C (
). The subsets of 
 in C are the conditioning events, each inducing
beliefs over 
; �(
) is endowed with the topology of weak convergence of measures and

[� (
)]C is endowed with the product topology. Below, for each player i, we will set


 = �� � S in games with payo¤ uncertainty (or 
 = �� � � if the game is appended
with a model of beliefs). The set of conditioning events is naturally provided by the set

of private histories Hi: for each private history hti = (ht�1; yti) 2 Hi, the corresponding

event [hti] is de�ned as:�
hti
�
=
�
yti
	
�
�
�T�=t+1�i;�

�
����i � S

�
ht�1

�
:

Under the maintained assumptions and topological structures, sets [hti] are compact

for each hti, thus �
Hi (
) is a well-de�ned space of conditional probability systems. With

a slight abuse of notation, we will write �i (hti) instead of �
i ([hti])

B Proofs of results from Section 6.

B.1 Proof of Proposition 1.

Proof:
Step 1: ((). Fix B, (�̂; p̂) and b̂i. For each hti, let P

(�̂;p̂)
i (hti) 2 �(�� �B�i � S�i)

denote the probability measure on �� � B�i � S�i induced by p̂i (hti) and �̂�i. For each

j, let
�Sj = fsj 2 Sj : 9bj 2 Bj s.t. sj 2 supp (�̂j (bj))g :
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We will prove that �Sj � BRM
j for every j. For each hti = (yti ; h

t�1) 2 Hi, let '
hti
j :

�Sj ! Sj (h
t
i) be a measurable function such that

'
hti
j (sj)

�
h�j
�
=

(
sj
�
h�j
�
if � � t

m�
j otherwise

where m�
j is the message (action) played by j at period � < t in the public history

ht�1. Thus, 'h
t
i
j transforms any strategy in �Sj into one that has the same continuation

from hti, and that agrees with hti for the previous periods. De�ne the mapping Lhti :

�� �B�i � S�i ! �� �B � S such that

Lhti (�; b�i; s�i) =
�
�; b̂i; b�i; '

hti
i

�
�̂i

�
b̂i

��
; '

hti
�i (s�i)

�
:

(In particular, L� (�; b�i; s�i) =
�
�; b̂i; b�i; �̂i

�
b̂i

�
; s�i

�
.).

De�ne the CPS �i 2 �Hi (�� �B � S) such that, for any measurable E � ���B�S,

�i (�) [E] = P
(�̂;p̂)
i

�
b̂i

� �
L�1� (E)

�
and for all hti 2 Hi s.t. �i

�
ht�1i

�
[hti] = 0, let

�i
�
hti
�
[E] = P

(�̂;p̂)
i

�
b̂i

� h
L�1
hti
(E)
i
:

(conditional beliefs �i (hti) at histories h
t
i s.t. �i

�
ht�1i

�
[hti] > 0 are determined via Bayesian

updating, from the de�nition of CPS, appendix A.2)

De�ne the CPS �i 2 �Hi (�� � S) s.t. 8hti 2 Hi, �i (hti) =marg���S�i (h
t
i). By

construction, ŝi 2 ri (�
i). We only need to show that conditions (2) and (3) in the

de�nition of BR are satis�ed by �i. This part proceeds by induction: The initial step,

for k = 1, is trivial. Hence, �Sj � BR1
j for every j. To complete the proof, let (as

inductive hypothesis) �Sj � BRk
j for every j. Then �

i constructed above satis�es �i (�) �
�� � fŝig � BRk

�i and

supp
�
margSjht�1�

i (�)
�

= supp
�
margSjht�1�

i
�
hti
��

� �Sjht�1:

thus ŝi 2 BRk+1
i . This concludes the �rst part of the proof.

Step 2: ()). Let B be such that for each i, Bi = BRi and let strategy �̂i : Bi ! Si

be the identity map. De�ne the map Mi;� : �
� � S ! �� �B�i s.t.

Mi;� (�; si; s�i) =
�
�; �̂�1�i (s�i)

�
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Notice that, for each i and si 2 BRi, 9�si 2 �Hi (�� � S) s.t.

