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Abstract

Every year during the second and third quarters (the “hot season”) housing markets in the

UK and the US experience systematic above-trend increases in both prices and transactions.

During the fourth and first quarters (the “cold season”), house prices and transactions fall below

trend. We propose a search-and-matching framework that sheds new light on the mechanisms

governing housing market fluctuations. The model features a “thick-market” effect that can

generate substantial differences in the volume of transactions and prices across seasons, with the

extent of seasonality in prices depending crucially on the bargaining power of sellers. The model

can quantitatively mimic the seasonal fluctuations in transactions and prices observed in the UK

and the US It can furthermore be adapted to study lower-frequency movements in prices and

transactions.
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1 Introduction

A rich empirical and theoretical literature has been motivated by dramatic boom-to-bust episodes in

regional and national housing markets.1 Booms are typically defined as times when prices rise and

there is intense trading activity, whereas busts are times when prices and trading activity fall below

trend.

While the boom-to-bust episodes motivating the extant work are relatively infrequent and of

unpredictable timing, this paper shows that in several housing markets, booms and busts are just

as frequent and predictable as the seasons. In particular, in most regions of the UK and the US,

every year a housing boom of considerable magnitude takes place in the second and third quarters

of the calendar year (the “hot season”), followed by a bust in the fourth and first quarters (the

“cold season”). The predictable nature of house price fluctuations (and transactions) is furthermore

confirmed by estate agents, who in conversations with the authors observed that during winter months

there is less activity and “owners tend to sell at a discount.” Perhaps more compelling, publishers

of house price indexes go to great lengths to produce seasonally adjusted versions of their indexes,

usually the index that is published in the media. As stated by publishers:

“House prices are higher at certain times of the year irrespective of the overall trend. This tends

to be in spring and summer, when more buyers are in the market and hence sellers do not need to

discount prices so heavily in order to achieve a sale,” and “...we seasonally adjust our prices because

the time of year has some influence. Winter months tend to see weaker price rises and spring/summer

see higher increases all other things being equal.” (From Nationwide House Price Index Methodology.)

“Houses prices are seasonal with prices varying during the course of the year irrespective of the

underlying trend in price movements. For example, prices tend to be higher in the spring and summer

months when more people are looking to buy.” (From Halifax Price Index Methodology.)

The first contribution of this paper is to systematically document the existence, quantitative

importance, and cross-regional variation of these seasonal booms and busts.2

1See for example Stein (1995), Muellbauer and Murphy (1997), Genesove and Mayer (2001), Krainer (2001), Ortalo-

Magne and Rady (2005), Brunnermeier and Julliard (2008), and the contributions cited therein.
2Studies on housing markets have typically glossed over the issue of seasonality. There are a few exceptions, albeit

they have been confined to only one aspect of seasonality (e.g., either quantities or prices) or to a relatively small

geographical area. In particular, Goodman (1991) documents pronounced seasonality in moving patterns in the US,

Case and Shiller (1989) find seasonality in prices in Chicago and–to a lesser extent–in Dallas, and Hosios and Pesando

(1991) find seasonality in prices in the City of Toronto; the latter conclude “that individuals who are willing to purchase

against the seasonal will, on average, do considerably better.”
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The surprising size and predictability of seasonal fluctuations in house prices poses a challenge

to standard models of durable-good markets. In those models, anticipated changes in prices cannot

be large: If prices are expected to be much higher in May than in December, then buyers will

shift their purchases to the end of the year, narrowing down the seasonal price differential. More

concretely, a typical no-arbitrage condition states that seasonality in prices must be accompanied by

seasonality in rental flows or in the cost of housing services. Rents, however, display no seasonality,

implying a substantial and, as we shall argue, unrealistic degree of seasonality in service costs.3,4 A

possible explanation for why standard no-arbitrage conditions fail is of course that transaction costs

are very high and hence investors do not benefit from arbitrage. Still, the question remains as to

why presumably informed buyers do not try to buy in the low-price season. Furthermore, it is not

clear why we observe a systematic seasonal pattern. (The lack of scope for seasonal arbitrage does

not necessarily imply that most transactions should be carried out in one season, nor does it imply

that prices and transactions should be correlated.) To offer answers to these questions, we develop a

search-and-matching model for the housing market. The model more realistically captures the process

of buying and selling houses and it can more generally shed new light on the mechanisms governing

housing market fluctuations.

The model starts from the premise that the utility potential buyers derive from a house is match-

specific; so, for example, two individuals visiting the same house may attach a different value to it and

hence have different willingness to pay. In that context, buyers are more likely to find a higher-quality

match (and thus their willingness to pay is more likely to increase) when there are more houses for sale.

Hence, in a thick market (or hot season), sellers can charge higher prices.5 Because prices are higher,

potential sellers are more willing to sell, better matches are formed, and so on. This mechanism thus

3For example, the degree of price seasonality observed in the UK implies that service costs should be at least 200

percent higher in the “cold” season than in the “hot” season–see Appendix 7.1. This seems unlikely, particularly

because interest rates and tax rates, two major components of service costs, display no seasonality.
4Seasonality in housing markets does not seem to be driven by seasonal differences in liquidity related to overall

income. Income is typically high in the last quarter, a period in which house prices and the volume of transactions

tend to fall below trend. Beaulieu and Miron (1992) and Beaulieu, Miron, and MacKie-Mason (1992) show that in

most countries, including the UK and the US, income peaks in the fourth quarter of the calendar year. There is also

a seasonal peak in output in the second quarter, and seasonal recessions in the first and third quarters. House price

seasonality thus is not in line with income seasonality: prices are above trend in the second and third quarters.
5The labor literature distinguishes the thick-market effects due to faster arrival of offers and those due to the quality

of the match. Our focus is entirely on the quality effect. See for example Diamond (1981) and Petrongolo and Pissarides

(2006) and Gautier and Teulings (2008).
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leads to higher number of transactions and prices in the hot season.

In the baseline model, we distinguish seasons by differences in the ex-ante propensity to move.

These differences may arise, for example, from the school calendar: Families may prefer to move in the

summer, before sending their children to new schools. 6 We show that a higher ex-ante probability

of moving in a given season can trigger thick-market effects that make it appealing to a large number

of agents to buy and sell during that season. This amplification mechanism can create substantial

seasonality in transactions; the extent of seasonality in prices, in turn, increases with the bargaining

power of sellers. Intuitively better matches between buyers and houses in the hot season imply

higher total surpluses to be shared between buyers and sellers; to the extent that sellers have some

bargaining power, this leads to higher prices in the hot season. Seasonality in prices thus increases

with the bargaining power of sellers. The calibrated model can quantitatively account for most of the

seasonal fluctuations in transactions and prices in the UK and the US.7

The contribution of the paper can be summarized as follows. First, it systematically documents

seasonal booms and busts in housing markets; it argues that the predictability and high extent of

seasonality in prices cannot be quantitatively reconciled with the standard asset-pricing equilibrium

condition embedded in most models of housing markets (or consumer durables, more generally).

Second, it develops a search-and-matching model that can quantitatively account for the seasonal

patterns of prices and transactions observed in the UK and the US. The model is more general than

its current application and can be adapted to study lower-frequency movements in house prices and

transactions.

The paper is organized as follows. Section 2 presents the empirical evidence. Section 3 presents the

model. Section 4 presents the qualitative results and a quantitative analysis of the model, confronting

it with the empirical evidence. Section 5 studies the robustness of the results to alternative modelling

assumptions and discusses the efficiency properties of the model. Section 6 presents concluding re-

marks. Analytical derivations and proofs are collected in the Appendix. A Supplementary Appendix

available from the authors contains further empirical evidence on seasonality.

6School calendar alone, however, cannot explain seasonal movements of the magnitudes observed in the data. Parents

of school-age children account for only a small part of total movers. (See Goodman, 1991.) Good weather may also

make the search more convenient in the summer, however this convenience is unlikely to be worth so much money to

most buyers.
7Our focus on these two countries is largely driven by the reliability and quality of the data.
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2 Hot and Cold Seasons

2.1 A First Glance at the Data: Aggregate Seasonality (as Reported by

the Publishers)

A first indication that house prices display seasonality comes from the observation that most publishers

of house price indexes directly report seasonally adjusted (SA) data. Some publishers, however, report

both SA and non-seasonally adjusted (NSA) data, and from these sources one can obtain a first

measure of seasonality, as gauged by the publishers. For example, in the UK, Halifax publishes both

NSA and SA house price series. Using these two series we computed the (logged) seasonal component

of house prices as the ratio of the NSA house price series, Pt, relative to the SA series, P ∗t , from

1983:01 to 2007:04,
n
ln Pt

P∗t

o
. This seasonal component is plotted in Figure 1. (Both the NSA and the

SA series correspond to the UK as a whole.)

In the US, both the Office of Federal Housing Enterprise Oversight (OFHEO)’s house price index

and the Case-Shiller index carried out by Standard & Poor’s (S&P) are published in NSA and SA

form. Figure 2 depicts the seasonal component of the OFHEO series for the US as a whole, measured

as before as
n
ln Pt

P∗t

o
, from 1991:01 through to 2007:04. And Figure 3 shows the corresponding plot for

the Case-Shiller index corresponding to a composite of 10 cities, with the data running from 1987:01

through to 2007:04. (The start of the sample in all cases is dictated by data availability.)8

All Figures seem to show a consistent pattern: house prices in the second and third quarters tend

to rise above trend (captured by the SA series), and prices in the fourth, and particularly in the

first quarter, tend to be in general at or below trend. Later on we show that this general pattern is

also observed at finer levels of geographical aggregation for both countries. The Figures also make

it evident that the extent of price seasonality is more pronounced in the UK than in the US as a

whole, though certain cities in the US seem to display seasonal patterns of the same magnitude as

those observed in the UK. (Some readers might be puzzled by the lack of symmetry in Figure 2,

as most expect the seasons to cancel out; this is exclusively due to the way OFHEO performs the

seasonal adjustment;9 in the sake of clarity and comparability across different datasets, we shall base

our analysis only on the “raw”, NSA series and hence the particular choice of seasonal adjustment by

8The original data in S&P’s are monthly; we hence take the last month of the quarter–results are virtually identical

when taking the average over the quarter.
9OFHEO uses the Census Bureau’s X-12 ARIMA procedure for SA; it is not clear, however, what the exact seasonality

structure chosen is.
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the publishers will be inconsequential.)

Figure 1: Seasonal Component of House Prices in the UK 1983-2007.
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Note: The plot shows
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. Pt is the NSA and P ∗t the SA index. Source: Halifax.

Figure 2: Seasonal Component of House Prices in the US. 1991-2007.
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Figure 3: Seasonal Component of House Prices in US cities 1987-2007.
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. Pt is the NSA and P ∗t the SA index. Source: Case-Shiller 10-city composite.

Last, but not least, the US National Association of Realtors (NAR) publishes data on transactions

both with and without SA. Figure 4 plots the seasonal component of house transactions, measured

(as before) as the (logged) ratio of the (NSA) number of transactions Qt, divided by the SA number

of transactions Q∗t :
n
ln Qt

Q∗t

o
.

Figure 4: Seasonal Component of Housing Transactions in the US. 1989-2007.
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The seasonal pattern for transactions is similar to that for prices: Transactions surge in the second

and third quarters and stagnate or fall in the fourth and first quarters. (In the UK only NSA data

for transactions are available from the publishers.)

2.2 Hot and Cold Seasons Within Countries

Housing markets in large countries can be considerably segmented and it therefore makes sense to

analyze the data at finer levels of geographic disaggregation. We therefore focus our analysis on

regional housing markets in the UK and the US, which, as said, are the two countries for which the

available data are of highest quality. A Supplementary Appendix available from the authors provides

a description of seasonal patterns in other countries (for which price indexes are typically not quality-

adjusted). For ease of clarity and comparability across different datasets, we base the analysis entirely

on the (raw) NSA series.

2.2.1 Data

UK

In the UK two main sources provide quality-adjusted NSA house price indexes: One is the Depart-

ment of Communities and Local Government (DCLG) and the other is Halifax, one of the country’s

largest mortgage lenders.10 Both sources report regional price indexes on a quarterly basis for the 12

standard planning regions of the UK, as well as for the UK as a whole. The indexes calculated are

‘standardized’ and represent the price of a typically transacted house. The standardization is based on

hedonic regressions that control for a number of characteristics, including location, type of property

(house, sub-classified according to whether it is detached, semi-detached or terraced, bungalow, flat),

age of the property, tenure (freehold, leasehold, feudal), number of rooms (habitable rooms, bedrooms,

living-rooms, bathrooms), number of separate toilets, central heating (none, full, partial), number of

10Other price publishers, like Nationwide Building Society, report quality adjusted data but they are already SA (the

NSA data are not publicly available). Nationwide Building Society, however, reports in its methodology description

that June is generally the strongest month for house prices and January is the weakest, with differences that are

comparable to the numbers reported in Figure 1; this justifies the SA they perform in the published series. In a

somewhat puzzling paper, Rosenthal (2006) argues that seasonality in Nationwide Building Society data is elusive; we

could not, however, gain access to the NSA data to assess which of the two conflicting assessments (Nationwide Building

Society’s or Rosenthal’s) was correct. We should perhaps also mention that Rosenthal (2006) finds different results from

Muellbauer and Murphy (1997) with regards to lower-frequency movements. Finally, the Land Registry data reports

average prices, without adjusting for quality.
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garages and garage spaces, garden, land area, road charge liability, etc. These controls adjust for the

possibility of seasonal changes in the composition of the set of properties (for example, shifts in the

location or sizes of properties).

The two sources differ in three respects. First, DCLG collects information from a sample of all

mortgage lenders in the country, while the Halifax index uses all the data from Halifax mortgages

only, which account for an average of 25 percent of the market (re-mortgages and further advances are

excluded in both cases). Second, DCLG reports the price at the time of completion of the transaction,

while Halifax reports the price at the time of approval of the mortgage. Completion takes on average

three to four weeks after the initial agreement but some agreed transactions do not reach completion.

Finally, the DCLG index goes back to 1963 for certain regions, while Halifax starts in 1983.

To compute real price indexes, we later deflate the house price indexes using the NSA retail price

index (RPI) provided by the UK Office for National Statistics.

As an indicator of the number of transactions, we use the number of mortgages advanced for

home purchases; the data are collected by the Council of Mortgage Lenders (CML) and are also

disaggregated by region.

