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using a uniform-price auction where n > k bidders each demand one object.

Before the auction, each bidder receives an informative but imperfect signal

about the state of the world. The good that is auctioned is a common-value

object for the bidders, and a bidder’s valuation for the object is determined

jointly by the state of the world and an action that he chooses after winning

the object but before he observes the state. We show that there are equilibria

in which the auction price is completely uninformative about the state of the

world and aggregates no information even in an arbitrarily large auction. In

the equilibrium that we construct, because prices do not aggregate information,

agents have strict incentives to acquire costly information before they participate

in the market. Also, market statistics other than price, such as the amount of

rationing and bid distributions contain extra information about the state. Our

findings sharply contrast with past work which shows that in large auctions

where there is no ex-post action, the auction price aggregates information.
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“We must look at the price system as a mechanism for communicating information if we want to

understand its real function....The most significant fact about this system is the economy of knowledge

with which it operates, or how little the individual participants need to know in order to be able to

take the right action....by a kind of symbol, only the most essential information is passed on...” Hayek

(1945).

1. Introduction

One important reason to trust markets arises from the belief that market prices accurately

summarize the vast array of information held by market participants. Whether this belief is

justified, that is, whether prices efficiently aggregate information dispersed among agents that

are active in an economy is a central economic question addressed by past research. In certain

auction markets, prices do in fact effectively aggregate dispersed information. Specifically,

consider a market in which a large number of identical common-value objects are sold through

a uniform-price auction. In such an auction, if the bidders each have an independent signal

about an unknown state of the world and if this unknown state determines the value of the

object, then the equilibrium price converges to the true value of the object as the number

of objects and the number of bidders grow arbitrarily large. Therefore, the auction price

reveals information about the unknown state of the world. Wilson (1977), Milgrom (1979),

and Pesendorfer and Swinkels (1997) have shown that this remarkable result holds under

quite general assumptions.

In many situations, however, the common value of an object is not determined solely by

the unknown parameters of the environment, i.e., the unknown state of the world. Rather,

the object’s value is also a function of how the object is utilized; in turn, the optimal way

to utilize the object can depend on the unknown state of the world. For example, suppose

that a large tract of land is to be divided and sold to farmers in smaller parcels through a

uniform-price auction. Each farmer who successfully acquires a parcel of land in the auction

needs to decide which crop to grow (e.g., wheat or rice). However, there is uncertainty about

future crop prices as well as which crop grows best on that land. Alternatively, consider

a uniform-price auction in which bandwidth is sold to telecommunication companies. Each

winner must decide whether to use conventional technology or adopt an unconventional new

one. However, there is uncertainty about future demand drivers (such as customer tastes)

which will determine which technology is more profitable. In both of these examples, the

winner of an object in the auction (a piece of land in the first and bandwidth in the second)

must choose an action which will itself affect the value that the winner derives from the

object. Moreover, this action must be taken after the auction is finalized but before some

payoff-relevant uncertainty is resolved.1

1Numerous other auctions share the characteristics of the two that we highlight here. Examples include
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In the examples discussed above, if the auction price provides additional information that

reduces uncertainty, i.e., if the auction price aggregates information, then the winners would

make better decisions when choosing their action (which crop to grow or which technology

to adopt). However, none of the past work on information aggregation in auctions explores

how the information revealed by the auction price is used after the auction is completed.

In contrast; in this paper we explicitly model how the information about the state of the

world is used after a common-value auction is completed; in our model, the auction’s winners

must decide on an action in order to put the objects acquired into productive use and the

optimal choice of action depends on the true state of the world. We show that such large

common-value auctions have equilibria in which the equilibrium price reveals no information

about the state of the world. Our result suggests that if information is useful for efficient

decision making, then the equilibrium price may not aggregate all the information relevant

for the decision. This finding stands in stark contrast to earlier studies which show that

prices aggregate information if there is no immediate use for this information.

More specifically, we study a model in which k identical and indivisible objects are allo-

cated using a uniform-price auction in which n > k bidders each demand one unit of the

good. Before the auction, each bidder receives an informative but imperfect signal about the

state of the world. In the auction, bidders choose their bids as a function of their signal,

the k highest bidders are allocated one unit of the object, and all bidders who win an ob-

ject pay a uniform price equal to the k + 1st highest bid. The good that is auctioned is a

common-value object for the bidders and a bidder’s valuation for the object is determined

jointly by the state of the world and an action that he chooses after winning the object but

before he observes the state. In a large market, if the market clearing price were to aggregate

all information, then actions would be chosen efficiently and competition would necessarily

drive the price of the object to its efficient-use value.

We explore a number of properties of markets as the numbers of bidders and the objects

grow proportionately; however, our primary focus is on the informativeness of prices. An

outsider who could observe the signals of an arbitrarily large number of bidders would learn

the state of the world perfectly. Motivated by such an outsider’s perspective, we say that

prices fully aggregate information if an outsider can figure out the state of the world almost

perfectly just by observing the equilibrium price of a large market.

an auction for off-shore oil leases where the winner needs to undertake costly sunk investments in order to
transform the oil reserves into productive use. However, exactly which sort of investment decision is wisest
may depend on parameters unknown to the market participants. Another example is an auction for iron ore
where a winner must decide on which end product he will manufacture from the ore (e.g., flat steel versus
steel rods). However, the ore’s value to the winner will depend crucially on future end product prices and,
therefore, the product mix that he chooses to manufacture.
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We present two main results. In our first main result, we construct a particular sequence of

symmetric equilibria in which, as the market grows arbitrarily large, the limit price conveys

no information about the true state of the world and remains strictly below the efficient use-

value of the object. Moreover, we show that such a sequence of equilibria can be constructed

for a generic set of parameter values. In the equilibria we construct, a strictly positive fraction

of agents chooses the wrong action because the price conveys no new information. Therefore,

inefficiency persists even in a large market whose outcome would have been efficient if one

could observe all of the bidders’ signals. Also, because the equilibrium price does not convey

new information, agents have strict incentives to acquire costly information both before they

participate in the auction and after the objects have been allocated.

A prominent property of the equilibrium which we construct is that equilibrium bids are

nondecreasing in the signal that an agent receives. In order to explore the robustness of our

first result, we also study arbitrary symmetric equilibria in which the bidding function is

monotonic in the signal that agents receive. In our second result, we characterize equilibrium

behavior in any symmetric equilibrium in which the bidding function is monotonic and we

use this characterization to show that no sequence of such equilibria can fully aggregate

information. In any symmetric equilibria where the bidding function is monotonic, the price

fails to aggregate information and remains below the efficient-use value of the object.

In a nutshell, our results suggest that the auction price may not be a very good aggregator

of information if the information content of this price is needed to make decisions that affect

the value of the objects. In our model, market statistics other than price, such as the amount

of rationing and bid distributions, are informative. Therefore, whether these statistics are

observed after an auction is finalized can affect how much information is aggregated by

prices.2 Moreover, dynamic models in which traders engage in multiple rounds of activities

may augment the accumulation of useful information.

Relation to the literature. This paper is closely related to earlier work which studies infor-

mation aggregation in large auctions. Wilson (1977) studied second-price auctions with com-

mon value for one object for sale, and Milgrom (1979) extended the analysis to any arbitrary

number of objects. Both of these papers show that as the number of bidders gets arbitrarily

large, price converges to the true value of the object, but only provided that there are bid-

ders with arbitrarily precise signals about the state of the world. Pesendorfer and Swinkels

(1997) further generalize the previous analysis to the case where there are no arbitrarily pre-

cise signals. They show that prices converge to the true value of a common-value object in all

symmetric equilibria if and only if both the number of identical objects and the number of bid-

2This is still an open and interesting question. The transparency of the market changes the incentives of
the bidders at the first place, it may cause them to conceal their own information.
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ders who are not allocated an object grow without bound. Pesendorfer and Swinkels (2000)

generalize the analysis in Pesendorfer and Swinkels (1997) to a mixed private, common-value

environment. Finally, Kremer (2002) shows that the information aggregation properties of

auctions are more general than the particular mechanisms studied before; he does this by

providing a unified approach that uses the statistical properties of certain order statistics.3

The model that we present in this paper is closest to Pesendorfer and Swinkels (1997). The

main difference from theirs is that in our model the object’s value is jointly determined by

the unknown state of the world and the action that the owner of the object later takes.4

Our work also relates to the literature on costly information acquisition in rational-

expectations models, such as Grossman and Stiglitz (1976, 1980) and Grossman (1981).