1. ŝi 2 ri
�
�ŝi
�

2. for all hti 2 Hi: sj 2 supp
�
margSj�

ŝi (hti)
�

) 9s0j 2 BRj : sjjht�1 = s0jjht�1:

Hence, for each hti 6= �, we can de�ne the map �ŝi;hti :supp
�
margS�i�

ŝi (hti)
�
! BR�i

that satis�es �ŝi;hti (s�i) jh
t�1 = s�ijht�1. Let mŝi;hti

� �̂�1�i � �ŝi;hti . De�ne maps Mŝi;hti
:

�� � supp
�
�ŝi (hti)

�
! �� �B�i

Mŝi;hti
(�; si; s�i) =

�
�;mhti

(s�i)
�
:

Let beliefs �i : Bi ! �(�� �B�i) be s.t. for every measurable E � �� �B�i

�i (bi) [E] = ��̂i(bi) (�)
�
M�1
i;� (E)

�
Let beliefs p̂i be derived from �̂ and the initial beliefs via Bayesian updating whenever

possible. At all other histories hti 2 Hi, for every measurable E � �� �B, set

p̂i
�
hti
�
[E] = ��̂i(bi)

�
hti
� h
M�1
�̂i(bi);hti

(E)
i
:

By construction, (�̂; p̂) is an IPE of (E ;M;B).�

B.2 The backwards procedure.

Fix a public history of length T�1, hT�1. For each k = 0; 1; :::, letRk;hT�1

i � Sh
T�1
i be such

that
�
yTi ; s

hTi
i

�
2 Rk;hT�1

i if and only if sh
T
i
i 2 Rk;hT�1

i

�
yTi
�
, Rk;hT�1 = �i2NRk;hT�1

i and

Rk;hT�1

�i = �j 6=iRk;hT�1

j . For each hTi =
�
hT�1; yTi

�
2 Y T

i , let R
0;hT�1

i

�
yTi
�
= S

hTi
i and for

k = 1; 2; :::, for each ~yTi 2 Y T
i let

Rk;hT�1

i

�
~yTi
�
=
n
si 2 Rk�1;hT�1

i

�
~yTi
�
: 9�hTi 2 �

�
�� � Sh

T�1

�i

�
1. �h

T
i

��
~yTi
	
����i �R

k�1;hT�1
�i

�
= 1

2. for all s0 2 ShT�1i :Z
(�;s�i)2���Sh

T�1
�i

Ui
�
si; s�i; �;h

T�1� � d�hTi
�
Z
(�;s�i)2���Sh

T�1
�i

Ui
�
s0i; s�i; �;h

T�1� � d�hTi )

and RhT�1
i (~yti) =

1T
k=1

Rk;hT�1

i (~yti).
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Notice that RhT�1
i consists of pairs of types yTi and continuation strategies si 2

S
(hT�1;yTi )
i . Hence, each RhT�1

i can be seen as a subset of Sh
T�1
i .

For each t = 1; :::; T � 1, for each hti = (ht�1; yti) let:

R0;ht�1

i

�
yti
�
=
n
si 2 S

hti
i : 8ht s.t. ht�1 � ht,

8yt+1i s.t. � yti � yt+1i , sij
�
ht; yt+1i

�
2 Rht

i

�
yt+1i

�o
and for each k,

�
yti ; s

hti
i

�
2 Rk;ht�1

i if and only if sh
t
i
i 2 R

k;ht�1

i (yti). For each k = 1; 2; :::and

for each k = 1; 2; :::

Rk;ht�1

i

�
~yti
�
=
n
si 2 Rk�1;ht�1

i

�
~yti
�
: 9�hti 2 �

�
�� � Sh

t�1

�i

�
1. �

��
~yti
	
�
�
�T�=t+1��

�
����i �R

k�1;hT�1
�i

�
= 1

2. for all s0 2 Sh
t
i
i :Z

(�;s�i)2���Sh
t�1

�i

Ui
�
si; s�i; �;h

t�1� � d�hti
�
Z
(�;s�i)2���Sh

t�1
�i

Ui
�
s0i; s�i; �;h

t�1� � d�hti)

and Rht�1

i

�
~yti
�
=

1\
k=1

Rk;ht�1

i

�
~yti
�
:

Finally: R�
i =

n
si 2 Si : sijy1i 2 R

�
i (y

1
i ) for each y

1
i 2 Y 1

i

o
.