US

The main source of NSA house price indexes for the US is OFHEO; we focus on the purchase-only

index, which starts in 1991:01. This is a repeat-sale index calculated for the whole of the US and

also disaggregated by Census regions and states. We also study the Case-Shiller index carried out

by Standard & Poor’s for 20 big cities and a composite of 10 cities; this index is also a repeat-sale,

purchase-only and starts in 1987:01.

To compute real price indexes, we use the NSA consumer price index (CPI) provided by the US

Bureau of Labor Statistics.11

Data on the number of transactions come from National Association of Realtors, and correspond

to the number of sales of existing single-family homes. The data are disaggregated into the four major

Census regions.

11As it turns out, there is little seasonality in the US CPI index, a finding first documented by Barsky and Miron

(1989), and hence the seasonal patterns in nominal and real housing prices coincide. The CPI are reported in monthly

frequency. We take the last month of the quarter to deflate nominal prices.
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2.2.2 Extent of Seasonality

We focus our study on deterministic seasonality, which is easier to understand (and to predict) for

buyers and sellers (unlikely to be all econometricians), and hence most puzzling from a theoretical

point of view. Given the seasonal patterns depicted in Section 2.1, we summarize within-country data

into two broadly defined seasons–second and third quarter, or “hot season”, and fourth and first

quarter, or “cold season”; we thus stress the difference in relative prices between these two broad

seasons. (We use interchangeably the terms hot season and summer term to refer to the second-and-

third quarters and cold season and winter term to refer to the first-and-fourth quarters.) The grouping

into broad seasons will help simplify the exposition and allow for a clear mapping into the model we

will later develop.

For each geographical unit, we depict with red bars the average (annualized) price increase from

winter to summer, ln
³

PS
PW

´2
, depicted in red, where PS is the price index at the end of the hot

season (that is, third quarter) and PW is the price at the end of the cold season (first quarter).

Correspondingly, we depict with blue bars the average (annualized) price increase from summer to

winter ln
³
PW 0
PS

´2
, where PW 0 is the price index in the first quarter of the following year. We plot

similar figures for transactions.

The extent of seasonality can then be measured as the difference between the two bars. This

measure nets out lower-frequency fluctuations affecting both seasons. (In the model we will later

present, we shall focus on periodic steady states for two broad seasons, and we will use a similar

metric to gauge the extent of seasonality.)

2.2.3 Housing Market Seasonality in the UK

Nominal and Real House Prices Figure 5 reports the average annualized percent price in-

creases in the summer term (red) and the winter term (blue) from 1983 through to 2007 using the

regional price indices provided by DCLG. During the period analyzed, the average nominal price

increases in the winter term were below 5 percent in all regions except for Northern Ireland. In the

summer term, the average growth rates were above 12 percent in all regions, except for Northern

Ireland, East Anglia, and the North East. As shown in the graph, the differences in growth rates

across the two broad seasons (our measure S) are generally very large and economically significant,

with an average of 9 percent for all regions. (For some regions, the DCLG index goes back to 1968,

and though the average growth rates are lower in the longer period, the average difference across
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seasons is still very high at above 8 percent.12)

Figure 5: Average annualized housing price increases in summers and winters.

DCLG, 1983-2007.
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The patterns are qualitatively similar using the Halifax index, not reported here in the interest of

space (results are available in Supplementary Appendix). The annualized average price growth during

the summer term is above 11 percent in all regions, with the exception of the North East and West

Midlands, whereas the increase during the winter term is systematically below 5 percent, except for

the North East region and London, where the increase is just above 5 percent. The average difference

in growth rates across seasons is 7.4 percent. There are some non-negligible quantitative differences

between the two sources, which might be partly explained by differences in coverage and by the lag

between approval and completion, which, as mentioned, is one important difference between the two

indices. The two sources, however, point to a similar pattern of prices surging in the summer and

stagnating in the winter.

The previous Figure showed the seasonal pattern in nominal house price inflation. The seasonal

pattern of real house prices (that is, house prices relative to the overall NSA price index) depends also

on the seasonality of overall inflation. In the UK overall price inflation displays some seasonality. The

difference in overall inflation rates across the two seasons, however, can hardly “undo” the differences

in nominal house price inflation, implying a significant seasonal also in real house prices. (See Figure

12Results are available from the authors. We start in 1983 for comparability with the Halifax series.
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6.) Netting out the effect of overall inflation reduces the differences in growth rates between winters

and summers to a country-wide average of 7.3 percent using the DCLG series and 5.6 using the Halifax

series.13

Figure 6: Average annualized real house price increases in summers and winters.
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Number of Transactions

Seasonal fluctuations in house prices are accompanied by qualitatively similar fluctuations in the

number of transactions, proxied here by the number of mortgages. For comparability with the price

sample, Figure 6 shows the growth rates in the number of mortgages in the two seasons from 1983 to

2007. (The data, which are compiled by CML, goes back to 1974 for some regions; the patterns are

qualitatively similar in the earlier period.) As the Figure shows, the number of transactions increases

sharply in the summer term and declines in the winter term.

13We also looked at more disaggregated data, distinguishing between first-time buyers and former-owner occupiers,

as well as purchases of new houses versus existing houses. Seasonal patterns were similar across the various groups; the

results are available from the authors.
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Figure 7: Average annualized increases in the number of transactions in summers and winters.
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Statistical Significance of the Differences between Summers and Winters

We test the statistical significance of the differences in growth rates across seasons,
∙
ln
³

PS
PW

´2
− ln

³
PW 0
PS

´2¸
using a t-test on the equality of means.14 Tables 1 through 3 report the average difference in growth

rates across seasons and standard errors, together with the statistical significance. Table 1 reports

the results for prices, both nominal and real, for all regions, using the data from DCLG and Table

2 shows the corresponding information using Halifax. Table 3 shows the differences in transactions’

growth rates.

14The test on the equality of means is equivalent to the t-test obtained on the slope coefficient from a regression of

annualized growth rates on a dummy variable that takes value 1 if the observation falls on the second and third quarter

(or hot semester) and 0 otherwise. The coefficient on the dummy captures the annualized differences across the two

seasons; note that this is the case regardless of the frequency of the data (provided growth rates are annualized). To

see this point, notice that the annualized growth rate in, say, the hot season, ln
³
PS
PW

´2
, is equivalent to the average

of annualized quarterly growth rates in the summer term: ln
³
PS
PW

´2
= 2 ln

³
P3
P1

´
= 1

2

h
4 ln

³
P3
P2

´
+ 4 ln

³
P3
P2

´i
and,

correspondingly, 2 ln
³
P10
P3

´
= 1

2

h
4 ln

³
P10
P4

´
+ 4 ln

³
P4
P3

´i
. Hence a regression with quarterly (or semester) data on a

summer dummy will produce an unbiased estimate of the average difference in growth rates across seasons. In the

estimation we use quarterly data to exploit all the information and gain on degrees of freedom.
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Table 1: Difference in annualized percentage changes in (nominal and real)

house prices between summers and winters in the UK, by region. DCLG.

Region Difference Std. Error Difference Std. Error
East Anglia 6.536* (3.577) 4.870 (3.461)
East Midlands 8.231** (3.148) 6.408** (3.131)
Gr. London 8.788*** (3.273) 6.966** (3.372)
North East 8.511** (3.955) 6.845* (3.915)
North West 13.703*** (3.323) 12.583*** (3.245)
Northern Ireland 4.237 (3.431) 2.415 (3.467)
Scotland 10.393*** (2.793) 8.571*** (2.711)
South East 10.375*** (3.496) 8.709** (3.301)
South West 11.244*** (3.419) 9.422*** (3.459)
Wales 7.180** (3.504) 5.358 (3.442)
West Midlands 9.623*** (3.089) 7.801** (3.070)
Yorkshire & the Humber 10.148*** (3.114) 8.325*** (3.056)
United Kingdom 9.008*** (2.304) 7.185*** (2.314)

Nominal house price Real house price

Note: The Table shows the average differences (and standard errors), by region for 
1983-2007. *Significant at the 10%; **significant at the 5%; ***significant at 1%. 
Source: Department of Communities and Local Government.

Table 2: Difference in annualized percentage changes in (nominal and real)

house prices between summers and winters in the UK, by region. Halifax.

Region Difference Std. Error Difference Std. Error
East Anglia 9.885*** (3.604) 8.081** (3.706)
East Midlands 10.247*** (3.393) 8.444** (3.413)
Gr. London 5.696* (3.048) 3.892 (3.221)
North East 2.197 (2.945) 0.394 (2.864)
North West 8.019*** (2.653) 6.216** (2.548)
Northern Ireland 6.053* (3.409) 4.25 (3.494)
Scotland 9.334*** (2.320) 7.530*** (2.272)
South East 7.104** (3.019) 5.301* (3.149)
South West 9.258** (3.474) 7.454** (3.549)
Wales 7.786** (3.329) 5.983* (3.288)
West Midlands 5.987* (3.540) 4.183 (3.505)
Yorkshire & the Humber 7.253** (2.892) 5.450* (2.825)
United Kingdom 7.559*** (2.365) 5.756** (2.400)

Nominal house price Real house price

Note: The Table shows the average differences (and standard errors), by region for 1983-
2007. *Significant at the 10%; **significant at the 5%; ***significant at 1%. Source: 
Halifax.
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Table 3: Difference in annualized percentage changes in the volume of

transactions between summers and winters in the UK, by region. CML.
Region Difference Std. Error
East Anglia 119.420*** (11.787)
East Midlands 104.306*** (11.151)
Gr. London 99.758*** (11.577)
North East 84.069*** (9.822)
North West 103.525*** (8.963)
Northern Ireland 71.466*** (12.228)
Scotland 116.168*** (9.843)
South East 117.929*** (9.710)
South West 110.996*** (8.764)
Wales 115.900*** (13.850)
West Midlands 112.945*** (9.496)
Yorkshire & the Humber 98.904*** (8.192)
United Kingdom 107.745*** (8.432)

Note: The Table shows the average differences (and standard errors) by region for 
1983-2007. *Significant at the 10%; **significant at the 5%; ***significant at 1%. 
Source: Council of Mortgage Lenders.

The differences in price increases across seasons are quite sizable for most regions, in the order of

7 to 9 percent on average in nominal terms and 5.7 to 7 percent in real terms; the results from DCLG

appear more significant than those from Halifax from a statistical point of view. For transactions the

differences reach 108 percent for the country as a whole. Put together, the data point to a strong

seasonal cycle, with a large increase in transactions and prices during the summer relative to the

winter term. Also, seasonal patterns, particularly in transactions, are qualitatively similar across all

regions.

Rents and Mortgage Rates Data on rents are not well documented. Only in recent years

have data collection efforts started, but there is no long enough time-series to detect seasonality.15

One source that can serve at least as indicative, is the average registered private rents collected by the

UK Housing and Construction Statistics; the data run on a quarterly basis from 1979:01 to 2001:04.

We run regressions using as dependent variables both the rent levels and the log of rents on a dummy

variable taking value 1 in the second and third quarters and 0 otherwise, detrending the data in

different ways. The data showed no deterministic seasonality (regression outcomes available from the

authors). This is in line with anecdotal evidence suggesting that rents are fairly sticky. Given the

paucity of data on rents, there is little we can say with high confidence. Still, note that for rents

to be the driver of price seasonality, one would need an enormous degree of seasonality in rents (as

well as a high discount rate), since prices should in principle, according to the standard asset-pricing

15See new data produced by the Chartered Institute of Housing since 1999 and ONS since 1996.
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approach, reflect the present values of all future rents (in other words, prices should be less seasonal

than rents). The lack of even small discernible levels of seasonality in the data suggests that we need

alternative explanations for the observed seasonality in prices.

Interest rates in the UK do not exhibit a seasonal pattern, at least in the last four decades of

data. We investigated seasonality in different interest rate series provided by the Bank of England:

The repo (base) rate; an average interest rate charged by the four UK major banks–before the

crisis (Barclays Bank, Lloyds Bank, HSBC, and National Westminster Bank); and a weighted average

standard variable mortgage rate from banks and Building Societies. None of the interest rate series

displayed seasonals (regression outcomes in Supplementary Appendix).

Housing Market Seasonality in the US

Nominal and Real House Prices

As noted before, the US aggregate house price index displays a consistent seasonal behavior, albeit

the extent of seasonality is generally smaller than that in the UK Figure 8 illustrates the annualized

price increases at the Census-Division level from OFHEO. Figure 9 shows the corresponding plot for

different states, also from OFHEO, and Figure 10 shows the plot for S&P’s Case-Shiller index at the

city level.

Figure 8: Average annualized house price increases in summers and winters, by region.
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Figure 9: Average annualized house price increases in summers and winters by state.
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Figure 10: Average annualized house price increases in summers and winters by city.
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The results using real prices (in terms of differences between seasons) are virtually identical to the

ones for nominal prices, as CPI inflation rates hardly differ across seasons over the period analyzed

and hence the differences in real growth rates across seasons are almost identical to the differences in

nominal growth rates. These differences are later summarized in Table 4. (Figures are omitted in the

interest of space, but are available from the authors).

Transactions Figure 11 shows the annualized growth rates in transactions from 1991 through to

2007 for main Census regions; the data come from NAR.16 Seasonality in transactions is overwhelm-

ing: The volume of transactions rises sharply in the summer and falls in the winter, by even larger

magnitudes than in the UK.

Figure 16: Average annualized increases in the number of transactions in summers and winters.
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Statistical Significance of the Differences between Summers and Winters We sum-

marize the differences in growth rates across seasons and report the results from a test on mean

differences in Tables 4 through 7. Table 4 shows the results for prices using OFHEO’s Census-division

level; Table 5 shows the results using OFHEO’s state-level data; Table 6 shows the results using S&P’s

16The series actually starts in 1989, but we use 1991 for comparability with the OFHEO-census-level division price

series; adding these two years does not change the results.
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Case-Shiller city-level data; and Table 7 shows the results for transactions from NAR. Regarding house

prices, for the US as a whole, the differences in annualized growth rates (nominal and real) are in

the order of 3 percent. There is considerable variation across regions, with some displaying virtually

no seasonality (South Atlantic) and others (East and West North Central, New England and Middle

Atlantic) displaying significant levels of seasonality. This variability becomes more evident at the state

level. Interestingly, the Case-Shiller index for cities displays higher levels of seasonality, comparable

to the levels observed in UK regions. (This will be consistent with our model, which, ceteris paribus,

generates more seasonality when the bargaining power of sellers is higher, as it is likely to be the case

in cities, where land is relatively scarce.) Transactions are extremely seasonal in the US, as anticipated

earlier, despite the fact that, on average, the US displays lower seasonality in prices. (Our model will

offer an explanation for this).