These papers explain the conceptual difficulties in interpreting prices as both allocation de-

vices and information aggregators. Specifically, they argue that if consumers and producers

need to undertake a costly activity in order to acquire information, then equilibrium prices

cannot reveal the state of the world perfectly. Their reasoning is as follows: if prices were to

reveal the state perfectly, then no agent would have an incentive to pay for information in

the first place; but if no agent acquires information, then the prices cannot reveal the state

as there is no information to aggregate. However, as was the case for auction markets, these

papers do not explicitly consider how the information revealed by the market price could be

used by the market participants once they have completed their trade in the market. In our

model, since prices do not aggregate information, agents have a strict incentive to acquire

information. This finding contrasts with the findings of Grossman and Stiglitz (1980), who

argue that agents have no incentive to acquire information precisely because prices are so

efficient in aggregating information.

Finally, our model is related to work by Bond and Eraslan (2010) which shows that trade

is possible between two agents with the same preferences if the value of the object traded is

jointly determined by an unknown state of the world and an ex-post action that the eventual

owner of the object will undertake. In their model, trade is precluded by a no-trade theorem

without any ex-post action. It is the ex-post action and the consequent value of information

that lead to the possibility of trade. Our model shares the feature that the eventual owner of

3Also, see Hong and Shum (2004) for a calculation of the convergence rate of prices to the true value;
Jackson and Kremer (2007), which shows that the result of Pesendorfer and Swinkels (1997) does not gen-
eralize once there are individualized prices, i.e., when one considers discriminatory price auctions; and
Kremer and Skrzypacz (2005) for related results on the properties of order statistics.

4There is extensive work on the role of prices in various other market contexts. For example, see
Reny and Perry (2006) and Cripps and Swinkels (2006) for work on the information aggregation proper-
ties of prices in large double auctions; Vives (2011) and Rostek and Weretka (2010) for the information
aggregation properties of markets in which the objects are divisible; Rubinstein and Wolinsky (1985, 1990),
Osborne and Rubinstein (2010), Lauermann (2007), Lauermann and Wolinsky (2011, 2012), Golosov et al.
(2011), Ostrovsky (2009) for work on the properties of the equilibrium price in search markets.
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an object undertakes an action once trading is complete. However, whereas they consider a

bilateral bargaining framework and focus on the possibility of trade, we analyze an auction

framework with a large number of strategic bidders and focus on information aggregation.

2. Model

We consider a sealed-bid, uniform-price auction. In this auction, there are n bidders with

unit demand and k identical objects. We denote the ratio of objects to bidders (i.e., market

tightness) in this auction by κ := k
n
< 1. The set of states of the world is Ω := {L,R} and

we denote a generic element of this set by ω. The state of the world is drawn according to a

common prior π ∈ [0, 1], where π denotes the prior probability that the state is R, and 1−π

denotes the prior probability that the state is L. Each bidder i observes a private signal si

that belongs to the set of signals S = [0, 1], and submits a bid bi ∈ [0,∞). Each of the k

highest bidders receives an object and is called a winner; all other bidders are called losers.5

Each winner pays a price p which is equal to the (k + 1)st highest bid.

The payoff of a bidder who does not win an object is equal to zero. We assume that a

bidder who wins an object must choose an action from a finite set of actions denoted by A.

This action, together with the state of the world, determines the winner’s valuation for the

good. Although all our of arguments go through with an arbitrary, finite number of actions,

to keep exposition simple, we assume that A = {l, r}. A winning bidder’s payoff is jointly

determined by the auction price p, the action that he chooses a ∈ A, and the state of the

world ω ∈ Ω. In particular, we assume that a winning bidder’s payoff is equal to v(a, ω)− p,

where the function v(a, ω) gives the winner’s valuation for the object. In what follows, we

assume, without loss of generality, that v(r, R) ≥ v(l, L) and we make the following main

assumption:

Assumption 1 The valuation function satisfies the following two inequalities:

v(l, L) > v(r, L),(1)

v(l, L) > v(l, R).(2)

Note that if the valuation function does not satisfy inequality (1), then r is a weakly

dominant action. Also, if the valuation function does not satisfy inequality (2), then a bidder’s

valuation for the good is higher in state R than in state L regardless of the action he chooses.

In what follows, we normalize the valuation function such that

(3) v(l, R) = v(r, L) = 0.

5To rank bids that are tied, nature picks a ranking of bidders at random with each ranking equally likely.
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This normalization is without loss of generality if a valuation function satisfies Assumption

1. Under this normalization, Assumption 1 requires that v(l, L) > 0 and v(r, R) > 0, or in

words, that the bidder’s valuation for the good be positive if his action matches the state of

the world, and his valuation for the good be zero if his action does not match the state of

the world.

Remark 1 Assumption 1 is the substantive assumption which allows us to argue that

information is not aggregated in our model. The main implication of Assumption 1 which we

use in many of our arguments is the fact that a bidder’s expected valuation for the good is

a nonmonotonic function of the probability that he assigns to state R. In contrast, if either

inequality (1) or (2) is not satisfied, then a bidder’s expected valuation for the good is a

monotonic function of the probability that he assigns to state R. In either of these two cases,

Pesendorfer and Swinkels (1997)’s findings apply and therefore information is aggregated in

every symmetric equilibrium of a large market. See section 5.1 for a more detailed discussion

of this nonmonotonicity.

2.1. Signals. The set of signals is S := [0, 1], and the bidders’ signals are independently

and identically distributed conditional on the state of the world. Each bidder’s signal dis-

tribution has a cumulative distribution function F (.|w) with a continuous density function

f(.|w) for each w ∈ Ω. If a bidder believes that the probability of state R is p, then we say

that the bidder’s likelihood ratio is ρ := p/(1−p). For a bidder who receives signal s ∈ [0, 1],

we denote his likelihood ratio, slightly abusing notation, to be ρ(s), defined as follows:

ρ(s) =
π

1− π

f(s|R)

f(s|L)
= ρ0

f(s|R)

f(s|L)
,

where ρ0 := π/(1− π) denotes the prior likelihood ratio derived from the common prior π.

Assumption 2 (MLRP) The likelihood ratio ρ(s) is a strictly increasing function of s.

Note that an implication of the MLRP assumption is that f(0|L) 6= f(0|R).

Assumption 3 (Limited individual information) There exists a number η > 0 such that

η < f(s|w) < 1
η
for every s ∈ S, w ∈ Ω.

This assumption requires that signals convey only a bounded amount of information.

Hence, there is no bidder who possesses arbitrarily precise information based solely on the

bidder’s signal.
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In what follows, we refer to the mth highest value among n signals by Y m
n . We define the

unique signals sκR ∈ S and sκL ∈ S such that F (sκR|R) = 1 − κ and F (sκL|L) = 1 − κ. Recall

that κ < 1 is the market tightness, i.e., the ratio of objects to bidders. Intuitively, in a large

market there are as many bidders with signals above sκR as there are objects in state R.

Therefore, if we were to allocate the objects to the bidders with higher signals first, then,

in state R, the bidders who receive an object would be exactly those bidders whose signals

exceed sκR.

2.2. Strategies, equilibrium, and values. Each bidder submits a bid after observing

his signal. A bidding strategy for player i is a measure Hi on [0, 1] × [0,∞) with marginal

distribution F (s) = πF (s|R)+(1−π)F (s|L) on its first coordinate (see Milgrom and Weber

(1985)). The set of all bidding strategies is Σ. A strategy is pure if there is a function

b : [0, 1] → [0,∞) such that H({s, b(s)}s∈[0,1]) = 1.6

Each winner chooses an action from the set of actions A. Hence, the action strategy is

a mapping from a bidder’s signal, his bid, and the winning price to an action, ai : S ×

[0,∞)× [0,∞) → A. Since the bidders’ actions do not affect other bidders’ payoffs, confining

attention to pure strategy actions is without loss of generality.

In the rest of the paper, we will restrict our attention to pure symmetric Nash equilibria,

which are equilibria where each bidder uses the same pure bidding strategy, i.e., bi = bj for

every two bidders i and j. The term Prb denotes the probability distribution induced by the

pure and symmetric bidding strategy profile where each bidder uses the bidding strategy b

over states of the world, signal and bid distributions, allocations, and prices.

Below we define a bidder’s value as a function of his beliefs but we work with the likelihood

ratio instead of working directly with beliefs for analytic convenience.7 Below we introduce

the value function u which gives a bidder’s expected valuation for an object as a function of

the likelihood ratio ρ. In particular, let u : [0,∞] → R be the function defined by

u(ρ) = max
a∈{l,r}

{

1

ρ+ 1
v(a, L),

ρ

ρ+ 1
v(a, R)

}

.