Proposition 2. BRi = R�
i for each i.

Proof:
Step 1

�
R�
i � BRi:

�
: let ŝi 2 R�

i . Then, for each h
t
i = (h

t�1; yti), sijhti 2 Rht�1
i (yti)

(equivalently: sh
t�1
i 2 Rht�1). Notice that for each ht�1 and sh

t�1
i 2 Rht�1

i , there exists

si 2 R�
i such that sijht�1 = sh

t�1
i . Thus, for each j and ht�1, we can de�ne measurable

functions �h
t�1
j : Rht�1

j ! R�
j such that: 8 sh

t�1
j 2 Rht�1

j

�h
t�1

j

�
sh

t�1

j

�
jht�1 = sh

t�1

j .

(Functions �h
t�1
j assign to strategies in Rht�1

j , strategies in R�
j with the same continuation

from ht�1.) As usual, denote by �
ht�1�i
�i the product �j 6=i�

ht�1j

j .

For each ht�1, let 'h
t�1
j : Sj ! Sj (h

t�1) be a measurable function such that

'h
t�1

j (sj)
�
h�j
�
=

(
sj
�
h�j
�
if � > t

m�
j otherwise

36



where m�
j is the message (action) played by j at period � < t in the public history

ht�1. (As usual, denote by '
ht�1�i
�i the product �j 6=i'

ht�1j

j .)

For each ht�1, de�ne the measurable mapping %h
t�1
�i : Rht�1

�i ! S�i (h
t�1) such that

8sht�1�i 2 Rht�1
�i ,

%h
t�1

�i

�
sh

t�1

�i

�
= 'h

t�1

�i � �ht�1�i

�
sh

t�1

�i

�
:

It will be shown that: for each k = 0; 1; :::, ŝi 2 R�;k
i implies ŝi 2 BRk

i .

The initial step is trivially satis�ed (BR0
i = Si = R�;0

i ).

For the inductive step, suppose that the statement is true for n = 0; :::; k � 1: Since
ŝi 2 R�;k

i , for each h
t
i = (h

t�1; yti) there exists �
hti 2 �

�
�� � Sh

t�1
�i

�
that satisfy

ŝijhti 2 arg max
s0i2S

ht
i

i

Z
���Sht�1�i

Ui
�
s0i; s�i; �;h

t�1� � d�hti ,
and such that ��

�
�� �R�;k�1

�i

�
= 1 and for all hti 6= �, �h

t
i

�
fytig �

�
�T�=t+1�i;�

�
����i �Rht�1

�i

�
=

1.

Now, consider the CPS �i 2 �Hi (�� � S) such that, for all measurable E � ���S�i,

�i (�) [fŝig � E] = �� (E) .

By de�nition of CPS, �i (�) de�nes � (hti) for all h
t
i s.t. �

i (�) [hti] > 0. Let h
t
i be such that

�i (�)
�
ht�1i

�
> 0 and �i (�) [hti] = 0. De�ne the measurable mapping Mhti

: �� �Rht�1
�i !

�� � S (ht�1) such that for all
�
�; sh

t�1
�i

�
2 �� � S (ht�1),

Mhti

�
�; sh

t�1

�i

�
=
�
�; 'h

t�1

i (ŝi) ; %
ht�1

�i

�
sh

t�1

�i

��
and set �i (hti) equal to the pushforward of �

hti under Mhti
, i.e. such that for every mea-

surable E � �� � S

�i
�
hti
�
[E] = �h

t
i

h
M�1
hti
(E)
i
.

Again, by de�nition of CPS, �i (hti) de�nes � (h
�
i ) for all h

�
i � hti that receive positive

probability under �i (hti). For other histories, proceeds as above, setting �
i (h�i ) equal to

the pushforward of �h
�
i under Mh�i

, and so on.