Table 4: Difference in annualized percentage changes in house prices between

semesters (second-third quarters vis-à-vis fourth-first quarters) in the US, by region

Region Difference Std. Error Difference Std. Error
East North Central 4.262*** (0.772) 4.106*** (0.924)
East South Central 1.811*** (0.535) 1.654** (0.701)
Middle Atlantic 4.273** (1.619) 4.116** (1.660)
Mountain 3.166** (1.205) 3.009** (1.281)
New England 4.980** (2.081) 4.823** (2.181)
Pacific 3.010 (2.117) 2.853 (2.195)
South Atlantic 1.281 (1.277) 1.125 (1.370)
West North Central 4.333*** (0.743) 4.176*** (0.872)
West South Central 2.836*** (0.537) 2.679*** (0.650)
USA 3.169*** (0.967) 3.012*** (1.081)

Nominal house price Real house price

Note: The Table shows the average differences (and standard errors), by region for 1991-2007. 
*Significant at the 10%; **significant at the 5%; ***significant at 1%. Source: OFHEO 
Purchase-only Index.
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Table 5: Difference in annualized percentage changes in house prices between

semesters (second-third quarters vis-à-vis fourth-first quarters) by US state.

State Difference Std. Error Difference Std. Error
Alabama 3.812** (1.400) 3.655** (1.378)
Alaska 2.189*** (0.692) 2.032** (0.848)
Arizona 2.263** (0.848) 2.106** (0.950)
Arkansas 1.109 (2.586) 0.953 (2.583)
California 3.656 (3.398) 3.499 (3.479)
Colorado 4.285*** (1.323) 4.129*** (1.447)
Connecticut 5.819*** (2.055) 5.662** (2.133)
District of Columbia 11.040** (4.229) 10.883** (4.150)
Delaware 2.687 (1.862) 2.530 (1.925)
Florida 1.185 (2.525) 1.028 (2.571)
Georgia 1.921** (0.743) 1.764* (0.887)
Hawaii 0.850 (3.668) 0.693 (3.677)
Idaho 4.440*** (0.615) 4.283*** (0.711)
Illinois 5.035*** (1.659) 4.878*** (1.688)
Indiana 3.864*** (0.755) 3.707*** (0.859)
Iowa 3.621*** (0.768) 3.464*** (0.884)
Kansas 3.134*** (0.709) 2.977*** (0.925)
Kentucky 1.623*** (0.570) 1.466** (0.707)
Louisiana 2.300*** (0.827) 2.143** (0.921)
Maine 4.823** (2.219) 4.666* (2.339)
Maryland 3.384 (2.341) 3.227 (2.396)
Massachusetts 4.407** (2.146) 4.250* (2.231)
Michigan 4.573*** (1.568) 4.416** (1.698)
Minnesota 5.290*** (1.376) 5.133*** (1.484)
Missouri 4.085*** (0.646) 3.929*** (0.758)
Mississippi 1.379 (1.028) 1.222 (1.108)
Montana 3.957** (1.469) 3.800** (1.510)
North Carolina 1.417** (0.641) 1.260 (0.764)
North Dakota 4.908*** (1.353) 4.751*** (1.423)
Nebraska 3.842*** (1.082) 3.685*** (1.162)
New Hampshire 4.918** (2.391) 4.761* (2.463)
New Jersey 4.197* (2.076) 4.041* (2.126)
New Mexico 2.857* (1.560) 2.700 (1.623)
Nevada 3.540 (2.946) 3.383 (3.026)
New York 4.662** (1.815) 4.505** (1.872)
Ohio 3.729*** (0.731) 3.572*** (0.911)
Oklahoma 3.095*** (0.477) 2.938*** (0.511)
Oregon 3.903*** (1.380) 3.746*** (1.310)
Pennsylvania 4.226*** (1.317) 4.069*** (1.329)
Rhode Island 3.544 (2.842) 3.388 (2.969)
South Carolina 1.360* (0.698) 1.203 (0.771)
South Dakota 4.201*** (1.171) 4.044*** (1.248)
Tennessee 1.759** (0.685) 1.602* (0.834)
Texas 3.045*** (0.674) 2.888*** (0.763)
Utah 2.204 (1.820) 2.047 (1.803)
Virginia 1.873 (1.758) 1.716 (1.835)
Vermont 5.945** (2.430) 5.788** (2.373)
Washington 3.563** (1.377) 3.406** (1.377)
Wisconsin 5.007*** (0.738) 4.850*** (0.848)
West Virginia 3.753** (1.702) 3.596** (1.765)
Wyoming 5.091*** (1.365) 4.935*** (1.391)

Note: The Table shows the average differences (and standard errors), by state for 1991-
2007. *Significant at the 10%; **significant at the 5%; ***significant at 1%. Source: 
OFHEO Purchase-only Index.

Nominal house price Real house price
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Table 6: Difference in annualized percentage changes in house prices between

semesters (second-third quarters vis-à-vis fourth-first quarters) by US city.

City Difference Std. Error Difference Std. Error
AZ-Phoenix 3.571 (3.307) 3.405 (3.357)
CA-Los Angeles 7.273** (3.478) 6.884* (3.535)
CA-San Diego 7.107** (3.204) 6.717** (3.275)
CA-San Francisco 8.051** (3.009) 7.662** (3.045)
CO-Denver 5.576*** (1.599) 5.186*** (1.805)
DC-Washington 6.439** (2.604) 6.050** (2.645)
FL-Miami 0.636 (2.744) 0.246 (2.838)
FL-Tampa 2.171 (2.384) 1.781 (2.484)
GA-Atlanta 3.920*** (0.903) 3.763*** (1.042)
IL-Chicago 5.530*** (1.342) 5.141*** (1.459)
MA-Boston 8.560*** (2.091) 8.170*** (2.325)
MI-Detroit 3.864* (1.909) 3.707* (2.060)
MN-Minneapolis 4.431*** (1.528) 4.265** (1.741)
NC-Charlotte 3.968*** (0.721) 3.578*** (0.836)
NV-Las Vegas 4.149 (3.216) 3.76 (3.262)
NY-New York 4.477** (2.161) 4.087* (2.342)
OH-Cleveland 6.942*** (0.973) 6.553*** (1.041)
OR-Portland 5.551*** (1.485) 5.161*** (1.388)
TX-Dallas 6.776*** (1.380) 6.138*** (1.823)
WA-Seattle 8.437*** (1.953) 8.175*** (1.942)
Composite-20 cities 6.051*** (2.227) 5.662** (2.344)

Nominal house price Real house price

Note: The Table shows the average differences (and standard errors), by region for 1991-2007. 
*Significant at the 10%; **significant at the 5%; ***significant at 1%. Source: SP's Case-Shiller 
index.

Table 7: Difference in annualized percentage changes in house transactions between

semesters (second-third quarters vis-à-vis fourth-first quarters) by US region.

Region Coef. Std. Error
Midwest 159.473*** (6.488)
Northeast 152.551*** (4.918)
South 153.009*** (4.702)
West 124.982*** (6.312)
United States 148.086*** (5.082)

Note: The Table shows the average differences (and standard errors) 
by region for 1991-2007. *Significant at the 10%; **significant at 
the 5%; ***significant at 1%. Source: National Association of 
Realtors.

Rents and Mortgage Rates As was the case for the UK, the paucity of rent data for the US

is regrettable. The Bureau of Labor Statistics (BLS) provides two series that can serve as proxies:

21



One is the NSA series of owner’s equivalent rent and the second is the NSA rent of primary residence;

both series are produced for the construction of the CPI and correspond to averages over all cities.

For each series, we run regressions using as dependent variables both the rent levels and the log of

rents, de-trended in various ways on a summer-term dummy. The results (available from the authors)

yielded no discernible pattern of seasonality. We take this as only suggestive as, of course, the data

are not as clean and detailed as we would wish. To reiterate, however, if seasonality in rents were the

driver of seasonality in prices, we should observed substantial seasonality in rental flows to generate

the observed seasonality in house prices, according to the standard approach. In the model we present

later, we will work under the constraint that rents are aseasonal.

As first documented by Barsky and Miron (1989), interest rates in recent decades do not exhibit

seasonality. We investigated in particular data on mortgage rates produced by the Board of Governors

of the Federal Reserve, corresponding to contract interest rates on commitments for fixed-rate first

mortgages; the data are quarterly averages beginning in 1972; the original data are collected by Freddie

Mac. Consistent with the findings of Barsky and Miron (1989) and the evidence from the UK, we did

not find any significant deterministic seasonality. (Regression outcomes available from the authors in

Supplementary Appendix).

2.3 Further Discussion

We have argued before that the predictability and size of the seasonal variation in house prices pose a

puzzle to models of the housing market relying on a standard asset-market approach. In particular, the

equilibrium condition embedded in most dynamic general-equilibrium models states that the marginal

benefit of housing services should equal the marginal service cost. In Appendix 7.1 we carry out back-

of-envelope calculations to assess the extent to which seasonality in service costs might be driving

seasonality in prices.

The exercise makes clear that a standard asset-pricing approach that relies on perfect arbitrage

leads to implausibly large levels of seasonality in service costs.17 The findings suggest that there are

17Specifically, assuming annualized rent-to-price ratios in the range of 2 through 5 percent, total costs in the winter

should be between 334 and 218 percent of those in the summer. Depreciation and repair costs might be seasonal,

being potentially lower during the summer. But income-tax-adjusted interest rates and property taxes, two major

components of service costs are not seasonal. Since depreciation and repair costs are only part of the total costs, given

the seasonality in other components, the implied seasonality in depreciation and repair costs across seasons in the UK

is even larger. Assuming, quite conservatively, that the aseasonal component accounts for only 50 percent of the service

costs in the summer, the implied ratio of depreciation and repair costs between summers and winters for rent-to-price
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important frictions in the market that impair the ability of investors to gain from seasonal arbitrage

and therefore call for a deviation from the standard asset-pricing approach.18 But perhaps a more

fundamental reason to deviate is the overwhelming evidence that buying and selling houses involve a

non-trivial search process that is not well captured in the standard asset-pricing approach. Further-

more, as is also the case in labor markets (and largely the motivation for the labor-search literature)

the coexistence at any point in time of a stock of vacant houses and a pool of buyers searching for

houses, suggests a lack of immediate market clearing; explicitly modelling the frictions that impair

clearing can help in the understanding of housing market fluctuations. We are of course not the first

to use a search-and-matching framework to study housing markets; see for example early work by

Wheaton (1990), Williams (1995), Krainer (2001), and Albrecht et al. (2007). Our setup, however,

borrows more directly from the labour-search literature, particularly Jovanovic (1979) and Pissarides

(2000); and, as said, we emphasize thick-market effects, which were absent in earlier models of the

housing market.

3 A Search-and-Matching Model for the Housing Market

In this Section we develop a search-and-matching model for the housing market. The basic idea we

formalize in the model is that the suitability of a match between a house and a buyer is specific to the

pair. So, for example, any particular house may match a buyer’s needs or taste perfectly well, while

at the same time being an unsatisfactory match to another buyer. To formalize this idea, we borrow

from the stochastic job matching model pioneered by Jovanovic (1979). (See also Pissarides, 2000.)

There is a unit measure of housing stock. Each period a house can be either matched or unmatched.

A matched house delivers a flow of housing services of quality ε to its owner. The unmatched house

is “for sale” and is owned by a “seller”; sellers receive a flow of asset values u from any unmatched

house they owned.

The economy is populated by a unit measure of infinitely lived agents, who have linear prefer-

ratios in the range of 2 through 5 percent be between 568 and 336 percent. (If the a-seasonal component accounts for

80 percent of the service costs, the corresponding values are 1571 and 989 percent.)
18The need to deviate from the asset-market approach has been acknowledged, in a different context by Stein (1995),

among others. While static in nature, Stein’s model is capable of generating unexpected booms and busts in prices (and

transactions) in a rational-expectation setting. In a dynamic setting with forward-looking agents, however, predictably

large changes in prices cannot be sustained: Expected price increases in the next season will actually be priced in in the

current season.
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ences over housing services and a non-durable consumption good. Each period agents receive a fixed

endowment of the consumption good which they can either consume or use to buy housing services.

An agent can only enjoy housing services from living in one house at a time, i.e. they can only be

“matched” to one house at a time. Agents who are not matched to a house seek to buy one (“buyers”).

Houses and agents are ex-ante identical. The asset flow value u of a house is common to all sellers.

The quality of housing services ε, however, is match-specific, and it captures the quality of a match

between a house and its homeowner. In other words, for any vacant house, the potential housing

services are idiosyncratic to the match between the house and the buyer. Hence, ε is not the type of

house (or of the seller who owns a particular house); there is only one representative house in our

model, but the utility derived from living in the house is idiosyncratic. This is consistent with our

data, which are adjusted for houses’ characteristics, such as size and location, but not for the quality

of a match.19 Since this is the key element of our model, we will first discuss in detail how we model

it.

3.1 Match-specific Quality

The model seeks to embed the notion that in a market with many houses on sale a buyer can find a

house closer to her ideal and hence her willingness to pay increases. We model this idea in the following

way. Assume that a buyer draws the quality of a potential match, ε, from a distribution F (ε, v) ,

with positive support and finite mean, where v denotes the stock of vacant houses, and f (ε, v) is the

corresponding probability density function. In that setting, our notion of a “thick-market” is captured

by the following assumption:

Assumption 1 F (., v0) stochastically dominates F (., v) if and only if v0 > v.

That is, F (., v0) ≤ F (., v) if and only if v0 > v. In words, when the stock of houses v is bigger, a

random draw of match quality ε from F (ε, v) is likely to be higher.20 This assumption implies that

19Neither repeat-sale indices nor hedonic price indexes can control for the quality of a match, which is unobserved to

data collectors.
20One way to interpret our assumption is to use order statistics. Let the potential match quality between a buyer

and any house in the entire housing stock be randomly distributed according to a distribution G (.) , and let g (.) be

the corresponding probability density function. Suppose the buyer samples n units of vacant houses. Let (ε1, ε2, .., εn)

denote an iid random sample from the continuous distribution G (.) . Let ε be the maximum εi; then the distribution

of ε is F (., n) = [G (.)]n , which is decreasing in n. Intuitively, as the sample size increases, the maximum becomes

“stochastically larger.” Assumption 1 thus follows as long as n increases in v.
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a higher v shifts up the expected surplus of quality above any threshold x. That is,

h (x, v) =

Z
x

(ε− x) dF (ε, v) is increasing in v. (1)

To see this, rewrite h (x, v) =
R
x
[1− F (ε, v)] dε using integration by parts, which is increasing in v

from Assumption 1.