This function gives the bidder’s expected value for the object as a function of his beliefs

about the state of the world, expressed as the relative likelihood ratio about the state of the

world. Note that u(0) = v(l, L) and limρ→∞ u(ρ) = v(r, R). Let ρ∗ ∈ (0,∞) be the unique

6Of course, if b represents H , then so will any function that agrees with b for almost every s ∈ [0, 1].
7The whole analysis could be redone working directly with beliefs as there is a one-to-one mapping between

likelihood ratios and beliefs.
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0
ρ

Valuation

ρ∗

u(ρ) = max{ 1
1+ρ

v(l, L), ρ
1+ρ

v(r,R)}

v(l, L)

v(r,R)

Figure 1: Continuation value as a function of the likelihood ratio of the bidder who wins a unit in
the auction, before he makes the action choice. Assumption 1 implies that u(ρ) is a nonmonotonic
function which is minimized at ρ∗ as depicted here.

solution to the equation:

1

ρ+ 1
v(l, L) =

ρ

ρ+ 1
v(r, R).

This cutoff is the likelihood ratio that makes a bidder indifferent between action l and r.

Such a cutoff always exists because of Assumption 1. In what follows, we extensively use

the fact that the value function u(·) is strictly decreasing in the interval [0, ρ∗] and strictly

increasing in the interval [ρ∗,∞). See figure 1 for a depiction of the value function.

3. Large Markets and the Failure of Information Aggregation

In this section we present our main result as Theorem 1. In Theorem 1, we constuct a

sequence of equilibria for auctions {Γn}
∞
n=1 where the n

th auction Γn has n bidders and ⌊κn⌋

objects for sale.8 In the remainder of the paper, we will proceed as if κn is an integer for

expositional simplicity. We assume that the other parameters of the auctions, i.e., (v, F, π, κ),

are constant along the sequence and satisfy all the assumptions that we have already made.

For the sequence of equilibria we construct, equilibrium price reveals no information about

the state of the world at the limit where there is an arbitrarily large number of bidders. Al-

though the limit equilibrium price reveals no information, bidders do learn some information

about the state of the world through rationing. However, the amount of information that

they learn is limited, and incorrect ex-post actions are played frequently.

8 The term ⌊κn⌋ refers to the highest integer not bigger than κn.
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3.1. Information aggregation. Here we formally define information aggregation and its

failure. Our object of study is a sequence of bidding functions b = {bn}
∞
n=m. We say that the

sequence b is an equilibrium sequence if bn is part of a symmetric Nash equilibrium of Γn

for each n.

Suppose that the number of bidders n is large. In this case, the law of large numbers

implies that observing the signals (s1, ..., sn) conveys precise information about the state

of the world ω ∈ {L,R}. The bidding function bn determines a price p∗ for the auction

Γn given any realization of signals (s1, ..., sn). We say that information is aggregated in the

auction if this price p∗ also conveys precise information about the state of the world. More

precisely, (i) if the likelihood ratio
Prbn (p

∗|R)

Prbn (p
∗|L)

is close to zero (i.e., if it is arbitrarily more

probable that we observe such a price when ω = L), then an outsider who observes price

p∗ learns that the state is L. Alternatively, (ii) if the likelihood ratio
Prbn (p

∗|R)

Prbn (p
∗|L)

is arbitrarily

large, then an outsider who observes price p∗ learns that the state is R. If the probability

that we observe a price that satisfies either (i) or (ii) is arbitrarily close to one, then we say

that the equilibrium sequence b fully aggregates information. Conversely, if the likelihood

ratio
Prbn (p

∗|R)

Prbn (p
∗|L)

is close to one, i.e., if we are equally likely to observe price p∗ in either of the

two states, then an outsider who observes price p∗ learns arbitrarily little information about

the state of the world. If the probability that we observe such a price is arbitrarily close

to one, then we say that the equilibrium sequence b aggregates no information. The precise

definitions are as follows:

Definition 1 An equilibrium sequence b aggregates no information if, for any ǫ > 0,

lim
n→∞

Prbn

(

pn ∈

{

p ∈ [0,∞) :
Prbn(p|R)

Prbn(p|L)
∈ (1− ǫ, 1 + ǫ)

})

= 1.

An equilibrium sequence b fully aggregates information if, for any ǫ > 0,

lim
n→∞

Prbn

(

pn ∈

{

p ∈ [0,∞) :
Prbn(p|R)

Prbn(p|L)
∈ [0, ǫ) ∪ (1/ǫ,∞))

})

= 1.

Remark 2 Our definition of information aggregation differs from the definition provided

by Pesendorfer and Swinkels (1997). In their model, the state of the world is defined as the

value of the object and each bidder receives a signal about that value. Therefore, they say that

information is aggregated if the equilibrium prices converge to the true value of the object

(i.e., if the price converges to the state of the world) as the market grows large. In their

setup, each state represents a distinct value for the object, so when information is aggregated

in their model with their definition, then it is also aggregated under our definition. Therefore,
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if information aggregation fails using our definition, then it will also fail under the definition

of Pesendorfer and Swinkels (1997).

3.2. Failure of information aggregation. Our main theorem shows that if, in addition

to Assumptions 1-3, two conditions are satisfied, then there exists an equilibrium sequence

b which aggregates no information. The first condition that we require for the theorem is as

follows:

Condition 1 ρ(0) > ρ∗.

If this condition is satisfied, then all the bidders would choose action r if they acted solely

on the information contained in their private signal.

Recall that sκR ∈ S is the signal such that F (sκR|R) = 1 − κ. The second condition we

require for the theorem is as follows:

Condition 2 u(ρ(sκR)) < v(l, L).

Under this condition, if a bidder who received signal sκR chooses an action based solely on

this signal, then this bidder’s expected valuation is lower than v(l, L). Therefore, a sufficiently

strong additional signal in favor of state L can increase the expected valuation of such a

bidder. See figure 2 for a depiction of a situation where both Conditions 1 and 2 are satisfied.

Our main theorem is as follows:

Theorem 1 Suppose that Assumptions 1-3 hold. If Condition 1 and Condition 2 also hold,

then there exists an equilibrium sequence b which reveals no information.

We prove this theorem by constructing an equilibrium sequence which aggregates no in-

formation. In this construction, each bidding function bn in the equilibrium sequence b is

a nondecreasing function of s. In this construction, Condition 1 allows us to construct an

equilibrium sequence in which each bidding function bn is nondecreasing in s. Condition

2, on the other hand, allows us to ensure that the equilibrium sequence that we construct

aggregates no information about the state of the world.

In the particular equilibrium that we construct, information is not aggregated by the price

because of the existence of pooling (see figure 3). Pooling by bidders with a range of different

signals at a certain pooling bid makes the equilibrium price less sensitive to the information

of the bidders and thus leads to limited learning. We now provide some intuition for Theorem

1 by i) arguing that if the bidding function is nondecreasing, then there must be pooling;

and ii) arguing that pooling can be sustained in equilibrium.
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0 ρ

Valuation

ρ(sκR)

u(ρ)

v(l, L)

u(ρ(sκR))

ρ(0) ρ(1)ρ∗

Figure 2: This figure shows the initial range of beliefs, expressed as likelihood ratios, on the belief-
value graph. Note that the bidders who assign higher probability to state R, i.e., the bidders with
higher signals, are the bidders with higher value. Moreover u(ρ(sκR)) < v(l, L).

0
s

Bid

sp

bp

b(s)

Figure 3: A typical equilibrium bidding function. Buyers with signals below a cutoff sp bid a pooling
bid bp, and those with signals above sp bid according to the bid function in Pesendorfer and Swinkels
(1997), i.e., b(s) = ρ(s1 = s, Y k

n−1 = s) for s > sp.

Assume that the bidding function is strictly increasing, i.e., assume that there is no pooling

bid, and consider a bidder who receives the lowest signal. If the auction is sufficiently large,

when the auction price is equal to this bidder’s bid, it must be the case that this bidder is

almost certain that the state is L. This is also true for a bidder who receives a signal ǫ > 0

that is arbitrarily close to zero. However, then the bidder who receives signal zero would be

willing to submit a bid that is greater than the bid of a bidder who receives signal ǫ, because

the bidder with signal zero is more convinced that the state is L than the bidder with signal

ǫ. This, however, contradicts the assumption that the bidding function is strictly increasing.

Note that this argument crucially hinges on the nonmonotonicity of the value function (see

figure 2 and also section 5.1).
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In our construction, the pooling bid is sustained because agents have an incentive to learn

the state in order to use this information while choosing their action. Specifically, when the

price is equal to the pooling bid, objects are allocated using rationing among the bidders

who choose the pooling bid.9 A bidder who chooses the pooling bid and wins an object

through rationing at a price equal to the pooling bid obtains more information about the

state of the world, compared to the case in which he instead chooses a higher bid, avoids

rationing, and wins an object. This is because winning an object when rationing is applied

is more likely in state L than in state R. In other words, rationing is a lottery whose odds

depend on the state of the world. Moreover, a sufficiently strong signal in favor of state L is

valuable for some agent because the value function is nonmonotonic. If a bidder who chooses

the pooling bid increases his bid, then he acquires an object more frequently because he

avoids rationing when the price is equal to the pooling bid. However, in this case he forgoes

the extra piece of information that comes from winning under rationing. Because this extra

piece of information is sufficiently valuable for bidders who choose the pooling bid, these

bidders refrain from increasing their bid even though they make strictly positive profits at

the pooling bid.