By construction, ŝi 2 ri (�i) (condition 1 in the de�nition of BRk
i ). Since by construc-

tion �i
�
�� � fŝig �R�;k�1

�i ;�
�
= 1, under the inductive hypothesis �i

�
�� � fŝig � BRk�1

�i ;�
�
=

1 (condition 2 in the de�nition of BRk
i ). From the de�nition of '

ht�1
i (ŝi), CPS �i satis�es

condition (3.1) at each hti. From the de�nition of %h
t

�i, under the inductive hypothesis, �
i

satis�es condition (3.2).
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Step 2 (BRi � R�
i ): let ŝi 2 R

�
i and �

i 2 �Hi (�� � S) be such that ŝi 2 ri (�i). For
each hti = (h

t�1; yti), de�ne the mapping  hti : S�i ! Sh
t�1
�i s.t.  hti (s�i) jh

t�1 = s�ijht�1

for each s�i 2 S�i. (Function  hti transforms each strategy pro�le of the opponents into
its continuation from ht�1.) De�ne also 	hti : �

� � S ! �� � Sh
t�1
�i such that

	hti (�; si; s�i) =
�
�;  hti (s�i)

�
For each hti 2 Hi, let �h

t
i 2 �

�
�� � Sh

t�1
�i

�
be such that for every measurable E �

�� � Sh
t�1
�i

�h
t
i [E] = �i

�
hti
� h
	�1
hti
(E)
i
.

so that the implied joint distribution over payo¤states and continuation strategies s�ijht�1

is the same under �i (�;hti) and �h
t
i . We will show that ŝijhti 2 Rht�1

i (yti) for each h
t
i =

(ht�1; yti). Notice that, by construction,

ŝijhti 2 arg max
si2S

ht
i

i

Z
Ui
�
si; s�i;h

t
i

�
� d�hti .

The argument proceeds by induction on the length of histories.

Initial Step (T � 1). Fix history hTi =
�
hT�1; yTi

�
: for each k, if ŝi 2 BRk

i , then

ŝijhTi 2 R
hT�1;k
i

�
yTi
�
. For k = 0, it is trivial. For the inductive step, let �h

T
i be de�ned

as above: under the inductive hypothesis, �h
T
i

�
��i �R

hT�1;k�1
�i

�
= 1 (condition 1), while

ŝi 2 ri (�i) implies that condition (2) is satis�ed.
Inductive Step: suppose that for each � = t + 1; :::; T , ŝi 2 BRi, implies ŝijh�i 2

Rh��1
i (y� ) for each h�i = (h

��1; y�i ). We will show that for each k, h
t
i = (h

t�1; yti), ŝijhti 2
Rk;ht�1

i (yt). We proceed by induction on k: under the inductive hypothesis on � , ŝijhti 2
R0;ht�1

i (yt). For the inductive step on k, suppose that ŝi 2 BRi, implies ŝijhti 2 R
n;ht�1

i (yt)

for n = 0; :::; k�1, and suppose (as contrapositive) that ŝijhti =2 R
k;ht�1

i (yt). Then, for �h
t
i

de�ned as above, it must be that supp
�
�h

t
i

�
* ���Rk�1;ht�1

�i , which, under the inductive

hypothesis on n, implies that 9s�i 2supp
�
margS�i�

i (hti)
�
s.t. @s0�i 2 BR�i : s

0
�ijht�1 =

s�ijht�1, which contradicts that �i justi�es ŝi in BRi.�

C Proofs of results from Sections 7 and 8.

C.1 Proof of Proposition 3

Step 1 (If):For the if part, �x an arbitrary type space B, and consider a direct mechanism
M. Let (pi)i2N be any beliefs system such that, 8i 2 N , 8 (�; b�i) 2 �� � B�i, pi (h0i ) =

�i (h
0
i ) and for each h

t
i 2 Hi such that P �

�;p
�
ht�1i

�
[hti] > 0, p

i (hti) is obtained via Bayesian
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updating. If instead hti is such that P
��;p
�
ht�1i

�
[hti] = 0, and h

t
i = (h

t�1; yti) s.t. h
t�1 =�

~yti ; ~y
t
�i
�
, then let beliefs be such that

supp
�
marg���ip

i
�
hti
��
�
�
~yt�i
	
�
�
�T�=t+1��i;�

�
(22)

That is, at unexpected histories, each i believes that the opponents have not deviated

from the truthtelling strategy: If �unexpected reports� were observed, player i rather

revises his beliefs about the opponents�types, not their behavior.