We furthermore assume that the stochastic ordering is “uniform” (see Keilson and Sumita, 1982).

Formally,

Assumption 2 1−F (ε,v0)
1−F (ε,v) is increasing in ε for v0 > v.

This holds if the thick-market effect is such that the increase in [1− F (., v)] due to higher v is

increasing in ε.21 Assumption 1 is of course implied by Assumption 2. The first is necessary for our

results, the second is only sufficient, as shall become clear later.

Using integration by parts, the conditional surplus can be expressed as:

E (ε− x | ε > x) =

R
x
[1− F (ε, v)] dε

1− F (x, v)
,

which is increasing in v from Assumption 2.22

Any buyer can sample the entire stock of vacant houses (e.g. by searching online or through

newspapers).23 After sampling the stock, the buyer chooses the house that ranks first and makes

contact with the seller, i.e. we assume that each period a buyer visits only one house–her best

house.24 Given the iid assumption, it follows that in each period the best house is different for each

buyer and, as a result, a house is visited by only one buyer.

3.2 Seasons and Timing

There are two seasons, j = s, w (for summer and winter); each model period is a season, and seasons

alternate. At the beginning of a period, an existing match between a homeowner and his house

21Assumption 2 also follows from the order-statistic setup discussed in the previous footnote.
22Note that first-order stochastic dominance does not guarantee that the conditional surplus is increasing in v, a con-

dition known as mean residual ordering (see Shaked and Shanthikumar, 1994). As shown by Shaked and Shanthikumar

(1994), Assumption 2 is a sufficient condition for this to hold. They also show that Assumption 2 is a necessary and

sufficient condition for harzard rate ordering : f(.,v)
1−F (.,v) ≥

f(.,v0)
1−F (.,v0) for v

0 ≥ v.
23This is different from the stock-flow literature (see e.g. Coles and Smith, 1998), where the stock of old buyers can

only draw from the stock of new vacant houses. We do not draw a distinction here between old and new buyers.
24We discuss an alternative setup in which buyers are allowed to visit more house within a period in Section 5.2.

25



breaks with probability 1 − φj, and the house is for sale. The homeowner whose match has broken

becomes a buyer and seller simultaneously. In our baseline model, the parameter φj is the only (ex

ante) difference between the seasons.25 We focus on periodic steady states with constant vs and vw,

where vj is the stock of vacant (unmatched) houses in season j = s, w. We call bj be the stock of

buyers (unmatched agents) in season j = s, w. Since a match is between one house and one agent,

and there is a unit measure of agents and a unit measure of houses, it is always the case that vj = bj.

The sequence of events is as follows. At the beginning of season j, an existing match between a

homeowner and his house breaks with probability 1 − φj, adding to the stock of vacant houses and

buyers. The buyer observes ε (drawn from F (., vj)) for her best house out of the available stock

vj and meets with the seller of this house. If the transaction goes through, the buyer pays a price

(discussed later) to the seller, and starts enjoying the housing services from the same season j. If the

transaction does not go through, the buyer looks for a house again next season, the seller receives the

asset value flow in season j and puts the house up for sale again next period.26 An agent can hence be

a homeowner, a buyer, a seller, both a seller and a homeowner, and both a buyer and a seller. Also,

sellers may have multiple houses to sell.

3.3 The Homeowner

To study pricing and transaction decisions, we first derive the value of living in a house if a transaction

goes through. The value function for a matched homeowner who lives in a house with quality ε in

season s is thus given by:

Hs (ε) = ε+ βφwHw (ε) + β (1− φw) [V w +Bw] ,

where β ∈ (0, 1) is the discount factor. With probability (1 − φw) he receives a moving shock and

becomes both a buyer and a seller (putting his house up for sale), with continuation value (V w+Bw),

where V j is the value of a vacant house to its seller and Bj is the value of being a buyer in season

j = s, w, defined below. With probability φw he keeps receiving housing services of quality ε and stays

in the house. Notice that the formula for Hw (ε) is perfectly isomorphic to Hs (ε); in the interest of

space we omit here and throughout the paper the corresponding expressions for season w. The value

25This difference could be determined, for example, by the school calendar or summer marriages, among other factors,

exogenous to our model.
26In Section 5.2 we relax the assumption that the outside option for the buyer is simply to rent and buy next season

and allow her the possibility to buy her second-best house. Similarly, we grant sellers the option sell to another buyer

who ranks his house second.
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of being a matched homeowner can be therefore re-written as:

Hs (ε) =
1 + βφw

1− β2φwφs
ε+

β (1− φw) (V w +Bw) + β2φw (1− φs) (V s +Bs)

1− β2φwφs
, (2)

which is strictly increasing in ε.

3.4 Market Equilibrium

In any season j = s, w, the buyer visits a house with match quality ε, drawn from the distribution

F j (ε) ≡ F (ε, vj) . The buyer meets with the seller of this house to “negotiate” a price. We focus on

the case in which the seller also observes ε and derive the results for the case in which he does not

observe ε in the Appendix. If the transaction goes through, the buyer pays the price to the seller,

and starts enjoying the housing services flow in the same season j. If the transaction does not go

through, the buyer receives zero housing services and looks for a house again next season. This will

be the case, for example, if buyers searching for a house pay a rent equal to the utility they derive

from the rented property; what is key is that the rental property is not owned by the same potential

seller with whom the buyer meets. On the seller’s side, when the transaction does not go through, he

receives the asset flow value u in season j and puts the house up for sale again next season. The flow

value u can be interpreted as a net rental income received by the seller. Again, what is key is that

the tenant is not the same potential buyer who visits the house.

Let Ss
v (ε) and Ss

b (ε) be the surplus of a transaction to the seller and to the buyer, respectively,

when the match quality is ε and the price is ps (ε):

Ss
v (ε) ≡ ps (ε)− (u+ βV w) , (3)

Ss
b (ε) ≡ Hs (ε)− ps (ε)− βBw. (4)

Denote the total surplus by:

S (ε) ≡ Ss
v (ε) + Ss

b (ε) = Hs (ε)− [β (Bw + V w) + u] (5)

Since ε is observable and the surplus is transferrable, a transaction goes through as long as the total

surplus Ss (ε) is positive. Given Hs (ε) is increasing in ε, a transaction goes through if ε > εs, where

the reservation εs is defined by:

εs =: Hs (εs) = β (Bw + V w) + u, (6)

and 1− F s (εs) is thus the probability that a transaction is carried out.
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Since the reservation quality εs is related to the total surplus independently of how the surplus is

divided between the buyer and the seller, we postpone the discussion of equilibrium prices to Section

4.3.

3.4.1 Reservation Quality

Observe from (5) and (6) that

Ss (ε) = Hs (ε)−Hs (εs) =
1 + βφw

1− β2φwφs
(ε− εs) , (7)

The value functions for being a seller and a buyer in season s are, respectively:

V s = βV w + u+ [1− F s (εs)]Es [Ss
v (ε) | ε > εs] , (8)

Bs = βBw + [1− F s (εs)]Es [Ss
b (ε) | ε > εs] , (9)

where Es [.] indicates the expectation is taken with respect to the distribution F s (.) . Therefore,

Bs + V s = Hs (εs) + [1− F s (εs)]Es [Ss (ε) | ε > εs] , (10)

which is the sum of the housing value Hs (εs) of the marginal transaction and the expected surplus

from a transaction with quality ε, above the reservation εs. Using the definition of Ss (ε) and εs in

(5) and (6), and the expression in (7), the sum of values is:

Bs + V s = β (Bw + V w) + u+
1 + βφw

1− β2φwφs
[1− F s (εs)]Es [ε− εs | ε > εs] . (11)

Solving this explicitly:

Bs + V s =
u

1− β
+
(1 + βφw)hs (εs) + β (1 + βφs)hw (εw)¡

1− β2
¢ ¡
1− β2φwφs

¢ , (12)

where hs (εs) ≡ h (εs, vs) = [1− F s (εs)]E [ε− εs | ε > εs] is the expected surplus of quality above

threshold εs as described in (1). Using the definition of εs in (6) and expression (2), we derive the

reservation quality as:

1 + βφw

1− β2φwφs
εs = u− β2φw (1− φs)

1− β2φwφs
(Bs + V s) +

1− β2φs

1− β2φwφs
βφw (Bw + V w) . (13)

The equilibrium values εs, εw, (Bs + V s) , and (Bw + V w) in (12) and (13) depend on equilibrium

vacancies vs and vw, which we now derive.

28



3.4.2 Stock of vacant houses

In any season s, the law of motion for the stock of vacant houses (and for the stock of buyers) is

vs = (1− φs) [vw (1− Fw (εw)) + 1− vw] + vwFw (εw)

where the first term includes houses that received a moving shock this season and the second term

comprises vacant houses from last period that did not find a buyer. The expression simplifies to

vs = 1− φs + vwFw (εw)φs (14)

that is, in equilibrium vs depends on the equilibrium reservation quality εw and on the distribution

Fw (.).

So the equilibrium quantities (Bs + V s, Bw + V w, εs, εw, vs, vw) jointly satisfy equations (12),(13),

and (14). They are independent of how the total surplus is shared across buyers and sellers, that

is independent of the exact price-setting mechanism. We first discuss seasonality in vacancies and

transactions before we specify the particular price-setting mechanism.

4 Model-generated Seasonality

The driver for seasonality in the baseline model is the higher moving probability in the summer:

1− φs > 1− φw.

4.1 Seasonality in Vacancies

Using (14), the stock of vacant houses in season s is given by:

vs =
1− φs + φsFw (εw) (1− φw)

1− F s (εs)Fw (εw)φsφw
. (15)

(The expression for vw is correspondingly isomorphic). The ex ante higher probability of moving in

the summer (1−φs > 1−φw) clearly has a direct positive effect on vs, and, as it turns out, this effect

also dominates quantitatively when we calibrate the model to match the average duration of stay in

a house.27 Thus, we have vs > vw.

27More specifically, the numerator is a weighted average of 1 and Fw (εw) (1− φw) with 1 − φs being the weight

assigned to 1. Since Fw (εw) (1− φw) < 1, higher weight on 1, that is, higher weight (1− φs) leads to vs > vw; what is

crucial to note is that Fw (εw) (1− φw) is virtually aseasonal because there are two opposite effects: Fw (εw) > F s (εs)

and (1− φw) < (1− φs).
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Given vs > vw, the thick-market effect implies hs (εs) > hw (εw) as in (1). It then follows from

(12) that (Bs + V s) > (Bw + V w) , and finally from (6) that Hs (εs) < Hw (εw). In other words, the

housing value of the marginal transaction is lower in the hot season. Note that though the marginal

transaction has lower housing value in the summer, the average transaction will still have higher value

in the summer given hs (εs) > hw (εw) .

4.2 Seasonality in Transactions

The number of transactions in equilibrium in season s is given by:

Qs = vs (1− F s (εs)) . (16)

(An isomorphic expression holds for Qw). Seasonality in transactions stems from three sources. First,

a bigger stock of vacancies in the summer, vs > vw, increases transactions in the summer. Second,

the thick-market effect shifts up the probability of a transaction for any given εs. The final effect is

due to fact that the seasonality in sellers’ and buyers’ outside options tends to reduce the cutoff εs in

the hot season. This is because the outside option in the hot season s is linked to the sum of values

in the winter season: Bw + V w. To see this negative effect more explicitly, rewrite (13) as

1 + βφw

1− β2φwφs
εs

= u+
βφw (1− β) (1 + βφs)

1− β2φwφs
(V w +Bw) +

β2φw (1− φs)

1− β2φwφs
(V w +Bw − V s −Bs) , (17)

which makes clear that (Bw + V w) > (Bs + V s) has a negative effect on εs/εw. Intuitively, the outside

option for both the buyer and the seller in the hot season is to wait and transact in the cold season.

This makes both buyers and sellers less demanding in the hot season, yielding a larger number of

transactions. In other words, the “counter-seasonality” in outside options increases the seasonality in

transactions.

It is important to note the amplification mechanism present in the model: For any given level of

seasonality in vacancies, the thick-market effect through the first-order stochastic dominance of F s (.)

over Fw (.) can generate higher seasonality in transactions. We can summarize the result as follows:

Amplification: Transactions are more seasonal than vacancies.

Note, finally, that the extent of seasonality in transactions is decreasing in the rental flow u.

This follows from the fact that the extent of seasonality of outside options for buyers and sellers is

decreasing in u. Hence, as u increases, transactions become less seasonal.
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4.3 Seasonality in Prices

As discussed earlier, results on seasonality in vacancies and transactions are independent of the exact

price-setting mechanism. We now consider the case in which prices are determined by Nash bargaining.

The price maximizes the Nash product:

max
ps(ε)

(Ss
v (ε))

θ (Ss
b (ε))

1−θ s.t. Ss
v (ε) , S

s
b (ε) > 0;

where θ denotes the bargaining power of the seller. The solution implies

Ss
v (ε)

Ss
b (ε)

=
θ

1− θ
, (18)

which simplifies to (see Appendix):

ps (ε) = θHs (ε) + (1− θ)
u

1− β
, (19)

a weighted average of the housing value for the matched homeowner and the present discounted

value of the flow value u. In other words, the price guarantees the seller the proceeds from the

alternative usage of the house ( u
1−β ) and a fraction θ of the social surplus generated by the transactionh

Hs (ε)− u
1−β

i
.

The average price of a transaction is:

P s ≡ E [ps (ε) | ε > εs] = (1− θ)
u

1− β
+ θE [Hs (ε) | ε > εs] , (20)

which is increasing in the conditional expected surplus of housing services for transactions exceeding

the reservation εs. Since the flow value u is aseasonal, housing prices are seasonal if θ > 0 and the

surplus to the seller is seasonal. The next result follows:

Seasonality in Prices When sellers have some bargaining power ( θ > 0), prices are seasonal. The

extent of seasonality is increasing in θ.