3.3. Sketch of the construction. In this section, we sketch the ideas behind construct-

ing the equilibrium sequence b whose existence Theorem 1 claims. Specifically, we construct

an equilibrium in which no information is aggregated in a hypothetical market with a con-

tinuum of bidders with mass one and a continuum of objects with mass κ. Focusing on a

hypothetical market with a continuum of bidders allows us to capture the main properties

of the equilibrium sequence b for a market with a finite but large number of bidders while

allowing us to avoid the more technical details involved in describing such equilibria for finite

markets. In what follows we repeatedly use the fact that the value function u(·) is strictly

decreasing in the interval [0, ρ∗] and strictly increasing in the interval [ρ∗,∞).

We construct an equilibrium in which the equilibrium bidding function b is constant on

the interval [0, sp) for some cutoff signal sp > sκR, which we calculate further below (i.e.,

b(s) = bp for all s ∈ [0, sp)), and the bidding function is strictly increasing on the interval

(sp, 1]. We call the bid bp (i.e., the bid submitted by all bidders with signals in the interval

[0, sp)) the pooling bid or pooling price. See figure 3 for a depiction of the bidding function

b. In this equilibrium, the following properties hold true:

(i) The auction price is equal to the pooling price in either state of the world, and hence

conveys no additional information about the state of the world. The auction price is always

equal to the pooling price because sp exceeds sκR. The fact that sp exceeds sκR implies that

9See Stiglitz and Weiss (1981), Bester (1985, 1987), and Lauermann and Wolinsky (2012) for other models
where there is rationing in equilibrium.
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for any price p′ > bp, the mass of bidders who submit a bid greater than or equal to p′ is

strictly less than the mass of objects available, i.e., the measure of the set {s : b(s) ≥ p′} is

strictly less than κ in both states.

(ii) Bidders with signals that exceed sp, i.e., those bidders whose bid exceeds the pooling

price, are always allocated an object and always choose action r. These bidders choose action

r because they obtain no new information from the auction price and because choosing r is

optimal based solely on their private signal.

(iii) Bidders with signals less than sp who are allocated an object, i.e., the bidders who

bid the pooling price, take action l. Although the price conveys no information about the

state, the fact that a bidder wins an object by bidding the pooling price is a strong signal

favoring state L which induces that bidder to choose action l. Winning an object by bidding

the pooling price is a strong signal favoring state L because the mass of bidders bidding the

pooling price exceeds the mass of objects to be allocated to bidders who bid the pooling

price. Moreover, a bidder is more likely to be allocated a good in state L than in state R.

We discuss this issue in more detail below.

We now discuss how to calculate the cutoff signal sp. The cutoff signal sp is the signal

which leaves a bidder indifferent between bidding the pooling bid and bidding slightly above

the pooling bid. As a first step in calculating sp, we calculate a bidder’s payoff if he bids

slightly above the pooling bid, and if he bids the pooling bid and wins an object.

Payoff from bidding slightly above the pooling bid. If a bidder bids above the pooling bid,

then she wins an object with certainty. The posterior belief of a bidder who wins an object

by bidding above the pooling bid is equal to her initial beliefs. This is because the auction

price is always equal to the pooling bid in this equilibrium and conveys no information.

Consequently, the expected value of the object to a bidder with signal s if she bids above

the pooling bid is u (ρ(s)).

Payoff from bidding the pooling bid. We now calculate the value of the object for a bidder

who receives the cutoff signal sp if he bids the pooling bid and wins a unit, when sp ≥ sκR.

In such an event, this bidder has an extra piece of information, which comes from the fact

that he wins a unit while bidding the pooling bid. In particular, a fraction 1 − F (sp|ω) of

bidders bid strictly above the pooling bid and each wins an object with certainty regardless

of the state. The fraction of objects that remains to be delivered to bidders who choose the

pooling bid is κ − (1 − F (sp|ω)). Since the number of objects remaining to be delivered is

less than the number of bidders, there is rationing among the bidders at the pooling bid.

Consequently, the belief of type sp (represented as the likelihood ratio) if he bids the pooling

13



bid and wins the object is as follows:

ρp(sp) := ρ(sp)
κ− (1− F (sp|R))

F (sp|R)
/
κ− (1− F (sp|L))

F (sp|L)
= ρ(sp)

κ− (1− F (sp|R))

κ− (1− F (sp|L))

F (sp|L)

F (sp|R)
,

where the ratio ∆(sp) := κ−(1−F (sp|R))
F (sp|R)

/κ−(1−F (sp|L))
F (sp|L)

reflects the extra information that a

bidder learns from winning an object at the pooling bid. If a bidder with signal sp bids the

pooling bid and wins the object, then the expected value of the object to him is equal to

u (ρp(sp)).

Remark 3 It is straightforward to verify that ∆(sp) < 1, that is, winning an object at the

pooling bid is more likely in state L than in state R; winning an object at the pooling bid

is therefore an additional signal in favor of state L. In the context of the auction models

of Pesendorfer and Swinkels (1997) or Milgrom and Weber (1982), the fact that ∆(sp) < 1

is commonly referred to as the loser’s curse.10 Intuitively, the loser’s curse holds because

if the state is L, then the MLRP assumption implies that fewer bidders choose a bid which

exceeds the pooling bid, and therefore more goods are left over to be allocated to the bidders

who choose the pooling bid.

As we stated above, the cutoff signal sp is the signal which leaves a bidder indifferent

between bidding the pooling bid and bidding slightly above the pooling bid. In other words,

the cutoff signal is defined implicitly by the following equation:

u (ρ(sp)) = u (ρp(sp)) .

We now argue that this cutoff signal is unique. Specifically, we show that there is a unique

signal s > sκR such that u (ρ(s)) = u (ρp(s)), and we denote this signal by sp. Note that

ρp(sκR) = 0 and limsցsκ
R
ρp(s) = ρp(sκR). By Condition 2, we have v(l, L) > u(ρ(sκR)), and

hence, u(ρp(sκR)) = u(0) = v(l, L) > u(ρ(sκR). Let s∗ denote the unique signal such that

ρp(s∗) = ρ∗, and note that s∗ ∈ (sκR, 1). Uniqueness of s
∗ follows because ρp(s) is an increasing

function, and ρp(sκR) = 0 and ρp(1) = ρ(1) > ρ∗. The function u(ρ(s)) is strictly increasing

in s, and u(ρ(s)) > u(ρ∗) = u(ρp(s∗)) for all s. The function u(ρ(s)) is strictly increasing

because ρ(s) > ρ∗ (by Condition 1), because ρ(s) is strictly increasing in s, and because u(ρ)

is strictly increasing for any ρ ∈ (ρ∗, ρ]. Also, the function u(ρp(s)) is strictly decreasing in

s for all s ∈ [sκR, s
∗], is strictly increasing in s for all s ∈ [s∗, 1], and reaches its minimum at

u(ρp(s∗)) = u(ρ∗). Consequently, the two functions must cross at some point sp ∈ (sκR, s
∗).

10The loser’s curse is defined in the setting with finitely many bidders; however, the idea extends naturally
to the hypothetical setting with a continuum of bidders.
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ρ(s)
ρp(s)
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Figure 4: This figure depicts the functions ρ and ρp, in the range [sκR, 1]. Notice that ρ(s) ≥ ρp(s);
ρp(sκR) = 0; and ρ(1) = ρp(1).

u(ρ(s))

u(ρp(s))

v(l, L)

spsκR s∗ 1

u(ρ∗)

Figure 5: This figure depicts the value of the object to the cutoff type as a function of the choice
of the cutoff type.

There is a unique such point, sp, because ρp(s) = ρ(s)∆(s) < ρ(s) for all s ∈ [sκR, 1). See

figures 4 and 5 for depictions.

We now check that bidders will not want to deviate from the equilibrium we described.

We first argue that bidders with signals lower than sp cannot profitably deviate from the

equilibrium by choosing a bid that exceeds the pooling bid. If a bidder with signal s < sp

deviates and bids above the pooling bid, then she wins an object with certainty and pays the

pooling bid bp = u(ρ(sp)). In this case, her posterior and prior likelihood ratios coincide and

are equal to ρ(s). However, Condition 1 implies that ρ∗ < ρ(s) < ρ(sp), and therefore we have

u(ρ(s)) < bp = u(ρ(sp)), i.e., the auction price exceeds the expected valuation, conditional

on winning, of the bidder with signal s. See figure 6 for a depiction of this argument for the

case of s = 0.