Notice that if Ui (s�; �) � Ui
�
s0i; s

�
�i; �

�
for all �, then for any pi (�) 2 �(�� �B�i),Z

���B�i
ui
�
gs

�
(�) ; �

�
� dpi (�)

�
Z
���B�i

ui

�
g(s

0
i;s

�
�i)jhti (�) ; �

�
� dpi (�) :

Hence, the incentive compatibility constraints are satis�ed at the beginning of the game,

and so at all histories reached with positive probability according to the initial conjectures

and strategy pro�le. Being �� 2 ��, only truthful histories receive positive probability.
At zero probability histories, we maintain that the belief system satis�es (22). With

these beliefs, the only payo¤-relevant component of the opponents�strategies at history

hti is the �truthful report�: from the point of view of player i, what ���i speci�es at non-

truthful histories is irrelevant. Let ��i (h
t
i) be a best response to such beliefs and �

�
�i in

the continuation game: Notice that under these beliefs, any ��i 2 �� determines the

same ��i (h
t
i). Hence, for any i we can chose �

�
i 2 �� so that the strategy pro�le thus

constructed is an IPE of the Bayesian game.

Step 2 (only if): Since perfect implementability implies interim implementability,

the �only if� immediately follows the results by Bergemann and Morris (2005), who

showed that if a SCF is interim implementable on all type spaces, then it is ex-post

implementable.�

C.2 Proof of Proposition 5.

By contradiction, suppose BR = B 6= fscg. By continuity of ui and compactness of ��,
B (ht) is compact for each ht. (Because if B = BR, strategies in B must be best responses
to conjectures concentrated on B, see de�nition of BR).
It will be shown that for each t and for each public history ht�1, s [B (ht�1)] = sc [ht�1],

contradicting the absurd hypothesis. The proof proceeds by induction on the length of

the history, proceeding backwards from public histories hT�1 to the empty history h0.

Initial Step: [s
�
B
�
hT�1

��
= sc

�
hT�1

�
for each hT�1].
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Suppose, by contradiction, that 9hT�1 =
�
~yT�1; xT�1

�
: s
�
B
�
hT�1

��
6= sc

�
hT�1

�
.

Then, by the contraction property,

9yTi and �0i;T 2Bi
�
hT�1; yTi

�
: �0i;T 6= sci

�
hT�1; yTi

�
such that:

sign
�
sci
�
hT�1; yTi

�
� �0i;T

�
= sign

�
�Ti
�
yTi ; y

T
�i
�
� �Ti

�
~yT�1; �0i;t; �

0
�i;t
��

for all yT�i=
�
yT�1�i ; ��i;T

�
and �0�i;T 2 B�i

�
hT�1; yT�i

�
:

Fix such yTi and �
0
i;T 6= sci

�
hT�1; yTi

�
, and suppose (w.l.o.g.) that sci

�
hT�1; yTi

�
> �0i;T .

De�ne:

�
�
hT�1; yTi

�
:= min

yT�i2Y T�i and
�0�i;T2B�i(hT�1;yT�i)

�
�Ti
�
yTi ; y

T
�i
�
� �Ti

�
~yT�1; �0i;t; �

0
�i;t
��

(23)

(by compactness of Y T andB
�
hT
�
, �
�
hT ; yTi

�
is well-de�ned). Also, from �0i;T 6= sci

�
hT�1; yTi

�
and the Contraction Property, �

�
hT�1; yTi

�
> 0.

For any " > 0, let

 
�
hT�1; yTi ; �

0
i;T ; "

�
= max

��i;T2��i;T

�
�Ti
�
~yT�1; �0i;T + "; ��i;T

�
� �Ti

�
~yT�1; �0i;T ; ��i;T

�	
(24)

(again, compactness of ��i;T guarantees that  
�
hT ; "

�
is well-de�ned). Since �Ti is strictly

increasing in �i;T ,  
�
hT�1; yTi ; �

0
i;T ; "

�
is increasing in " and  

�
hT�1; yTi ; �

0
i;T ; "

�
! 0 as

"! 0.