To see this, note that from (20) the equilibrium price P s is the discounted sum of the flow value

( u
1−β ) plus a positive surplus from the sale. The surplus Es

h³
Hs (ε)− u

1−β

´
| ε > εs

i
is seasonal.

Given that θ affects P s only through the equilibrium vacancies (recall the reservation quality εs is

independent of θ), it follows that the extent of seasonality in prices is increasing in θ. Since (20)

holds independently of the steady state equation for vs and vw, this result on seasonality in prices is

independent of what drives vs > vw. Note also that the extent of seasonality in prices is decreasing
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in the flow value u. This is because the extent of seasonality in prices decreases as the aseasonal

component u increases.

The price is higher in the hot season if the average housing value of transacted houses is higher,

i.e. if Es [Hs (ε) | ε > εs] > Es [Hw (ε) | ε > εw]. In words, if the average housing value goes up in the

summer (and hence the total surplus of a transaction), then sellers can obtain a higher surplus in the

summer. Recall from (7) that the average housing value of transacted houses is the sum of two terms:

Es [Hs (ε) | ε > εs] = Hs (εs) +
1 + βφw

1− β2φwφs
Es [ε− εs | ε > εs] . (21)

The first term, Hs (ss) , the housing value of the marginal transaction, is lower in the summer and

hence this term reduces the average housing valueEs [Hs (ε) | ε > εs] in the summer. The second term,

instead, increases the average housing value in the summer for three reasons. First, by Assumption

2, the conditional surplus Es [ε− x | ε > x] is higher in the summer for any cutoff x. Furthermore,

since εs < εw, Es [ε− εs | ε > εs] is unambiguously higher in the summer. Finally, since φw > φs, this

strengthens the positive effect from the conditional surplus. For reasonable parametrizations, β2φwφs

is close to 1 and hence the second term dominates; as a result the average housing value and hence

average prices are higher in the summer.

4.4 Quantitative Results

4.4.1 Parameter values

We now calibrate the model to study its quantitative implications. We assume the distribution of

match-quality F (ε, v) follows a uniform distribution on [0, v] . When vs > vw, this implies both first-

order stochastic ordering F s (.) 6 Fw (.), andmean residual orderingEs [ε− x | ε > x] > Ew [ε− x | ε > x] .

We set the discount factor β so that the implied annual real interest rate is 6 percent. We calibrate

the average probability of staying in the house φ = (φs + φw) /2 to match survey data on the average

duration of stay in a given house, which in the model is given by 1
1−φ . The median duration in the US

from 1993 through 2005, according to the American Housing Survey, was 18 semesters; the median

duration in the UK during this period, according to the Survey of English Housing was 26 semesters.

The implied (average) moving probabilities (1 − φ) per semester are hence 0.056 and 0.039 for the

US and the UK, respectively. These two surveys also report the main reasons for moving. Around 30

percent of the respondents report that living closer to work or to their children’s school and getting

married are the main reasons for moving.28 These factors are of course not entirely exogenous, but
28Using monthly data on marriages from 1980 through 2003 for the U.K. and the U.S., we find that marriages are
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they can carry a considerably exogenous component; in particular, the school calendar is certainly

exogenous to housing market movements (see Tucker, Long, and Marx (1995)’s study of seasonality

in children’s residential mobility). In all, the survey evidence supports our working hypothesis that

the ex ante probability to move is higher in the summer (or, equivalently the probability to stay is

higher in the winter).

Because there is no direct data on the ex-ante ratio of moving probabilities (1− φs) / (1− φw), we

use a range of (1− φs) / (1− φw) from 1.1 to 1.5. This implies a difference in staying probabilities

between seasons, φw − φs, ranging from 0.004 to 0.015 in the UK and 0.005 to 0.022 in the US

One way to pin down the level of (1− φs) / (1− φw) is to use data on vacancy seasonality, which is

available for the US from the US Census Bureau (for the UK, data on vacancies only exist at yearly

frequency). Seasonality in vacancies in the US was 31 percent during 1991-2007.29 As will become

clear from the results displayed below, the ratio that exactly matches seasonality in US vacancies is:

(1− φs) / (1− φw) = 1.28. The reader may want to view this as a deep parameter and potentially use

it also for the UK, under the assumption that the extent of seasonality in ex-ante moving probabilities

does not vary across countries.

We calibrate the asset flow value, u, to match the implied average (de-seasonalized) rent-to-price

ratio received by the seller. In the UK, the average gross rent-to-price ratio is roughly around 5 percent

per year, according to Global Property Guide.30 For the US, Davis et al. (2008) argue that the ratio

was around 5 percent prior to 1995 when it started falling, reaching 3.5 percent by 2005. The u/p

ratio in our model corresponds to the net rental flow received by the seller after paying taxes and

other relevant costs; it is accordingly lower than the gross rent-to-price ratio. As a benchmark, we

choose u so that the net rent-to-price ratio is equal to 3 percent per year (equivalent to paying a

40 percent income tax on rent).31 To do so, we use the equilibrium equations in the model without

highly seasonal in both countries, with most marriages taking place between April and September. (The difference in

annualized growth rates of marriages between the broadly defined “summer” and “winter” semesters are 200 percent

in the U.S. and 400 percent in the U.K.). Results are available from the authors.
29As a measure of seasonality we use, as before, the difference in annualized growth rates in vacancies between broadly

defined summers and winters. The difference is statistically significant at standard levels. Vacancy is computed as the

sum of houses for sale at the beginning of the season relative to the stock of houses.
30Data for the U.K. and other European countries can be found in http://www.globalpropertyguide.com/Europe/United-

Kingdom/price-rent-ratio
31In principle, other costs can trim down the 3-percent u/p ratio, including maintenance costs, and inefficiencies in

the rental market that lead to a higher wedge between what the tenant pays and what the landlord receives; also, it

might not be possible to rent the house immediately, leading to lower average flows u. Note that lower values of u/p

lead to even higher seasonality in prices and transactions for any given level of seasonality in moving shocks. In that
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seasonality, that is, the model in which φs = φw = φ. From (20) and (13), the average price and the

reservation quality εd in the absence of seasonality in moving probabilities are (see Appendix 7.2.2):

P =
u

1− β
+ θ

£
1− βF

¡
εd
¢¤
E
£
ε− εd | ε > εd

¤
(1− β) (1− βφ)

, (22)

and
εd

1− βφ
=

u+ βφ
1−βφ

R
εd
εdF (ε)

1− βφF (εd)
. (23)

To obtain a calibrated value for u, we substitute u = 0.015 · p for θ = 1/2 (when sellers and buyers

have the same bargaining power) and find the equilibrium value of p given the calibrated values for β

and F (.) . We then use the implied value of u = 0.015 · p. as a parameter.32

Finally, in reporting the results for prices, we vary θ, the seller’s bargaining power parameter from

0 to 1.

4.4.2 Model-Generated Seasonality

Given the calibrated values of u, β, and φ discussed above, Table 8 displays the extent of seasonality

in vacancies and transactions generated by the model for different values of the ratio of moving

probabilities (recall that seasonality in vacancies and transactions is independent of the bargaining

power of the seller, θ). As throughout the paper, our metric for seasonality is the annualized difference

in growth rates between the two seasons. Column (1) shows the ratio of moving probabilities. Columns

(2) and (5) show the implied difference in moving probabilities between the two seasons for the US

and the UK Recall that, because the average stay in a house differs across the two countries, a given

ratio can imply different values for φw − φs, as the average probability of stay φ differs. Columns (3)

and (4) show the extent of seasonality in vacancies for an average stay of 9 years (as in the US) and

Columns (6) and (7) show the corresponding figures for an average stay of 13 years (as in the UK)

The first point to note is the large amplification mechanism present in the model: For any given

level of seasonality in vacancies, seasonality in transactions is at least four times bigger. Second, the

Table shows that small absolute differences in the probability to stay between the two seasons can

induce large seasonality in vacancies and transactions.

Third, if we constrain ourselves to 1−φs
1−φw = 1.28 to match the data on vacancies for the US, this

implies a level of seasonality in transactions of about 135 percent in the US, very close to the actual

sense, lower u/p-ratios make it “easier” for our model to generate seasonality in prices.
32We also calibrated the model using different values of u for different θ (instead of setting θ = 1/2), keeping the ratio

u/p constant. Results are not significantly different under this procedure, but the comparability of results for different

values of θ becomes less clear, since u is not kept fixed.
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148 percent observed in the data. For the UK, ideally we would like to recalibrate the ratio 1−φs
1−φw to

match its seasonality in vacancies; however, as said the data are only available at yearly frequency. If

we apply the the same ratio 1−φs
1−φw = 1.28 implied from US data, this yields a seasonality in vacancies

of 29 percent for the UK (the difference is simply due to the longer duration of stay in the UK). This

in turn implies a degree of seasonality in transactions of 131 percent, which is certainly above the 108

percent observed for the country as a whole; to give credit to the model, however, note that seasonality

in transactions is systematically lower when the average stay is higher (that is, according to the model,

it should be systematically lower in the UK than in the US), a feature that goes qualitatively in the

right direction. This is because a given ratio of moving probabilities implies a lower difference in

absolute moving probabilities (given that the average is lower). Intuitively, for given seasonality in

shocks, the effect is smaller if people are likely to stay longer in their houses.

Table 8. Seasonality in vacancies and transactions for different 1−φs
1−φw .

Implied seasonal 
difference  in 

moving 
probabilities    

(2)

Vacancies  
(3)

Transactions 
(4)

Implied seasonal 
difference  in 

moving 
probabilities     

(5)

Vacancies 
(6)

Transactions 
(7)

1.10 0.005 12% 49% 0.004 11% 48%
1.20 0.010 23% 94% 0.007 21% 93%
1.30 0.014 33% 136% 0.010 30% 133%
1.40 0.019 42% 174% 0.013 38% 171%
1.50 0.022 51% 211% 0.015 45% 207%

Average moving probability:  0.0385      
Stay of 13 years (U.K.)

Average moving probability:  0.0556      
Stay of 9 years (U.S.)

Ratio of 
moving 

probabilities 
between 
seasons     

(1)

Seasonality in prices, as expressed earlier, depends crucially on the bargaining power of the seller θ.

Figure 8 plots the model-generated seasonality in prices for different θ and 1−φs
1−φw assuming an average

stay of 13 years (UK) and Figure 9 shows the corresponding plot for an average stay of 9 years

(US). As illustrated, seasonality increases with both θ and 1−φs
1−φw . If, as before, we take

1−φs
1−φw = 1.28

as given, the exercise implies that to match real-price seasonality in the UK (of about 6 percent,

averaging between DCLG and Halifax), the bargaining power coefficient θ needs to be around 75

percent. The corresponding value for the US as a whole, with real-price seasonality just above 3

percent, is 25 percent. For US cities, as noted in Table 6, seasonality is comparable to that in the UK

(with an average of 5.7 percent for real prices, using the Case-Shiller composite of cities); the model

will accordingly imply much higher bargaining power for sellers in cities in the quantitative exercise.

The question is of course whether large differences in bargaining power across the two countries as

a whole are tenable. There are at least two reasons why we think this is a reasonable characterization.

First, population density in the UK (246 inhabitants per km2) is 700 percent higher than in the US
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(31 inhabitants per km2), making land significantly scarcer relative to population in the UK and

potentially conferring home owners more power in price setting. Second, anecdotal evidence suggests

that land use regulations are particularly stringent in the UK. Indeed in its international comparison

of housing markets, the OECD Economic Outlook 2005 highlights the “complex and inefficient local

zoning regulations and slow authorization process” in the UK economy, which the report cites as one

of the reasons for the remarkable rigidity of housing supply.33 Restrictions reinforce the market power

of owners by reducing the supply of houses.

Figure 8: Model Generated Seasonality for different θ and 1−φs
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33OECD Economic Outlook 2005, Number 78, chapter III, available at

http://www.oecd.org/dataoecd/41/56/35756053.pdf
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5 Remarks on the Model

5.1 Efficiency Properties of the model

This Section discusses the efficiency of equilibrium in the decentralized economy. For a complete

derivation, see Appendix 7.3. The planner observes the match quality ε and is subject to the same

exogenous moving shocks that hit the decentralized economy. The key difference between the planner’s

solution and the decentralized solution is that the former internalizes the thick-market effect. It is

evident that the equilibrium level of transactions in the decentralized economy is not socially efficient

because the optimal decision rules of buyers and sellers takes the stock of houses in each period as given,

thereby ignoring the effects of their decisions on the stock of vacant houses in the following periods.

The thick-market effect generates a negative externality that makes the number of transactions in the

decentralized economy inefficiently high for any given stock of vacant houses (transacting agents do

not take into account that, by waiting, they can thicken the market in the following period and hence

increase the overall quality of matches).

Though the efficient level of seasonality in housing markets will depend on the exact distribution

of match qualities F (ε, v), under most scenarios, the solution of the planner will involve some positive

level of seasonality. In other words, seasonality can be efficient. Indeed, in some circumstances, a

planner may be willing to completely shut down the market in the cold season, to fully seize the

benefits of a thick market.34 This outcome is not as unlikely as one may a priori think. For example,

the academic market for junior economists is extremely seasonal.35 Extreme seasonality of course relies

on the specification of utility–here we simply assume linear preferences; if agents have sufficiently

concave utility functions (and intertemporal substitution across seasons is extremely low), then the

planner may want to smooth seasonal fluctuations. For housing services this concern of smoothing

consumption across two seasons in principle should not be too strong, given that the benefit of a

better match can be long lasting (9 to 13 years in the two countries we analyze).