We now argue that a bidder with signal s > sp cannot profitably deviate from equilibrium

by choosing the pooling bid. If the bidder sticks to the equilibrium strategy, then she wins

an object with certainty and her payoff is equal to u(ρ(s)) − bp, a payoff which is strictly
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ρ

Valuation

u(ρ)

ρ∗(0) ρp(sp)ρ∗(1)

ρ(0)ρ(sp)ρ(1)

Figure 6: This figure depicts the posterior beliefs of bidders with signals 0, sp, and 1 under two
cases: (i) If they bid the pooling bid and win the object. In this case, their posterior likelihood
ratios are ρ∗(0) = ρ(0)∆(sp), ρp(sp) = ρ(sp)∆(sp), and ρ∗(1) = ρ(1)∆(sp). (ii) if they bid above the
pooling bid and win a unit at the pooling price. In this case, the bidders obtain no new information
and therefore their posterior and prior likelihood ratios coincide, i.e., their posterior likelihood
ratios are also equal to ρ(0), ρ(sp), and ρ(1). Bidders with signal 0 strictly prefer to bid the pooling
bid, those with signal sp are indifferent between bidding the pooling bid and above it, and those
with signal 1 strictly prefer to bid above the pooling bid. Note that the pooling bid satisfies the
equality bp = u(ρ(sp)) = u(ρp(sp)).
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positive. If she deviates instead and chooses the pooling bid, then, conditional on winning,

her posterior is equal to ρ∗(s) := ρ(s)∆(sp). Note that ρp(sp) < ρ∗(s) < ρ(s). To see that

this deviation is not profitable, consider two cases. First, if ρ∗(s) ≥ ρ∗, then u(ρ∗(s)) <

u(ρ(s)). This is because ρ∗(s) = ρ(s)∆(sp) < ρ(s) and because u(·) is increasing on [ρ∗,∞).

Alternatively, if ρ∗(s) ≤ ρ∗, then u(ρ∗(s)) − bp = u(ρ(s)∆(sp)) − u(ρp(sp)) < 0. This is

because ρ∗(s) = ρ(s)∆(sp) > ρ(sp) and because u(·) is decreasing on [0, ρ∗]. See figure 6 for

a depiction.

3.4. Properties of the equilibrium. There are a number of novel properties of the

equilibrium that we constructed for Theorem 1. In particular, the properties listed below are

satisfied as the number of bidders grow arbitrarily large. Note that none of these properties

is present in a standard auction where there are no ex-post actions.

(i) The equilibrium price aggregates no information even in an arbitrarily large market.

(ii) Agents learn from their own bids. The posterior beliefs of the bidders who win an

object depend on their bid. In particular, the posterior beliefs of the bidders who win an

object by bidding above the pooling bid is equal to their prior belief. This is because the

auction price reveals no new information. In contrast, the posterior of bidders who win

an object by bidding the pooling bid is equal to their prior belief, ρ(s), multiplied by the

constant ∆(sp) ∈ (0, 1). Hence, a bidder’s bid affects the information that he has if he wins

a unit.

(iii) A strictly positive fraction of bidders take the wrong action in equilibrium because

prices convey no new information and because bidders’ posterior beliefs are heterogeneous.

Therefore, inefficiency persists even in a large market in which the outcome would have been

efficient if one could use all of the signals observed by the bidders. In particular, irrespective

of the state of the world, all bidders who win an object at the pooling bid choose action l and

all other bidders who win an object choose action r. Consequently, the proportion of bidders

choosing the wrong action is equal to 1−F (sp|L) and κ−(1−F (sp|R)) when the state of the

world is L and R, respectively. Note that the total expected surplus in the equilibrium that

we construct is equal to πv(r, R) (1− F (sp|R))+ (1−π)v(l, L) (κ− (1− F (sp|L))). Because

ρ(0) > ρ∗ (by Condition 1), the equilibrium surplus is strictly decreasing in sp.

(iv) The expected profit of each bidder, except the bidder who receives signal sp, is strictly

positive in equilibrium. Even though the equilibrium price is equal to the pooling bid, the

bidders who submit the pooling bid also make positive profits.11

11In particular, the following profit function is obtained:

Π(s) :=

{

κ−(1−F (sp|L))
F (sp|L)(1+ρ(s)) (v(l, L)− bp(1 + ρ(s)∆(sp))) if s ≤ sp,
ρ(s)

1+ρ(s)v(r, R)− bp if s ≥ sp.
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(v) The value of information, i.e., the value of receiving a signal, is strictly positive for the

bidders. This is because winning an object at the pooling bid is only partially informative

and the equilibrium price is uninformative, while, on the other hand, signals provide partial

information about the state.

4. Information Aggregation Failures in Monotone Equilibria

In the previous section, we described equilibria in which no information is aggregated by

the price. A prominent property of the equilibrium we described is that equilibrium bids are

nondecreasing in the signal that a bidder receives. In this section, in order to demonstrate the

robustness of Theorem 1, we characterize all symmetric equilibria in which the bid function

is a nondecreasing function of signals (Lemma 1). We then use our characterization to show

that information cannot be fully aggregated in equilibria in which the bidding function is

nondecreasing (Theorem 2). Moreover, we show that equilibria in which the bidding function

is nondecreasing exist under a mildly restrictive condition (Theorem 2). Consequently, our

results in this section show that i) the failure of information aggregation is inherent in

equilibria in which the bidding function is nondecreasing; and moreover, ii) such equilibria

exist for a wide range of parameter values.

Recall that our object of study is a sequence of equilibrium bidding functions b = {bn}
∞
n=m.

We say that a bidding function is nondecreasing (nonincreasing) if b(s) is a nondecreasing

(nonincreasing) function of s; and we say that a sequence b is nondecreasing (nonincreasing) if

bn is a nondecreasing (nonincreasing) bidding function for each n. We begin by characterizing

nondecreasing equilibrium bidding functions.12

Lemma 1 (Characterization) Suppose that Assumptions 1-3 hold. Every equilibrium bidding

function b that is nondecreasing satisfies the following conditions:

(i) There is a cutoff signal sp ∈ [0, 1] and a pooling bid bp such that b(s) = bp for every

s < sp, and b(s) > bp for every s > sp.

(ii) The bidding function b(s) is strictly increasing in the range (sp, 1].

(iii) Bidders with signals above sp choose action r and bidders with signals below sp choose

action l when they win an object.

The characterization lemma essentially states that any nondecreasing equilibrium resem-

bles the equilibrium that we constructed in the previous section for Theorem 1. More specif-

ically, Lemma 1 shows that in any nondecreasing equilibrium, there is at most one interval,

Note that Π(sp) = 0 by construction, Π(s) > 0 for all s < sp and for all s > sp.
12A straightforward modification of the lemma delivers a characterization of all nonincreasing equilibrium

bidding functions as well.
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which includes zero, over which the bidding function is constant and equal to the pooling

bid; outside of this interval, the bidding function is strictly increasing. Moreover, the bidders

who win an object choose l if they have submitted the pooling bid, and choose r if they have

submitted a bid above the pooling bid.

As we noted in the previous section, if the bidding function is nondecreasing, then there

must be pooling. We now provide an intuitive sketch of the remaining arguments for Lemma

1. Bidders who bid a pooling bid choose action l if they win an object. On the

way to a contradiction, suppose that there is a bidder who bids the pooling bid and chooses

action r if he wins an object. Notice that he wins an object only when the auction price is

not more than the pooling bid. Moreover, when the price is equal to the pooling bid, there

is rationing with strictly positive probability. When the price is equal to the pooling bid,

losing a unit is a signal more favorable to state R because of the loser’s curse. However, if

this bidder deviates from such a strategy by increasings his bid slightly, he ensures that he

wins an object whenever the auction price is equal to the pooling price. Such a deviation is

profitable, because such a bidder chose action r when he won an object before the deviation

(by the hypothesis), and after the deviation, he wins an object in those instances when he

had been losing by bidding the pooling bid.

There is only one pooling bid. If the bidders who are bidding a pooling bid choose

action l when they win an object at the price equal to the pooling bid, then they also choose

action l if the price is lower than the pooling bid, and they make strictly positive profits

when the price is lower than their bid. Therefore, the bidder with the lowest signal (i.e.,

signal zero) also would have chosen action l if she were to bid the highest pooling bid, and

won an object. However, the bidder with signal zero then has the highest valuation for the

object among all bidders whose bids are less than the highest pooling bid. This implies that

the bid chosen by a bidder who receives signal zero must be at least as large as all the

other pooling bids. Therefore, our assumption that the bidders use a nondecreasing bidding

function implies that there is at most one pooling bid.