Let (ft (~yt))
T�1
t=1 = xT�1. From strict EPIC, we have that for each ",

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; �Ti

�
~yT�1; �0i;T + "; ��i;T

�
; ��T

�
~yT�1

��
>vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; �Ti

�
~yT�1; �0i;T + "; ��i;T

�
; ��T

�
~yT�1

��
and

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; �Ti

�
~yT�1; �0i;T ; ��i;T

�
; ��T

�
~yT�1

��
<vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; �Ti

�
~yT�1; �0i;T ; ��i;T

�
; ��T

�
~yT�1

��
Thus, by continuity, there exists aT (") such that

�Ti
�
~yT�1; �0i;T ; ��i;T

�
< aT (") < �Ti

�
~yT�1; �0i;T + "; ��i;T

�
(25)

such that

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; aT (") ; ��T

�
~yT�1

��
= vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; aT (") ; ��T

�
~yT�1

��
From the �within-period SCC�(def. 16),

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; a�; ��T

�
~yT�1

��
>vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; a�; ��T

�
~yT�1

��
whenever a�>aT (")
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Thus, to reach the contradiction, it su¢ ces to show that for any yT�i 2 Y T
�i, �

T
i

�
yTi ; y

T
�i
�
>

aT ("): If this is the case, reporting �0i;T is (conditionally) strictly dominated by reporting

�0i;T + " at hTi =
�
hT�1; yTi

�
, hence it cannot be that Bi = BRi and �

0
i;T 2 Bi

�
hT�1; yTi

�
.

To this end, it su¢ ces to choose " su¢ ciently small that

 
�
hT�1; yTi ; �

0
i;T ; "

�
< � (26)

and operate the substitutions as follows

�Ti
�
yTi ; y

T
�i
�
��Ti

�
~yT�1; �0i;T ; �

0
�i;T
�
+ �

�
hT�1; yTi

�
��Ti

�
~yT�1; �0i;T + "; �0�i;T

�
+ �

�
hT�1; yTi

�
�  

�
hT�1; yTi ; �

0
i;T ; "

�
>�Ti

�
~yT�1; �0i;T + "; �0�i;T

�
>aT (")

Thus: �Ti
�
yTi ; y

T
�i
�
> aT (") for any yT�i. This concludes the initial step.

Inductive Step: [for t = 1; :::; T � 1: if s [B (h� )] = sc [h� ] for all h� and all � > t

then s [B (ht)] = sc [ht] for all ht]
Suppose, by contradiction, that 9ht�1 = (~yt�1; xt�1) : s [B (ht�1)] 6= sc (ht�1). Then,

by the contraction property,

9yti and �0i;t 2Bi
�
ht�1; yti

�
: �0i;t 6= sci

�
ht�1; yti

�
such that:

sign
�
sci
�
ht�1; yti

�
� �0i;t

�
= sign

�
�ti
�
yti ; y

t
�i
�
� �ti

�
~yt�1; �0i;t; �

0
�i;t
��

for all yt�i=
�
yt�1�i ; ��i;t

�
and �0�i;t 2 B�i

�
ht�1; yt�i

�
:

Fix such yti and �0i;t 6= sci (h
t�1; yti), and suppose (w.l.o.g.) that sci (h

t�1; yti) > �0i;t.

Similar to the initial step, it will be shown that there exists �"i;t = �0i;t + " for some " > 0

such that for any conjecture consistent with B�i, playing �
"
i;t is strictly better than playing

�0i;t at history (h
t�1; yti), contradicting the hypothesis that BR = B.

For any " > 0, set �"i;t = �0i;t + "; for each realization of signals ~�i =
�
~�i;k

�T
k=1
and

opponents� reports ~m�i = ( ~m�i;k)
T
k=t, for each � > t, denote by sci;�

�
�"i;t; ~m�i; ~�i

�
the

action taken at period � if �"i;t is played at t, s
c
i is followed in the following stages, and

the realized payo¤ type and opponents�messages are ~�i and ~m�i, respectively. (By conti-

nuity of the aggregators functions, sci;�
�
�"i;t; ~m�i; ~�i

�
is continuous in ", and converges to

sci;�

�
�0i;t; ~m�i; ~�i

�
as "! 0.)