5.2 Model Assumptions

It is of interest to discuss three assumptions in the model. First, we assume that each buyer visits

only one house and each house is only visited by one buyer in a season. We do this for simplicity so

34The same will happen in the decentralized economy when the ratio (1− φs) / (1− φw) is extremely high, e.g. the

required ratio is larger than 10 for the calibrated parametrs we use.
35And it is perhaps highly efficient, given that it has been designed by our well-trained senior economists.
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that we can focus on the comparison across seasons. One might worry that if the outside option for

a buyer is not to rent and to buy next season but rather to buy her second-best house, that might

affect the results on price seasonality.36 This is, however, not the case here. Note first that the seller’s

outside option is also to sell to another buyer who ranks his house second. More formally, the surplus

to the buyer if the transaction of the best house goes through is:

S̃s
b (ε) ≡ Hs (ε)− p̃s (ε)− {Es [Ss

b (η)] + βBw} , (24)

where Es [Ss
b (η)] is the equilibrium expected surplus (as defined in (4)) for the buyer if she goes for

his second-best transaction with random quality η. By definition Ss
b (η) > 0 (it equals zero when the

draw for the second-best house η is too low). Compared to (4), the outside option for the buyer is

higher because of the possibility of buying her second-best house. Similarly, the surplus to the seller

if the transaction of the best house goes through is:

S̃s
v (ε) ≡ p̃s (ε)− {βV w + u+Es [Ss

v (η)]} . (25)

The key is that both buyer and seller take their outside options as given when bargaining for the

transaction concerning the best house. The price p̃s (ε) maximizes the Nash product with the surplus

terms S̃s
b (ε) and S̃s

v (ε) . The solution implies (1− θ) S̃s
v (ε) = θS̃s

b (ε), but the Nash Bargaining for

the second-best house implies that (1− θ)Es [Ss
v (η)] = θEs [Ss

b (η)] , so we have

(1− θ) [p̃s (ε)− (βV w + u)] = θ [Hs (ε)− p̃s (ε)− βBw] ,

which has the same form as (18); thus it follows that the equilibrium price equation for p̃s (ε) is

identical to (19)–though the actual level of prices is different, as the cutoff match-quality is different.

But our qualitative results on seasonality in prices continue to hold as before, and quantitatively

they can be even stronger. Recall that in the baseline model we find that seasonality in the sum of

buyer’s and seller’s values tends to reduce the quality of marginal transactions in the summer relative

to winter because the outside option in the hot season is linked to the sum of values in the winter

season: Bw + V w. Intuitively, allowing the second-best house as an outside option in the bargaining

could mitigate this effect and hence strengthen seasonality in prices. To see this, the cutoff quality

ε̃s is now defined by: Hs (ε̃s) = β (Bw + V w) + u+ Es [Ss (η)] . Compared to (6), the option of using

36 Concretely, one might argue that the seller of the best house can now only capture part of the surplus of the buyer

in excess of the buyer’s second-best house. In this case, for the surplus (and hence prices) to be higher in the summer

one would need higher dispersion of match quality in the summer. This intuition is, however, incomplete. Indeed, one

can show that higher prices are obtained independently of the level of dispersion.
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the second-best house as outside option shows up as an additional term, Es [Ss (η)] , which is higher

in the hot season.

A second simplification in the model is that buying and selling houses involves no transaction costs.

This assumption is easy to dispense with. Let τ̄ jb and τ̄ jv be the transaction costs associated with the

purchase and sale of a house in season j. Costs can be seasonal because moving costs and repairing

costs could vary across seasons.37 The previous definitions of surpluses are modified by replacing price

pj with pj − τ̄ jv in (3) and with pj + τ̄ jb in (4). The value functions (9) and (8), and the Nash solution

(18) continue to hold as before. So, the price equation becomes:

ps (ε)− τ̄ sv = θ [Hs (ε)− τ̄ sv − τ̄ sb] + (1− θ)
u

1− β
, (26)

which states that the net price received by a seller is a weighted average of housing value net of total

transaction costs and the present discounted value of the flow value u. And the reservation equation

becomes:

εs =: Hs (εs)−
¡
τ̄ jb + τ̄ jv

¢
= β (Bw + V w) + u. (27)

The extent of seasonality in transactions depends only on total costs (τ̄ jb+ τ̄ jv) while the extent of

seasonality in prices depends on the distribution of costs between buyers and sellers. One interesting

result is that higher winter costs do not always result in lower winter prices. Indeed, if most of the

transaction costs fall on the seller, prices could actually be higher in the winter for θ sufficiently

high. On the other hand, if most of the transaction costs are bared by the buyer, then seasonal

transaction costs could potentially be the driver of seasonality in vacancies (and hence transactions and

prices). As said, our theoretical results on seasonality in prices and transactions follow from vs > vw,

independently of the particular trigger (that is, independently of whether it is seasonal transaction

costs for the buyer or seasonal moving shocks; empirically, they are observationally equivalent, as they

both lead to seasonality in vacancies, which we match in the quantitative exercise38).

Finally, the model presented so far assumed observable match-quality. In the Appendix we derive

the case in which the seller cannot observe the match quality ε. We model the seller’s power θ in this

37Repair costs (both for the seller who’s trying to make the house more attractive and for the buyer who wants

to adapt it before moving in) may be smaller in the summer because good weather and the opportunity cost of time

(assuming vacation is taken in the summer) are important inputs in construction). Moving costs, similarly, might be

lower during vacation (because of both job and school holidays).
38Furthermore, empirically, we are unaware of data on direct measures of moving costs or propensities to move, much

less so at higher frequency.
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case as the probability that the seller makes a take-it-or-leave-it offer; 1 − θ is then the probability

that the buyer makes a take-it-or-leave-it offer upon meeting.39 When ε is observable, a transaction

goes through whenever the total surplus is positive. However, when the seller does not observe ε, a

transaction goes through only when the surplus to the buyer is positive. Since the seller does not

observe ε, the seller offers a price that is independent of the level of ε, which will be too high for some

buyers whose ε0s are not sufficiently high (but whose ε would have resulted in a transaction if ε were

observable to the seller). Therefore, because of the asymmetric information, the match is privately

efficient only when the buyer is making a price offer. We show that our results continue to hold;

the only qualitative difference is that the extent of seasonality in transactions is now decreasing in θ.

This is because when ε is unobservable there is a second channel affecting a seller’s surplus and hence

the seasonality of reservation quality, which is opposite to the effects from the seasonality of outside

option described above: When the seller is making a price offer, the surplus of the seller is higher

in the hot season and hence sellers are more demanding and less willing to transact, which reduces

the seasonality of transactions; the higher the seller’s power, θ, the more demanding they are and the

lower is the seasonality in transaction (when θ = 0, this effect vanishes).

6 Concluding Remarks

This paper documents seasonal booms and busts in housing markets and argues that the predictability

and high extent of seasonality in house prices cannot be quantitatively reconciled with standard asset-

pricing equilibrium conditions embedded in standard models.

To explain the empirical patterns, the paper presents a search-and-matching model that can quan-

titatively account for the seasonal fluctuations in prices and transactions. As a by-product the model

sheds new light on interesting mechanisms governing fluctuations in housing markets that can poten-

tially be useful in a study of lower-frequency movements. In particular, the model highlights the roles

of thick-market effects as an important determinant of the extent of housing markets’ fluctuations.

We study the efficiency properties of the model and find that thick-market effects may lead to

an inefficiently low level of seasonality in the decentralized economy. Finally, we discuss alternative

settings, allowing for transaction costs, unobservable match qualities, and different outside options.

39Samuelson (1984) shows that in bargaining between informed and uninformed agents, the optimal mechanism is

for the uninformed agent to make a “take-it-or-leave” offer. The same holds for the informed agent if it is optimal for

him to make an offer at all.
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In future work we plan to adapt the model presented in the paper to study lower frequency

movements in the housing markets and potentially.
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7 Appendix

7.1 A back-of-the-envelope calculation

We argued before that the predictability and size of the seasonal variation in housing prices in some

markets pose a puzzle to models of the housing market relying on standard asset-market equilibrium

conditions. In particular, the equilibrium condition embedded in most dynamic general-equilibrium

models states that the marginal benefit of housing services should equal the marginal cost. Following

Poterba (1984) the asset-market equilibrium conditions for any seasons j = s (summer), w (winter)

at time t is:40

dt+1,j0 + (pt+1,j0 − pt,j) = ct,j · pt,j (28)

where j0 is the corresponding season at time t + 1, pt,j and dt,j are the real asset price and rental

price of housing services, respectively; ct,j · pt,j is the real gross (gross of capital gains) t−period cost

of housing services of a house with real price pt,j; and ct,j is the sum of after-tax depreciation, repair

costs, property taxes, mortgage interest payments, and the opportunity cost of housing equity. Note

that the formula assumes away risk (and hence no expectation terms are included); this is appropriate

in this context because we are focusing on a “predictable” variation of prices.41 As in Poterba (1984),

we make the following simplifying assumptions so that service-cost rates are a fixed proportion of

the property price, though still potentially different across seasons (ct,j = ct+2,j = cj, j = s, w): 1)

Depreciation takes place at rate δj, j = s, w, constant for a given season, and the house requires

maintenance and repair expenditures equal to a fraction κj, j = s, w, also constant for a given season.

2) The income-tax-adjusted real interest rate and the marginal property tax rates (for given real

property prices) are constant over time, though also potentially different across seasons; they are

denoted, respectively as rj and τ j, j = s, w (in the data, as seen, they are actually constant across

seasons; we come back to this point below).42 This yields cj = δj + κj + rj + τ j, for j = s, w.

Subtracting (28) from the corresponding expression in the following season and using the condition

40See also Mankiw and Weil (1989) and Muellbauer and Murphy (1997), among others.
41Note that Poterba’s formula also implicitly assumes linear preferences and hence perfect intertemporal substitution.

This is a good assumption in the context of seasonality, given that substitution across semesters (or relatively short

periods of time) should in principle be quite high.
42We implicitly assume the property-price brackets for given marginal rates are adjusted by inflation rate, though

strictly this is not the case (Poterba, 1984): inflation can effectively reduce the cost of homeownership. This, however,

should not alter the conclusions concerning seasonal patterns emphasized here. As in Poterba (1984) we also assume

that the opportunity cost of funds equals the cost of borrowing.
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that there is no seasonality in rents (dw ≈ ds), we obtain:

pt+1,s − pt,w
pt,w

− pt,w − pt−1,s
pt−1,s

pt−1,s
pt,w

= cw − cs ·
pt−1,s
pt,w

(29)

Using DCLG-based results, real differences in house price growth rates for the whole of the UK are
ps−pw
pw

' 8.25%, pw−ps
ps

' 1.06%,43 the left-hand side of (29) equals 7.2% ≈ 8.25% − 1.06% · 1
1.0106

.

Therefore, cw
cs
= 0.072

cs
+ 1

1.0106
. The value of cs can be pinned-down from equation (28) with j = s,

depending on the actual rent-to-price ratios in the economy. In Table A1, we summarize the extent of

seasonality in service costs cw
cs
implied by the asset-market equilibrium conditions, for different values

of d/p (and hence different values of cs = dw
ps
+ pw−ps

ps
= dw

ps
+ 0.0106).

Table A1: Ratio of Winter-To-Summer Cost Rates

(annualized) d/p Ratio Relative winter cost rates cw
cs

1.0%
2.0%
3.0%
4.0%
5.0%
6.0%

448%
334%
276%
241%
218%
201%

As the Table illustrates, a remarkable amount of seasonality in service costs is needed to explain

the differences in housing price inflation across seasons. Specifically, assuming annualized rent-to-price

ratios in the range of 2 through 5 percent, total costs in the winter should be between 334 and 218

percent of those in the summer. Depreciation and repair costs (δj + κj) might be seasonal, being

potentially lower during the summer.44 But income-tax-adjusted interest rates and property taxes

(rj + τ j), two major components of service costs are not seasonal. Since depreciation and repair costs

are only part of the total costs, given the seasonality in other components, the implied seasonality in

depreciation and repair costs across seasons in the UK is even larger. Assuming, quite conservatively,

that the a-seasonal component (rj + τ j = r + τ) accounts for only 50 percent of the service costs

in the summer (r + τ = 0.5cs), then, the formula for relative costs cw
cs
= δw+κw+0.5cs

δs+κs+0.5cs
implies that

the ratio of depreciation and repair costs between summers and winters is δw+κw
δs+κs

= 2 cw
cs
− 1.45 For

43In the empirical Section we computed growth rates using difference in logs; the numbers are very close using
pt+1,j0−pt,j

pt,j
instead. We use annualized rates as in the text; using semester rates of course leads to the same results.

44Good weather can help with external repairs and owners’ vacation might reduce the opportunity cost of time–

though it is key here that leisure is not too valuable for the owners.
45Call λ the aseasonal component as a fraction of the summer service cost rate: r + τ = λcs, λ ∈ (0, 1) (and hence

δs + κs = (1 − λ)cs). Then: cw
cs
= δw+κw+λcs

δs+κs+λcs
= δw+κw+λcs

cs
. Or cw = δw + κw + λcs. Hence: cw−λvs

(1−λ)cs =
δw+κw
(1−λ)cs ; that

is δw+κwδs+κs
= cw

(1−λ)cs −
λ
1−λ , which is increasing in λ for cw

cs
> 1.
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rent-to-price ratios in the range of 2 through 5 percent, depreciation and maintenance costs in the

winter should be between 568 and 336 percent of those in the summer. (If the a-seasonal component

(r+ τ) accounts for 80 percent of the service costs (r+ τ = 0.8cs), the corresponding values are 1571

and 989 percent). By any metric, these figures seem extremely large and suggest that a deviation

from the simple asset-pricing equation is called for. Similar calculations can be performed for different

regions in the US; as expressed before, though the extent of price seasonality for the US as a whole

is lower than in the UK, seasonality in several US cities is comparable to that in the UK and would

therefore also imply large seasonality in service costs, according to condition (28).

7.2 Derivation for the model with observable value

7.2.1 Solving for prices

To derive ps (ε) in (19), use the Nash solution (18),

[ps (ε)− βV w − u] (1− θ) = [Hs (ε)− ps (ε)− βBw] θ,

so

ps (ε) = θHs (ε) + β [(1− θ)V w − θBw] + (1− θ)u. (30)

Using the value functions (8) and (9),

(1− θ)V s − θBs = β [(1− θ)V w − θBw] + (1− θ)u

solving out explicitly,

(1− θ)V s − θBs =
(1− θ)u

1− β

substitute into (30) to obtain (19).

7.2.2 The model without seasons

The value functions for the model without seasons are identical to those in the model with seasonality

without the superscripts s and w. It can be shown that the equilibrium equations are also identical

by simply setting φs = φw. Using (7), (12) and (20) to express the average price as:

P s =
u

1− β
+ θ

"
β (1 + βφs)hw (εw) +

¡
1− β2F s (εs)

¢
(1 + βφw)E [ε− εs | ε > εs]¡

1− β2
¢ ¡
1− β2φwφs

¢ #
, (31)

Using (13),
ε

1− βφ
= u+

βφ

1− βφ
(1− β) (V +B)
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and B + V from (12),

B + V =
u

1− β
+

1

1− β2

½
1− F

1− βφ
E [ε̃− ε | ε̃ > ε] + β

1− F

1− βφ
E [ε̃− ε | ε̃ > ε]

¾
which reduces to:

B + V =
u

1− β
+

1− F (ε)

(1− β) (1− βφ)
E (ε̃− ε | ε̃ > ε) .