Bidders who submit bids above the pooling bid choose action r if they win

an object. Suppose sp is the highest signal for which b(sp) equals the pooling bid. Assume

that a bidder who receives signal s′ > sp, where s′ is arbitrarily close to sp, plays l if he

wins an object and the auction price is equal to the pooling bid. We now argue that this

assumption leads to a contradiction. A bidder who receives signal s′ prefers submitting a bid

that exceeds the pooling bid to submitting the pooling bid because s′ > sp. Suppose that the

bidder who receives signal sp deviates and submits a bid that exceeds the pooling bid by an

arbitrarily small amount and wins an object at the pooling price. In this event, the posterior

of a bidder with signal sp puts more weight on state l than the posterior of a bidder with

19



signal s′. Therefore, if the bidder who receives signal s′ prefers to submit a bid that exceeds

the pooling bid, then so does a bidder who receives signal sp. However, this contradicts the

fact that b(sp) equals the pooling bid.

In the theorem below, we use the characterization given by Lemma 1 to show that mono-

tone equilibria cannot fully aggregate information. Moreover, we establish that a monotone

equilibrium sequence exists if Condition 1 holds, i.e., if ρ(0) ≥ ρ∗.

Theorem 2 Suppose that Assumptions 1-3 hold. If b is a nondecreasing equilibrium se-

quence, then b does not fully aggregate information. Moreover, if Condition 1 is satisfied,

then a nondecreasing equilibrium sequence b exists.

The conclusion of the theorem follows because the auction price is equal to the pooling

bid with strictly positive probability even when the state is R. Moreover, this probability

is bounded strictly away from zero even as the number of bidders grows arbitrarily large.

Therefore, an outside observer is uncertain about the state when she observes that the

auction price is equal to the pooling bid. Moreover, this event occurs with strictly positive

probability. To see why, suppose that the price is equal to the pooling bid with probability

close to zero in state R. However, if this were the case, then nobody would be willing to

choose action r when the price is equal to the pooling bid. But, this contradicts Lemma 1

which shows that all the bidders who submit a bid above the pooling bid play r when they

win an object at the price of the pooling bid.

5. Discussion

5.1. Pooling bid, loser’s curse and nonmonotonicity of the value function A key

feature of our equilibrium construction that makes price uninformative about the state of the

world is the existence of a pooling bid. In other words, in the equilibrium that we construct,

there is an atom in the equilibrium bid distribution at bp. In sharp contrast, the existence

of such a pooling bid is not possible in the symmetric equilibria of the auction models of

Pesendorfer and Swinkels (1997) or Milgrom and Weber (1982), where there is no ex-post

action. The existence of a pooling bid in our model and the impossibility of pooling in

auctions without ex-post actions are both consequences of the loser’s curse, i.e., the fact

that the probability of winning an object at the pooling bid in state L is strictly higher than

the probability of winning an object at the pooling bid in state R. Equivalently, a bidder

is more convinced that the state is R when he does not win an object than when he does,

provided that the price is the pooling bid and he bid the pooling bid.

Intuitively, not winning an object at the pooling bid, when the auction price is equal to

the pooling bid, is a strong signal in favor of state R. Therefore, whenever the auction price
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is equal to the pooling price, a bidder would rather increase his bid slightly and ensure that

he wins an object in Pesendorfer and Swinkels (1997)’s model, because any news in favor of

state R is good news.

In our framework, however, the value function is nonmonotonic in the belief of the bidder

that the state is R and this nonmonotonicity is a consequence of Assumption 1. In particular,

the bidders who bid the pooling bid take action l when they win a unit. Hence, for such a

bidder a signal in favor of state R is bad news, unless this signal is overwhelmingly strong.

Therefore, the loser’s curse argument does not preclude pooling. On the contrary, deviation

from the pooling bid to a slightly higher bid makes such bidders win a unit more frequently,

albeit with a different belief about the state, which makes them worse off.

To see why information could be aggregated if Assumption 1 is not satisfied and the value

function is monotonic, suppose that v(r, R) > v(l, L) = v(r, L) = v(l, R) = 0, that is, action

l is weakly dominated by action r. In this case, v satisfies neither inequality (1) nor (2) and

our model coincides with Pesendorfer and Swinkels (1997)’s model with two states of the

world Ω = {L,R} where the value of the object is equal to zero in state L and equal to

v(r, R) in state R. In the unique symmetric equilibrium of the auction with n bidders and k

objects, the bidding function bn(s) = v(r, R) Pr(ω = R|s1 = s, Y k
n−1 = s) for every s ∈ (0, 1).

This function is strictly increasing in s because the signal distribution satisfies MLRP. Notice

that as n gets larger, bidders who receive signals sκR and sκL determine the equilibrium prices

in states R and L respectively. A key observation that delivers information aggregation is

that limn→∞ bn(s
κ
R) = v(r, R) and limn→∞ bn(s

κ
L) = 0, i.e., prices converge to v(r, R) and 0 in

states R and L respectively. Intuitively, the bids of sκR and sκL are distinct from each other,

and hence prices reveal which of these types won the last unit, and hence set the price (see

also Figure 7).

In contrast, in the equilibrium that we construct in Theorem 1 there is a pooling bid that

is chosen by bidders who receive signals in [0, sp]. Moreover, sp > sκR, and therefore the price

is equal to the pooling bid in both states and hence is uninformative. The key is that the

bidder with signal sκR and sκL bid the same price, and hence price cannot distinguish the

identity of the type who set the price.

6. Conclusion

In this paper, we have explored the role of market prices in aggregating information about

the correct use of objects. In our set-up, multiple homogeneous goods are allocated among

multiple bidders via a Vickrey-type auction. Our main finding is that, when prices contain

information about the ex-post actions that the owners of the object will take, then prices

may not reveal all the information available in the market. In the extreme case, prices reveal
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Figure 7: This figure depicts the equilibrium bidding functions in Pesendorfer and Swinkels (1997).
These functions converge to a step function that has a jump at a signal sc that satisfies sκL < sc < sκR.

no information about the state of the world, and a nonnegligible fraction of the objects are

thus used incorrectly.

There are trivial mechanisms that could aggregate information. In our model, there is

no room for allocative inefficiency. Therefore, a direct mechanism that elicits the signals

of bidders, allocates the objects randomly, discloses the signal profile would achieve full

efficiency. However, we study Vickrey auctions for four main reasons. First, such auctions

are frequently used in practice. Treasury bill auctions are prominent examples. Second, such

auctions resemble competitive markets in which agents are price takers, since in a Vickrey

auction, a bidder cannot change the price he pays for the object by altering his bid. Third,

just as in competitive markets, there is a uniform price. Fourth, there is a large body of

academic work that studies Vickrey auctions.

We interpret our results as suggesting that it is too much to expect prices alone to reveal

the state of the world perfectly. Also, our results highlight that markets have several statistics

other than price, such as the amount of rationing, volume of trade, and bid distributions,

that are relevant for aggregating information.

A. Organization of the Appendix

We start by proving Theorem 2 instead of Theorem 1, because the construction we use

for the former is used for the latter theorem. Later we prove Lemma 1, and then we present

the proofs of some lemmata that we use in the proofs of our theorems and lemma 1.
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B. Proof of Theorem 2

The first part of the theorem is proven in the main text. Here we prove the second part.

B.1. Method used for the construction The construction has two general steps. In the

first step, we show that in a large market with size z, there exists a cutoff signal, spz such that

in a monotonic bidding profile bz where all types below spz bid a pooling bid, the following

two properties are satisfied. i) the value of the object to bidders with signals s < spz, who win

a unit by bidding the pooling bid, is not less than the value of the object to such bidders if

they win a unit by bidding above the pooling bid, and when the price is the pooling bid. ii)

The value of the object to bidders with signals s > spz when they bid above the pooling bid

and the price is the pooling bid is not less than if such bidders bid the pooling bid and win

a unit. In this step, we also determine the value of the pooling bid.

The second step of the construction shows that under condition 1, the bidding profiles

constructed in step 1 constitute an equilibrium of the auction game when z is sufficiently

large. We do this by showing that no type has a profitable deviation from the bidding profile

constructed in step 1.