For each realization ~�i =
�
~�i;k

�T
k=1

and reports ~m�i = ( ~m�i;k)
T
k=t and for each � > t ,

sci;�

�
�0i;t; ~m�i; ~�i

�
may be one of �ve cases:
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1. sci;�
�
�0i;t; ~m�i; ~�i

�
2
�
��i;T ; �

+
i;T

�
, then

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i, and we can choose " su¢ ciently small that s

c
i;�

�
�"i;t; ~m�i; ~�i

�
2
�
��i;T ; �

+
i;T

�
,

i.e.

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i

2. sci;�
�
�0i;t; ~m�i; ~�i

�
= �+i;T and

��i
�
y�i ; y

�
�i
�
> ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
at the argmax over y��i, then we can choose " su¢ ciently small that s

c
i;�

�
�"i;t; ~m�i; ~�i

�
=

�+i;T as well.

3. sci;�
�
�0i;t; ~m�i; ~�i

�
= �+i;T and

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i. Then, either s

c
i;�

�
�"i;t; ~m�i; ~�i

�
= �+i;T as well, or s

c
i;�

�
�"i;t; ~m�i; ~�i

�
2�

��i;T ; �
+
i;T

�
, i.e.

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i. In either case,

��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i

4. sci;�
�
�0i;t; ~m�i; ~�i

�
= ��i;T and

��i
�
y�i ; y

�
�i
�
< ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
at the argmax over y��i, Then we can choose " su¢ ciently small that s

c
i;�

�
�"i;t; ~m�i; ~�i

�
=

��i;T as well.
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5. sci;�
�
�0i;t; ~m�i; ~�i

�
= ��i;T and

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i. Then, either s

c
i;�

�
�"i;t; ~m�i; ~�i

�
= ��i;T as well, or s

c
i;�

�
�"i;t; ~m�i; ~�i

�
2�

��i;T ; �
+
i;T

�
, i.e.

��i
�
y�i ; y

�
�i
�
= ��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i. In either case,

��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
=��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i

That is, for each � > t, and for each
�
~�i; ~m�i

�
, in all �ve cases there exists �"

�
~�i; ~m�i; �

�
>

0 such that:

for all " 2
�
0; �"
�
~�i; ~m�i; �

��
, for all y��i

��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
=��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
:

Let �" = min
~�i; ~m�i;�

�"
�
~�i; ~m�i; �

�
(by compactness, this is well-de�ned and such that �" > 0).

Hence, if the continuation strategies are self-correcting, if f is aggregator-based, for any

" 2 (0; �"), reporting �"i;t or �0i;t at period t does not a¤ect the allocation chosen at periods
� > t (the opponents�self-correcting report cannot be a¤ected by i-th components of the

public history). Hence, for " 2 (0; �"), for each ��i 2 ���i, the allocations induced following
sci at periods � > t and playing �0i;t or �

"
i;t at history h

t
i, respectively �

0 and �", are such

that �0� = �"� for all � 6= t.

Consider types of player i, �0i,�
"
i 2 ��i such that for each � < t, �0i;� = �"i;� = �̂i;�

(the one actually reported on the path), for all � > tand �i;� = sci;� as above, while at t

respectively equal to �"i;t and �
0
i;t. Thus, the induced allocations are �

" and �0 discussed

above, and for each � 6= t, ��i (�
") = ��i (�

0) � â�i .
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From strict EPIC, we have that for any ��i

vi

�
�"; �t (�") ; fâ�i g� 6=t

�
>vi

�
�0; �t (�") ; fâ�i g� 6=t

�
and

vi

�
�"; �t (�0) ; fâ�i g� 6=t

�
<vi

�
�0; �t (�0) ; fâ�i g� 6=t

�
Thus, by continuity, there exists at (")

�ti
�
~yt�1; �0i;t; ��i;t

�
<at (") < �ti

�
~yt�1; �"i;t; ��i;t

�
(27)

such that

vi

�
�"; at (") ; fâ�i g� 6=t

�
= vi

�
�0; at (") ; fâ�i g� 6=t

�
From the Single Crossing Condition,

vi

�
�"; a�; fâ�i g� 6=t

�
>vi

�
�0; a�; fâ�i g� 6=t

�
whenever a�>at (") :

Thus, since the continuations in periods � > t are the same under both �0i;t and �
"
i;t, to reach

the desired contradiction it su¢ ces to show that for any yt�i 2 Y t
�i, �

t
i

�
yti ; y

t
�i
�
> at (").