It follows that

ε = u+
βφ

1− βφ
[1− F (ε)]E (ε̃− ε | ε̃ > ε) ,

and the law of motion for vacancy implies:

v =
1− φ

1− φF (ε)
.

7.3 Analytical derivations of the planner’s solution

The planner observes the match quality ε and is subject to the same exogenous moving shocks that

hit the decentralized economy. The interesting comparison is the level of reservation quality achieved

by the planner with the corresponding level in the decentralized economy. To spell out the planner’s

problem, we follow Pissarides (2000) and assume that in any period t the planner takes as given the

expected value of the housing utility service per person in period t (before he optimizes), which we

denote by qt−1, as well as the beginning of period’s stock of vacant houses, vt. Thus, taking as given the

initial levels q−1 and v0, and the sequence {φt}t=0..., which alternates between φj and φj
0
for seasons

j, j0 = s, w, the planner’s problem is to choose a sequence of {εt}t=0,.. to maximize

U ({εt, qt, vt}t=0...) ≡
∞X
t=0

βt [qt + uvtF (εt; vt)] (32)

subject to the law of motion for qt :

qt = φtqt−1 + vt

Z ε̄(vt)

εt

xdF (x; vt) , (33)

the law of motion for vt (which is similar to the one in the decentralized economy):

vt+1 = vtφt+1F (εt; vt) + 1− φt+1, (34)

and the inequality constraint:

0 6 εt 6 ε̄ (vt) . (35)
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The planner faces two types of trade-offs when deciding the optimal reservation quality εt: a static

one and a dynamic one. The static trade-off stems from the comparison of utility values generated

by occupied houses and vacant houses in period t in the objective function (32). The utility per

person generated from vacant houses is the rental income per person, captured by uvtF (εt) . The

utility generated by occupied houses in period t is captured by qt, the expected housing utility service

per person conditional on the reservation value εt set by the planner in period t. The utility qt,

which follows the law of motion (33), is the sum of the pre-existing expected housing utility qt−1 that

survives the moving shock and the expected housing utility from the new matches. By increasing εt,

the expected housing value qt decreases, while the utility generated by vacant houses increases (since

F (εt) increases). The dynamic trade-off operates through the law of motion for the stock of vacant

houses in (34). By increasing εt (which in turn decreases qt), the number of transactions in the current

period decreases; this leads to more vacant houses in the following period, vt+1, and consequently to

a thicker market in the next period. We first derive the case where the inequality constraints are not

binding, i.e. markets are open in both the cold and hot seasons.

The Planner’s solution when the housing market is open in all seasons

Because the sequence {φt}t=0,...alternates between φj and φj
0
for seasons j, j0 = s, w, the planner’s

problem can be written recursively. Taking (qt−1, vt) , and {φt}t=0,.. as given, and provided that the

solution is interior, that is, εt < vt, the Bellman equation for the planner is given by:

W (qt−1, vt, φt) = max
εt

£
qt + uvtF (εt; vt) + βW

¡
qt, vt+1, φt+1

¢¤
(36)

s.t. qt = φtqt−1 + vt

Z ε̄(vt)

εt

xdF (x; vt) ,

vt+1 = vtφt+1F (εt; vt) + 1− φt+1.

The first-order condition impliesÃ
1 + β

∂W
¡
qt, vt+1, φt+1

¢
∂qt

!
vt (−εtf (εt; vt)) +

Ã
βφt+1

∂W
¡
qt, vt+1, φt+1

¢
∂vt+1

+ u

!
vtf (εt; vt) = 0,

which simplifies to

εt

Ã
1 + β

∂W
¡
qt, vt+1, φt+1

¢
∂qt

!
= u+ βφt+1

∂W
¡
qt, vt+1, φt+1

¢
∂vt+1

. (37)

Using the envelope-theorem conditions, we obtain:

∂W (qt−1, vt, φt)

∂qt−1
= φt

Ã
1 + β

∂W
¡
qt, vt+1, φt+1

¢
∂qt

!
(38)
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and

∂W (qt−1, vt, φt)

∂vt
=

Ã
u+ βφt+1

∂W
¡
qt, vt+1, φt+1

¢
∂vt+1

!
(F (εt; vt)− vtT1t) (39)

+

Ã
1 + β

∂W
¡
qt, vt+1, φt+1

¢
∂qt

!ÃZ ε̄(vt)

εt

xdF (x; vt) + vtT2t

!

where T1t ≡ ∂
∂vt
[1− F (εt; vt)] > 0 and T2t ≡ ∂

∂vt

R ε̄(vt)
εt

xdF (x; vt) > 0.

In the periodic steady state, the first order condition (37) becomes

εj

Ã
1 + β

∂W j0
¡
qj, vj

0¢
∂qj

!
= u+ βφj

0 ∂W j0
¡
qj, vj

0¢
∂vj0

(40)

The envelope condition (38) implies

∂W j
¡
qj

0
, vj
¢

∂qj0
= φj

"
1 + β

Ã
φj

0
+ βφj

0 ∂W j
¡
qj

0
, vj
¢

∂qj0

!#
which yields:

∂W j
¡
qj

0
, vj
¢

∂qj0
=

φj
³
1 + βφj

0
´

1− β2φjφj
0 (41)

Substituting this last expression into (39), we obtain:

∂W j
¡
qj

0
, vj
¢

∂vj
=

Ã
u+ βφj0

∂W j0
¡
qj, vj

0¢
∂vj0

!
Aj +Dj,

where

Aj ≡ F j
¡
εj
¢
− vjT j

1 ; Dj ≡ 1 + βφj
0

1− β2φjφj
0

ÃZ ε̄j

εj
εdF j (ε) + vjT j

2

!
, (42)

Hence, we have

∂W j
¡
qj

0
, vj
¢

∂vj
=

(
u+ βφj0

"Ã
u+ βφj

∂W j
¡
qj

0
, vj
¢

∂vj

!
Aj0 +Dj0

#)
Aj +Dj,

which implies

∂W j
¡
qj

0
, vj
¢

∂vj
=

uAj
³
1 + βφj

0
Aj0
´
+ βφj

0
Dj0Aj +Dj

1− β2φjφj
0
AjAj0

. (43)

Substituting (41) and (43) into the first-order condition (40),

εj

Ã
1 + β

φj
0 ¡
1 + βφj

¢
1− β2φjφj

0

!
= u+ βφj0

uAj0
¡
1 + βφjAj

¢
+ βφjDjAj0 +Dj0

1− β2φjφj
0
AjAj0

simplify to:

εj

Ã
1 + βφj

0

1− β2φjφj
0

!
=

¡
1 + βφj0Aj0

¢
u+ β2φjφj

0
Aj0Dj + βφj

0
Dj0

1− β2φjφj
0
AjAj0

, (44)
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and the stock of vacant houses, vj, j = s, w, satisfies (14) as in the decentralized economy.

The thick-market effect enters through two terms: T j
1 ≡ ∂

∂vj
[1− F j (εj)] > 0 and T j

2 ≡ ∂
∂vj

R ε̄j
εj
εdF j (ε) >

0. The first term, T j
1 , indicates that the thick-market effect shifts up the acceptance schedule

[1− F j (ε)] . The second term, T j
2 , indicates that the thick-market effect increases the conditional

quality of transactions. The interior solution (44) is an implicit function of εj that depends on εj
0
, vj,

and vj
0
. It is not straightforward to derive an explicit condition for εj < vj, j = s, w.

Abstracting from seasonality for the moment, i.e. when φs = φw, it follows immediately from (14)

that the solution is interior, ε < v. Moreover (44) implies the planner’s optimal reservation quality εp

satisfies:

εp

1− βφ
=

u+ βφ
1−βφ

³R ε̄
εp
εdF (ε) + vT2

´
1− βφF (εp) + βφvT1

. (45)

Comparing (45) with (23), the thick-market effect, captured by T1 and T2, generates two opposite

forces. The term T1 decreases εp, while the term T2 increases εp in the planner’s solution. Thus, the

positive thick-market effect on the acceptance rate T1 implies that the number of transactions is too

low in the decentralized economy, while the positive effect on quality T2 implies that the number of

transactions is too high. Since 1 − βφ is close to zero, however, the term T2 dominates. Therefore,

the overall effect of the thick-market externality is to increase the number of transactions in the

decentralized economy relative to the efficient outcome.46

As discussed in text, comparing the extent in seasonality in the decentralized equilibrium to the

planner’s solution depends on the exact distribution F (ε, v) .We next derive the case when the Planner

find it optimal to close down the market in the cold season.

The Planner’s solution when the housing market is closed in the cold season

Setting εwt = ε̄wt , the Bellman equation (36) can be rewritten as:

W s
¡
qwt−1, v

s
t

¢
= max

εst

⎡⎢⎢⎢⎣
φsqwt−1 + vst

R ε̄st
εst
εdF s

t (ε) + uvstF
s
t (ε

s
t)

+β
¡
qwt+1 + u [vstφ

wF s
t (ε

s
t) + 1− φw]

¢
+β2W s

¡
qwt+1, v

s
t+2

¢
⎤⎥⎥⎥⎦ (46)

s.t.

qwt+1 = φw

"
φsqwt−1 + vst

Z ε̄st

εst

εdF s
t (ε)

#
,

vst+2 = φs [vstφ
wF s

t (ε
s
t) + 1− φw] + 1− φs.

46This result is similar to that in the stochastic job matching model of Pissarides (2000), where the reservation

productivity is too low compared to the efficient outcome in the presence of search externalities.
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Intuitively, “a period” for the decision of εst is equal to 2t. The state variables for the current period

are given by the vector
¡
qwt−1, v

s
t

¢
, the state variables for next period are

¡
qwt+1, v

s
t+2

¢
, and the control

variable is εst .

The first order condition:

0 = vst (−εstf st (εst)) + uvst f
s
t (ε

s
t)

+β (φwvst (−εstf st (εst)) + uvstφ
wf st (ε

s
t))

+β2
∙
∂W s

∂qwt+1
(φwvst (−εstf st (εst))) +

∂W s

∂vst+2
(φsvstφ

wf st (ε
s
t))

¸
,

which simplifies to:

0 = −εst + u+ β (−φwεst + uφw)

+β2

"
∂W s

¡
qwt+1, v

s
t+2

¢
∂qwt+1

(−φwεst) +
∂W s

¡
qwt+1, v

s
t+2

¢
∂vst+2

φsφw

#
and can be written as:

εst

"
1 + βφw + β2φw

∂W s
¡
qwt+1, v

s
t+2

¢
∂qwt+1

#
= (1 + βφw)u+ β2φwφs

∂W s
¡
qwt+1, v

s
t+2

¢
∂vst+2

(47)

Using the envelope-theorem conditions, we obtain:

∂W s
¡
qwt−1, v

s
t

¢
∂qwt−1

= φs + βφwφs + β2φwφs
∂W s

¡
qwt+1, v

s
t+2

¢
∂qwt+1

, (48)

and

∂W s
¡
qwt−1, v

s
t

¢
∂vst

= (1 + βφw)

ÃZ ε̄st

εst

εdF s
t (ε) + vstT

s
2t

!
+ (1 + βφw)u [F s

t (ε
s
t)− vstT

s
1t]

+β2
∂W s

¡
qwt+1, v

s
t+2

¢
∂qwt+1

φw

ÃZ ε̄st

εst

εdF s
t (ε) + vstT

s
2t

!

+β2
∂W s

¡
qwt+1, v

s
t+2

¢
∂vst+2

φsφw [F s
t (ε

s
t)− vstT

s
1t] ,

where T s
1t ≡ ∂

∂vst
[1− F s

t (ε
s)] > 0 and T s

2t ≡ ∂
∂vst

R ε̄st
εst
εdF s

t (ε) > 0. Rewrite the last expression as:

∂W s
¡
qwt−1, v

s
t

¢
∂vst

(49)

=

Ã
1 + βφw + β2φw

∂W s
¡
qwt+1, v

s
t+2

¢
∂qwt+1

!ÃZ ε̄st

εst

εdF s
t (ε) + vstT

s
2t

!

+

Ã
(1 + βφw)u+ β2φsφw

∂W s
¡
qwt+1, v

s
t+2

¢
∂vst+2

!
[F s

t (ε
s
t)− vstT

s
1t]
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In steady state, (48) and (49) become

∂W s (qw, vs)

∂qw
=

φs (1 + βφw)

1− β2φwφs
, (50)

and

∂W s (qw, vs)

∂vs
¡
1− β2φsφw [F s (εs)− vsT s

1 ]
¢

(51)

=

µ
1 + βφw + β2φw

φs (1 + βφw)

1− β2φwφs

¶µZ ε̄s

εs
εdF s (ε) + vsT s

2

¶
+(1 + βφw)u [F s (εs)− vsT s

1 ] .

Substituting into the FOC (47),

εs
1 + βφw

1− β2φwφs

= (1 + βφw)u+ β2φwφs
(1 + βφw)u [F s (εs)− vsT s

1 ] +
1+βφw

1−β2φwφs

³R ε̄s
εs
εdF s (ε) + vsT s

2

´
1− β2φsφw [F s (εs)− vsT s

1 ]

which simplifies to

εs

1− β2φwφs
=

u+ β2φwφs

1−β2φwφs

³R ε̄s
εs
εdF s (ε) + vsT s

2

´
1− β2φsφw [F s (εs)− vsT s

1 ]
, (52)

which is similar to the Planner’s solution with no seasons in (45), with β2φwφs replacing βφ.