B.2. Step 1: Cutoff type For any s ∈ (0, 1), s′ ∈ S and z ∈ Z, let ρ−z (s
′, s) and ρ+z (s

′, s)

be

ρ−z (s
′, s) : =

P
(

Y κz
z−1 ≤ s, s1 = s′, 1 wins the lottery|R

)

P
(

Y κz
z−1 ≤ s, s1 = s′, 1 wins the lottery|L

) ,

ρ+z (s
′, s) : =

P
(

Y κz
z−1 ≤ s, s1 = s′|R

)

P
(

Y κz
z−1 ≤ s, s1 = s′|L

) ,

The event that “1 wins the lottery” corresponds to the event that 1 wins a prize (or equiv-

alently one unit of the object) in the following auxiliary lottery whose odds depend on the

signal distribution across the bidders. The lottery has q prizes allocated equally likely to o

people, where the number of prizes q = max {0, κz − |j ∈ {2, ..., z} : sj > s|} and the number

of people is o = 1 + |j ∈ {2, ..., z} : sj ≤ s|.13 Intuitively, ρ−z (s
′, s) is the posterior likelihood

ratio of state R and L for type s′, when he bids the pooling bid and wins a unit, where

the bidders who bid the pooling bid are those with signals less than s. The second function,

ρ+z (s
′, s) is the posterior likelihood ratio of states R and L when a bidder with a signal s′

wins a unit by bidding above the pooling bid, at a price equal to the pooling bid.

Remark 4 Observe that, both ρ−z (s, s
′) and ρ+z (s, s

′) are continuous in both arguments.

This is because the cdf F (s|ω) admits a positive density function f , and f is assumed to be

a continuous density function.

13The index sets exclude the number 1 since it is reserved for the bidder who is doing these calculations
for her best response.
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We also make the following definitions:

ρ−z (s) := ρ−z (s, s)

ρ+z (s) := ρ+z (s, s)

Note that we have used the same notation for both functions although they take different

number of arguments. Intuitively, ρ−z (s) is the posterior likelihood of a cutoff type s when

she bids a pooling bid that only types in the range [0, s] bid, and when she wins an object

with such a bid.

Remark 5 From Pesendorfer and Swinkels (Lemma 7, page 1272) and from f(0|L) 6=

f(0|R) we know that i) ρ−z (s) < ρ+z (s) for any s ∈ (0, 1), and ii) ρ−z (s
′, s) < ρ+z (s

′, s) for

any s, s′ ∈ (0, 1). This is called the loser’s curse. Moreover, ρ−z (s, s
′) and ρ+z (s, s

′) are both

strictly increasing in s and s′, since f(0|L) 6= f(0|R), as we later show in Lemma 6.

Since ρ−z (s) and ρ+z (s) are both increasing functions, u(ρ−z (s)) and u(ρ+z (s)) are both at

most single-troughed functions. Now we make two observations about values of the functions

ρ−z (s) and ρ+z (s) when s is close to zero and when s is close to one.

Lemma 2

1. ∃ε > 0 and a Z1 such that ρ−z (s) < ρ∗ and ρ+z (s) < ρ∗ for every s ≤ ε and every

z > Z1.

2. ∃ε > 0 and a Z2 such that ρ−z (s) > ρ∗ and ρ+z (s) > ρ∗ for every s ≥ 1 − ε and every

z > Z2.

Proof:

1. ∃ε > 0 such that limz→∞ ρ+z (ε) = 0, because of MLRP. Since ρ−z (s) < ρ+z (s) for s ∈ (0, 1),

limz→∞ ρ−z (ε) = 0, and since u(ρ) is strictly decreasing in the range [0, ρ∗], we have that

u(ρ−z (s)) > u(ρ+z (s)) for s ≤ ε when z > Z1 for some integer Z1.

2. For any s > sκR, limz→∞ ρ−z (1−ε) = ρ0
κ−(1−F (s|R))
κ−(1−F (s|L))

as we show in lemma 5. This, together

with condition 1 imply that ∃ε > 0 such that limz→∞ ρ−z (1 − ε) > ρ∗. Since ρ−z (s) < ρ+z (s),

and ρ−z (s) and ρ+z are strictly increasing , we have that ρ−z (s) > ρ∗ and ρ+z (s) > ρ∗ for every

s ≥ 1− ε when z is sufficiently large. Since u(ρ) is strictly increasing in the range [ρ∗, 1], we

have that u(ρ−z (s)) < u(ρ+z (s)) for s ≥ 1− ε. �

Lemma 3

1. For every z > max{Z1, Z2}, there is a unique spz ∈ (ε, 1− ε) that satisfies the equality

u (ρ−z (s)) = u (ρ+z (s)).

2. When such an spz exists, ρ+z (s) > ρ∗ for s > spz and ρ−z (s) < ρ∗ for s < spz. Moreover

ρ+z (s
p
z) ≥ ρ∗.
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Proof: 1. Let s1z and s2z be the unique signals that solve the equalities ρ−z (s) = ρ∗ and

ρ+z (s) = ρ∗ respectively. Note that s1z, s
2
z ∈ (0, 1) and are well-defined when z > max{Z1, Z2}

from lemma 2, and because ρ−z and ρ+z are both continuous and strictly increasing. Moreover,

because ρ−z (s) < ρ+z (s), z1 > z2. In the range [0, z2), u(ρ
−
z (s)) > u(ρ+z (s)), and in the range

(z1, 1], u(ρ
+
z (s)) > u(ρ−z (s)).

In the range (z2, z1), u(ρ
−
z (s)) is strictly decreasing and u(ρ+z (s)) is strictly increasing.

Therefore, u(ρ−z (s))−u(ρ+z (s)) is strictly negative in [0, z2), strictly increasing in [z2, z1], and

strictly positive in (z1, 1]. Therefore, by the intermediate value theorem, there is a unique

signal spz, in the range [z2, z1] that satisfies the equality u (ρ−z (s)) = u (ρ+z (s)).

2. As we argued above, such a signal is in the range [z2, z1], and hence ρ+z (s) > ρ∗ for

s > spz and ρ−z (s) < ρ∗ for s < spz. Also ρ+z (s
p
z) ≥ ρ∗ because spz > s2z. �

B.3. Setting the pooling bid and its properties We now determine the bidding func-

tion, bz, when z > max{Z1, Z2}. The bidding function is constant and equal to bpz :=

u(ρ−z (s
p
z)) = u(ρ+z (s

p
z)) for bidders with signals in the interval [0, spz) and is strictly in-

creasing and equal to u(ρ(s1 = s, Y κz
z−1 = s)) in the region (spz, 1). Notice that, the part

of the bidding function that is strictly increasing coincides with Pesendorfer and Swinkel’s

equilibrium bidding function, in the case where bidders are taking action r. Moreover,

u(ρ(s1 = s, Y κz
z−1 = s)) > u(ρ(s1 = spz, Y

κz
z−1 ≤ spz)) = u(ρ+z (s

p
z)) = bpz for every s > spz,

because ρ+z (s
p
z) > ρ∗ (from lemma 3) and together with MLRP.

We state the following remark that summarizes some of the findings up to now, before we

proceed:

Remark 6 The posterior likelihood ratio of types lower than spz, conditional on winning

at price bpz is less than ρ∗, and types higher than spz, conditional on the price being bpz has a

posterior likelihood ratio that is more than ρ∗. In particular,

ρ(s1 = s, Y κz
z−1 ≤ spz, 1 wins with bpz) ≤ ρ∗ for s ≤ spz, and

ρ(s1 = s, Y κz
z−1 ≤ spz) ≥ ρ∗ for s ≥ spz.

B.4. Step 2: Checking deviations In this step, we will show that the bid function we

constructed in step 1 (i.e., bz) is an equilibrium when z is large (i.e., when z > Z3 for

some integer Z3) by showing that no type has a profitable deviation from the proposed

bidding strategy profile. In the following we assume that z is large enough that spz exists,

i.e., z > max{Z1, Z2}.
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B.4.1. Bidders with signals above spz Pick a type s > spz. We will first show that for any

type s′ ∈ (spz, s) the following inequality holds:

(4) u(ρ(s1 = s, Y κz
z−1 = s′)) > bz(s

′) = u(ρ(s1 = s′, Y κz
z−1 = s′))

This inequality follows because ρ(s1 = s, Y κz
z−1 = s′) > ρ(s1 = s′, Y κz

z−1 = s′) by MLRP and

because ρ(s1 = s′, Y κz
z−1 = s′) > ρ(s1 = s′, Y κz

z−1 ≤ s′) = ρ+z (s
′) ≥ ρ∗, again by MLRP and

Lemma 3. Therefore, type s has no profitable deviation to bid bz(s
′) for any s′ ∈ (spz, s)].

A similar calculation shows that such a type has no profitable deviation to bid above b(s).