(This, for any realization of ~��i).

As in the initial step, de�ne:

� := min
yt�i2Y t�i and

�0�i;t2B�i(ht�1;yt�i)

�
�ti
�
yti ; y

t
�i
�
� �ti

�
~yt�1; �0i;t; �

0
�i;t
��

(28)

For any " > 0, let

 (") = max
��i;t2��i;t

�
�ti
�
~yt�1; �"i;t; ��i;t

�
� �ti

�
~yt�1; �0i;t; ��i;t

�	
(29)

Since �ti is strictly increasing in �i;t,  (") is increasing in " and  (")! 0 as "! 0.

To obtain the desired contradiction, it su¢ ces to choose " su¢ ciently small that

 (") < � (30)

and operate the substitutions as follows

�ti
�
yti ; y

t
�i
�
��ti

�
~yt�1; �0i;t; �

0
�i;t
�
+ �

��ti
�
~yt�1; �"i;t; �

0
�i;t
�
+ � �  (")

>�ti
�
~yt�1; �"i;t; �

0
�i;t
�

>at (") :
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C.3 Proof of Proposition 6.

The proof is very similar to those of proposition 5.

Initial Step: [s
�
B
�
hT�1

��
= sc

�
hT�1

�
for each hT�1].

The initial step is the same, to conclude (in analogy with equation 25), that there

exists aT (") such that

�Ti
�
~yT�1; �0i;T ; ��i;T

�
<aT (") < �Ti

�
~yT�1; �0i;T + "; ��i;T

�
(31)

such that

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; aT (") ; ��T

�
~yT�1

��
= vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; aT (") ; ��T

�
~yT�1

��
(32)

From the �Strengthened SCC�(def. 17),

vi
�
xT�1; fT

�
~yT�1; �0i;T + "; ��i;T

�
; a�; ��T

�
~yT�1

��
>vi

�
xT�1; fT

�
~yT�1; �0i;T ; ��i;T

�
; a�; ��T

�
~yT�1

��
whenever a�>aT (")

From this point, the argument proceeds unchanged, concluding the initial step.

Inductive Step: [for t = 1; :::; T � 1: if s [B (h� )] = sc [h� ] for all h� and all � > t

then s [B (ht)] = sc [ht] for all ht]
The argument proceeds as in proposition 5, to show that for each � > t, and for each�

~�; ~m�i

�
, if continuation strategies are self-correcting, there exists �"

�
~�; ~m�i; �

�
> 0 such

that:

for all " 2
�
0; �"
�
~�; ~m�i; �

��
;

��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�"i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
=��i

�
~yt�1i ; �0i;t;

�
sci;k

�
�0i;t; ~m�i; ~�i

���
k=t+1

; y��i

�
for all y��i:

Consider types of player i, �0i,�
"
i 2 ��i such that for each � < t, �0i;� = �"i;� = �̂i;� (the

one actually reported on the path), for all � > tand �i;� = sci;� as above, while at t

respectively equal to �"i;t and �
0
i;t. By construction, such types are such that for any � 6= t,

��i (�
") = ��i (�

0).

From strict EPIC, we have that for any ��i

vi

�
f (�") ; �t (�") ; fâ�i g� 6=t

�
>vi

�
f (�0) ; �t (�") ; fâ�i g� 6=t

�
and

vi

�
f (�") ; �t (�0) ; fâ�i g� 6=t

�
<vi

�
f (�0) ; �t (�0) ; fâ�i g� 6=t

�
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Thus, by continuity, there exists at (")

�ti
�
~yt�1; �0i;t; ��i;t

�
<at (") < �ti

�
~yt�1; �"i;t; ��i;t

�
(33)

such that

vi

�
�"; at (") ; fâ�i g� 6=t

�
= vi

�
�0; at (") ; fâ�i g� 6=t

�
From the single crossing condition,

vi

�
f (�") ; a�; fâ�i g� 6=t

�
>vi

�
f (�0) ; a�; fâ�i g� 6=t

�
whenever a�>at (")

To reach the desired contradiction it su¢ ces to show that for any yt�i 2 Y t
�i, �

t
i

�
yti ; y

t
�i
�
>

at ("). The remaining part of the proof is identical to proposition 5.�
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