7.4 Model with unobservable match quality

Assume that the seller does not observe ε. As shown by Samuelson (1984) in bargaining between

informed and uninformed agents, the optimal mechanism is for the uninformed agent to make a

“take-it-or-leave” offer. The same holds for the informed agent if it is optimal for him to make an

offer at all. Hence, we adopt a simple price-setting mechanism: the seller makes a take-it-or-leave-it

offer pjv with probability θ ∈ [0, 1] and the buyer makes a take-it-or-leave-it offer pjb with probability

1− θ. Broadly speaking, we can interpret θ as the “bargaining power” of the seller. The setup of the

model implies that the buyer accepts any offer psv if Hs (ε)− psv > βBw; and the seller accepts any

price psb > βV w + u. Let Ssi
v and Ssi

b (ε) be the surplus of a transaction to the seller and the buyer

when the match quality is ε and the price is psi, for i = b, v:

Ssi
v ≡ psi − (u+ βV w) , (53)

Ssi
b (ε) ≡ Hs (ε)− psi − βBw. (54)
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Note that the definition of Ssi
v implies that

psv = Ssv
v + psb (55)

i.e. price is higher when the seller is making an offer.

Since only the buyer observes ε, a transaction goes through only if Ssi
b (ε) > 0, i = b, v, i.e. a

transaction goes through only if the surplus to the buyer is non-negative regardless of who is making

an offer. Given Hs (ε) is increasing in ε, for any price psi, i = b, v, a transaction goes through if

ε > εsi, where

Hs
¡
εsi
¢
− psi = βBw. (56)

1 − F s (εsi) is thus the probability that a transaction is carried out. From (2), the response of the

reservation quality εsi to a change in price is given by:

∂εsi

∂psi
=
1− β2φwφs

1 + βφw
. (57)

Moreover, by the definition of Ssi
b (ε) and εsi, in equilibrium, the surplus to the buyer is:

Ssi
b (ε) = Hs (ε)−Hs (εs) =

1 + βφw

1− β2φwφs
¡
ε− εsi

¢
. (58)

7.4.1 The Seller’s offer

Taking the reservation policy εsv of the buyer as given, the seller chooses a price to maximize the

expected surplus value of a sale:

max
p
{[1− F s (εsv)] [p− βV w − u]}

The optimal price psv solves

[1− F s (εsv)]− [p− βV w − u] f s (εsv)
∂εsv

∂ps
= 0. (59)

Rearranging terms we obtain:

psv − βV w − u

psv
mark-up

=

"
psvf s (εsv) ∂ε

s

∂ps

1− F s (εsv)

#−1
inverse-elasticity

,

which makes clear that the price-setting problem of the seller is similar to that of a monopolist who

sets a markup equal to the inverse of the elasticity of demand (where demand in this case is given

by the probability of a sale, 1− F s (εs)). The optimal decisions of the buyer (57) and the seller (59)

together imply:

Ssv
v =

1− F s (εsv)

f s (εsv)

1 + βφw

1− β2φwφs
. (60)
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Equation (60) says that the surplus to a seller generated by the transaction is higher when 1−F s(εsv)
fs(εsv)

is higher, i.e. when the conditional probability that a successful transaction is of match quality εsv is

lower. Intuitively, the surplus of a transaction to a seller is higher when the house is transacted with

a stochastically higher match quality, or loosely speaking, when the distribution of match quality has

a “thicker” tail.47

Given the price-setting mechanism, in equilibrium, the value of a vacant house to its seller is:

V s = u+ βV w + θ [1− F s (εsv)]Ssv
v . (61)

Solving out V s explicitly,

V s =
u

1− β
+ θ

[1− F s (εsv)]Ssv
v + β [1− Fw (εwv)]Swv

v

1− β2
, (62)

which is the sum of the present discounted value of the flow value u and the surplus terms when its

seller is making the take-it-or-leave-it offer, which happens with probability θ. Using the definition of

the surplus terms, the equilibrium psv is:

psv =
u

1− β
+ θ

£
1− β2F s (εsv)

¤
Ssv
v + β [1− Fw (εwv)]Swv

v

1− β2
. (63)

7.4.2 The Buyer’s Offer

The buyer offers a price that extracts all the surplus from the seller, i.e.

Ssb
v = 0⇔ psb = u+ βV w

Using the value function V w from (62), the price offered by the buyer is:

psb =
u

1− β
+ θ

β2 [1− F s (εsv)]Ssv
v + β [1− Fw (εwv)]Swv

v

1− β2
. (64)

The buyer’s value function is:

Bs = βBw + θ [1− F s (εsv)]Es [Ssv
b (ε) | ε > εsv] (65)

+(1− θ)
£
1− F s

¡
εsb
¢¤
Es
£
Ssb
b (ε) | ε > εsb

¤
,

47When f is normal, (1− F ) /f is also called the Mills ratio, which is proportional to the area of the tail of a frequency

curve.
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where Es [.] indicates the expectation taken with respect to the distribution F s (.). Since the seller

does not observe ε, the expected surplus to the buyer is positive even when the seller is making the

offer (which happens with probability θ). As said, buyers receive zero housing service flow until they

find a successful match. Solving out Bs explicitly,

Bs = θ [1− F s (εsv)]Es [Ssv
b (ε) | ε > εsv] + (1− θ)

£
1− F s

¡
εsb
¢¤
Es
£
Ssb
b (ε) | ε > εsb

¤
(66)

+β
©
θ (1− Fw (εsv))Ew [Swv

b (ε) | ε > εwv] + (1− θ)
£
1− Fw

¡
εsb
¢¤
Ew

£
Swb
b (ε) | ε > εwb

¤ª
.

7.4.3 Reservation quality

In any season s, the reservation quality εsi, for i = v, b, satisfies

Hs
¡
εsi
¢
= Ssi

v + u+ V w + βBw, (67)

which equates the housing value of a marginal owner in season s, Hs (εs) , to the sum of the surplus

generated to the seller (Ssi
v ), plus the sum of outside options for the buyer (βBw) and the seller

(βV w + u). Using (2), εsi solves:

1 + βφw

1− β2φwφs
εsi = Ssi

v + u+
βφw

¡
1− β2φs

¢
1− β2φwφs

(Bw + V w)− β2φw (1− φs)

1− β2φwφs
(V s +Bs) . (68)

The reservation quality εs depends on the sum of the outside options for buyers and sellers in both

seasons, which can be derived from (62) and (66):

Bs + V s (69)

=
u

1− β
+

θ [1− F s (εsv)]Es [Ssv (ε) | ε > εsv] + (1− θ)
£
1− F s

¡
εsb
¢¤
Es
£
Ssb (ε) | ε > εsb

¤
+

β
©
θ (1− Fw (εsv))Ew [Swv (ε) | ε > εwv] + (1− θ)

£
1− Fw

¡
εsb
¢¤
Ew

£
Swb (ε) | ε > εwb

¤ª
,

where Ssi (ε) ≡ Ssi
b (ε)+S

si
v is the total surplus from a transaction with match quality ε. Note from (68)

that the reservation quality is lower when the buyer is making a price offer: 1+βφw

1−β2φwφs
¡
εsv − εsb

¢
= Ssv

v .

Also, because of the asymmetric information, the match is privately efficient when the buyer is making

a price offer.

The thick-and-thin market equilibrium through the distribution F j affects the equilibrium prices

and reservation qualities
¡
pjv, pjb, εjv, εjb

¢
in season j = s, w through two channels, as shown in (63),

(64), and(68)): the conditional density of the distribution at reservation εjv, i.e.
fj(εjv)
1−F j(εjv)

, and the

expected surplus quality above reservation εjv, i.e. (1− F j (εji))Ej [ε− εji | ε > εji] , i = b, v. As
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shown in (60), a lower conditional probability that a transaction is of marginal quality εjv implies

higher expected surplus to the seller Sjv
v , which increases the equilibrium prices pjv and pjb in (63)

and (64). Similarly as shown in (58), a higher expected surplus quality above εjv (follows from (1))

implies a higher expected surplus to the buyer (1− F j (εji))Es [Ssi
b (ε) | ε > εsi] , i = b, v. These two

channels affect V j and Bj in (62) and (66), and as a result affect the reservation qualities εjv and εjb

in (13).

7.4.4 Stock of vacant houses

In any season s, the average probability that a transaction goes through is©
θ [1− F s (εsv)] + (1− θ)

£
1− F s

¡
εsb
¢¤ª

, and the average probability that a transaction does not

through is
©
θFw (εwv) + (1− θ)Fw

¡
εwb
¢ª
. Hence, the law of motion for the stock of vacant houses

(and for the stock of buyers) is

vs = (1− φs)
©
vw
£
θ (1− Fw (εwv)) + (1− θ)

¡
1− Fw

¡
εwb
¢¢¤

+ 1− vw
ª

+vw
©
θFw (εwv) + (1− θ)Fw

¡
εwb
¢ª
,

where the first term includes houses that received a moving shock this season and the second term

comprises vacant houses from last period that did not find a buyer. The expression simplifies to

vs = vwφs
©
θFw (εwv) + (1− θ)Fw

¡
εwb
¢ª
+ 1− φs, (70)

that is, in equilibrium vs depends on the equilibrium reservation quality
¡
εwv, εwb

¢
and on the distri-

bution Fw (.).

An equilibrium is a vector
¡
psv, psb, pwv, pwb, Bs + V s, Bw + V w, εsv, εsb, εwv, εwb, vs, vw

¢
that jointly

satisfies equations (63),(66),(68), (69) and (70), with the surpluses Sj
v and S

j
b (ε) for j = s, w, derived

as in (60), and (58).

Using (70), the stock of vacant houses in season s is given by:

vs =
(1− φw)φs

©
θFw (εwv) + (1− θ)Fw

¡
εwb
¢ª
+ 1− φs

1− φwφs {θF s (εsv) + (1− θ)F s (εsb)} {θFw (εwv) + (1− θ)Fw (εwb)} . (71)

Given 1− φs > 1− φw, as in the observable case, the equilibrium vs > vw.

7.4.5 Seasonality in Prices

Let

ps ≡ θ [1− F s (εsv)] psv + (1− θ) psb

θ [1− F s (εsv)] + 1− θ
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be the average price observed in season s. Given psv = Ssv
v + psb, we can rewrite it as

ps = psb +
θ [1− F s (εsv)]Ssv

v

θ [1− F s (εsv)] + 1− θ

using (64)

ps =
u

1− β
+ θ

β2 [1− F s (εsv)]Ssv
v + β [1− Fw (εwv)]Swv

v

1− β2
+

θ [1− F s (εsv)]Ssv
v

1− θF s (εsv)

=
u

1− β
+ θ

Ã
[1− θF s (εsv)]β2 + 1− β2

[1− θF s (εsv)]
¡
1− β2

¢ !
[1− F s (εsv)]Ssv

v +
θβ [1− Fw (εwv)]Swv

v

1− β2

so finally,

ps =
u

1− β
+ θ

(£
1− θβ2F s (εsv)

¤
[1− F s (εsv)]Ssv

v

[1− θF s (εsv)]
¡
1− β2

¢ +
β [1− Fw (εwv)]Swv

v

1− β2

)
. (72)

Since the flow value u is a-seasonal, housing prices are seasonal if θ > 0 and the surplus to the seller

is seasonal. As in the case with observable match quality, when sellers have some "market power"

( θ > 0), prices are seasonal. The extent of seasonality is increasing in the seller’s market power θ.

To see this, note that the equilibrium price is the discounted sum of the flow value (u) plus a positive

surplus from the sale. The surplus Ssv
v , as shown in (60), is seasonal. Given vs > vw, Assumption 2

implies hazard rate ordering, i.e. fw(εw)
1−Fw(εw)

> fs(εs)
1−F s(εs)

, the thick-market effect lowers the conditional

probability that a successful transaction is of the marginal quality εsv in the hot season, that is, it

implies a “thicker” tail in quality in the hot season. In words, the quality of matches goes up in the

summer and hence buyers’ willingness to pay increases; sellers can then extract a higher surplus in

the summer; thus, Ssv
v > Swv

v . Given that θ affects S
sv
v only through the equilibrium vacancies and

reservation qualities, it follows that the extent of seasonality in price is increasing in θ. Finally, the

effect of the flow-value u on the seasonality of prices is also the same as in the observable case.

7.4.6 Seasonality in Transactions

The number of transactions in equilibrium in season s is given by:

Qs = vs
£
θ (1− Fw (εwv)) + (1− θ)

¡
1− Fw

¡
εwb
¢¢¤

. (73)

(An isomorphic expression holds for Qw). A bigger stock of vacancies in the summer, vs > vw, tends

to increase transactions in the summer. On the other hand, a relatively higher reservation quality in

the hot season, εsi > εwi, i = b, v, tends to decrease the number of transactions in the summer. As

shown in (68), the equilibrium cutoff εsv depends on the surplus to the seller (Ssv
v ) and on the sum
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of the seller’s and the buyer’s outside options, while the equilibrium cutoff εsb depends only on the

sum of the outside options. We have already shown that Ssv
v > Swv

v because of the thick market effect

(Assumption 2). Using (1) and (58), the thick market effect also implies that the expected surplus to

the buyer is higher in the hot season, so the expected total surplus is also higher in the hot season.

It follows from (69) that (Bs + V s) > (Bw + V w) . The seasonality of Ssv
v implies a higher reservation

value εsv in the hot season s (the marginal house has to be of higher quality in order to generate

a bigger surplus to the seller). The seasonality in sellers’ and buyers’ outside options, on the other

hand, tends to reduce the cutoff εsi in the hot season for i = b, v. This is because the outside option

in the hot season s is linked to the sum of values in the winter season: Bw +V w. To see this negative

effect more explicitly, rewrite (68) as

1 + βφw

1− β2φwφs
εsi (74)

= Ssi
v + u+

βφw (1− β) (1 + βφs)

1− β2φwφs
(V w +Bw) +

β2φw (1− φs)

1− β2φwφs
(V w +Bw − V s −Bs) ,

which makes clear that (Bs + V s) > (Bw + V w) has a negative effect on εsi/εwi. As in Result 3,

transactions are seasonal but the extent of seasonality is decreasing in the seller’s market power θ. To

see this, note that the outside option for both the buyer and the seller in the hot season is to wait

and transact in the cold season. This makes both buyers and sellers less demanding in the hot season,

yielding a larger number of transactions. In other words, the “counter-seasonality” in outside options

increases the seasonality in transactions. On the other hand, when the seller is making a price offer,

the surplus of the seller is higher in the hot season and hence sellers are more demanding and less

willing to transact, which reduces the seasonality of transactions. Hence, the seasonality of outside

options and of the seller’s surplus (Ssv
v ) have opposite effects on the seasonality of reservation quality.

The second effect (through Ssv
v ) is increasing in θ (and disappears when θ = 0). Finally, the effect of

the flow value u on the seasonality of transactions is the same as in the observable case.
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