Next, we will argue that such a type doesn’t find it a profitable deviation to bid bpz. To show

this, we will prove two inequalities:

u(ρ+z (s, s
p
z)) > bpz(5)

u(ρ+z (s, s
p
z)) ≥ u(ρ−z (s, s

p
z))(6)

To see that these inequalities suffice to prove that bidding bpz is not a profitable deviation,

notice that, first, such a type makes a strictly positive profit when the price is above bpz

and below bz(s). The first inequality above says that, when bidding above bpz, type s has a

positive payoff when the price is equal to bpz. The second inequality says that, the payoff to a

bidder when he bids above bpz and the price is bpz is not less than when he bids bpz and wins a

unit. Moreover, the probability of winning a unit by bidding above bpz is strictly larger than

winning by bidding bpz. Hence, bidding bpz cannot not be a profitable deviation. Now, we will

prove the two inequalities above.

The first inequality follows, because ρ+z (s, s
p
z) > ρ+z (s

p
z) ≥ ρ∗ by MLRP and Lemma 3.

Now we will show the second inequality. There are two cases to consider. Either ρ−z (s, s
p
z) ≥

ρ∗ or ρ−z (s, s
p
z) < ρ∗. In the former case, ρ+z (s, s

p
z) ≥ ρ−z (s, s

p
z) together with the facts that

both are at least ρ∗ and u is increasing when ρ ≥ ρ∗ deliver the desired inequality. In the

latter case, ρ−z (s, s
p
z) > ρ−z (s

p
z). Since both are less than ρ∗, and since u(ρ) is decreasing in

that range, u(ρ−z (s, s
p
z)) < u(ρ−z (s

p
z)) = bpz < u(ρ+z (s, s

p
z)).

B.4.2. Bidders with signals below spz In this part of the proof, we will need z sufficiently

large and we will need our restriction on the priors that ρ(0) > ρ∗. Remember that sκR is the

signal such that F (sκR|R) = 1 − κ. We will show in the next lemma that such types have a

negative payoff if they bid above bpz and if the price is equal to bpz .

Lemma 4 ∃Z5 ∈ Z such that u(ρ+z (s, s
p
z)) ≤ bpz for every s < spz, every z > Z5.

Proof: If ρ+z (s, s
p
z) ≥ ρ∗, then ρ+z (s

p
z) = bpz > ρ+z (s, s

p
z) because of MLRP and because u(ρ)

is increasing when ρ ≥ ρ∗. The rest of the proof shows either directly that u(ρ+z (s, s
p
z)) ≤ bpz
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or indirectly by showing that ρ+z (s, s
p
z) ≥ ρ∗ for every s < spz when z is sufficiently large. In

the latter case, since ρ+z (0, s
p
z) ≤ ρ+z (s, s

p
z), proving that ρ+z (0, s

p
z) ≥ ρ∗ suffices.

We’ll make our argument under the assumption that the limit of the sequence {spz, b
p
z}

∞
z=1 =

(sp, bp) exists and then we will verify this in lemma 5. The next three claims are the steps of

the proof. �

Claim 1 sp ≥ sκR.

Proof: On the way to a contradiction, suppose that sp < sκR. Then, limz→∞ ρ+z (s
p
z) = 0,

because limz P
(

Y κz
z−1 ≤ spz|L

)

= 1 and limz P
(

Y κz
z−1 ≤ spz|R

)

= 0 if sp < sκR. This contradicts

the assertion in Remark 6 that ρ(s1 = s, Y κz
z−1 ≤ spz) ≥ ρ∗ for s > spz. �

Claim 2 If sp > sκR, then ∃Z3 ∈ Z such that ρ+z (0, s
p
z) ≥ ρ∗, for every z > Z3.

Proof: Since F (sp|ω) > 1 − κ for ω ∈ Ω, limz→∞ Pr(Y κz
z−1 ≤ spz) = 1 for ω ∈ Ω. Hence,

limz→∞ ρ(s1 = 0, Y κz
z−1 ≤ spz) = ρ(s1 = 0). Since we assumed ρ(0) > ρ∗ in condition 1,

∃Z3 ∈ Z such that ρ+z (0, s
p
z) ≥ ρ∗, for every z > Z3. �

Claim 3 If sp = sκR, u(ρ
+
z (s, s

p
z)) ≤ bpz.

Proof: This is the case when prices may indeed reveal some information. We’ll start by

arguing that pooling bids, bpz converges to u(0).

The crucial observation in this case is that limz→∞ Pr(ω = L|pz = bpz, 1 wins with bpz) = 1.

The reason for the above limit calculation is the following. Fix an ǫ > 0. Then, limz→∞ Pr(Y
(κ−ǫ)z
z−1 >

spz|ω = R) = 0. Therefore, limz→∞ Pr(pz = bpz, 1 wins with bpz|ω = R) ≤ ǫ
1−κ+ǫ

. Since this is

true for every ǫ > 0, it has to be that

(7) lim
z→∞

Pr(pz = bpz , 1 wins with bpz|ω = R) = 0.

On the other side limz→∞ Pr(pz = bpz|ω = L) = 1 because 1 − F (sκR|ω = L) < κ. Moreover,

there is an ǫ > 0 such that Pr(|(signals above sκR)| ≤ (κ− ǫ)z|ω = L) = 1. Therefore,

(8) lim
z→∞

Pr(pz = bpz , 1 wins with bpz|ω = L) > 0.

Combining equation 7 and inequality 8 delivers that

(9) lim
z→∞

Pr(ω = L|pz = bpz, 1 wins with bpz) = 1.
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Now we’ll finish the argument that pooling bids converge to u(0). Since each signal has

bounded information, limz→∞ bpz = u (ρ−z (spz, s
p
z)) = u(0), which follows from equality 9.

Note that if ρ+(s, spz) ≥ ρ∗, then the proof is complete. So we assume that ρ+(s, spz) <

ρ∗. Note that, there is an ǫ ∈ (0, ρ∗) such that lim infz→∞ ρ+(0, spz) > ǫ. This is because,

ρ+(s, spz) ≥ ρ∗ for every s > spz (by lemma 3) and because of the limited individual information

assumption on the signal distributions. Therefore, u(ρ+(0, spz)) < u(ǫ) < u(0). Since we have

shown that limz b
p
z = u(0), when z is sufficiently large, u(ρ+(0, spz)) < bpz, proving the claim

for this case. �

We have proven the lemma. Now we will argue that bidders with signals less than spz

don’t have profitable deviations to bid strictly above spz when the hypothesis of lemma 4

is satisfied. As shown in lemma 4, such types lose money if they bid above bpz and if the

price is equal to bpz. If a type s < spz bids strictly above b(s′) for some s′ > spz, we will now

argue that he loses money when the price is equal to b(s′). If ρ(s1 = s, Y κz
z−1 = s′) ≥ ρ∗, then

u(ρ(s1 = s, Y κz
z−1 = s′)) < b(s′) = ρ(s1 = s′, Y κz

z−1 = s′). If ρ(s1 = s, Y κz
z−1 = s′) < ρ∗, then

bz(s
′) > bpz ≥ u(ρ+z (s, s

p
z)) = u(ρ(s1 = s, Y κz

z−1 ≤ spz)) > u(ρ(s1 = s, Y κz
z−1 = s′)), where the

second inequality follows from lemma 4, and the third inequality follows from MLRP.

C. Proof of Theorem 1

Proof: We will prove this theorem by using the same construction that we used to prove

Theorem 2. Notice that the assumption that ρ(0) ≥ ρ∗ facilitates that the hypothesis of

Theorem 2 is satisfied, and hence the constructed bidding strategies constitute an equilibrium

when z is sufficiently large.

We will now show that if u(0) > u(ρ(sκR)), then the limit of the cutoff types as z goes to

infinity, which we denote by sp is strictly larger than sκR. The implication of this inequality is

that equilibrium prices become the pooling bid in both states of the world with probabilities

approaching one, and hence prices reveal no information as the market gets arbitrarily large.

We have already proven in the proof of Theorem 2 that any limit point of the cutoffs has

to be at least sκR. Thus it remains to show that sκR is not a limit point of the cutoff types

constructed in the sequence of bidding functions.

On the way to a contradiction, suppose our claim is not true, i.e., sκR is the limit point of

the cutoff types. Then as we argued in the proof of Theorem 2, the pooling bid, bpz goes to

u(0) as z goes to ∞. On the other side, ρ+z (s
p
z) ≥ ρ∗ by Lemma 3. Moreover, ρ+z (s

p
z) < ρ(spz).

Hence, bpz = u(ρ+z (s
p
z)) < u(ρ(spz)). However, lim bpz = u(0) and lim u(ρ(spz)) = u(sκR) < u(0)

which contradicts that bpz < u(ρ(spz)) for every z. �
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D. Proof of Lemma 1

Proof: There are two cases to consider, either b is strictly increasing or there is an atom

in the bid distribution.

Case 1: If b is strictly increasing, then the first part of the lemma is true by picking sp = 0.

The second part of the lemma for this case claims that b is a la Pesendorfer and Swinkels

(1997) (abbreviated as PS in the following). This is a slight modification of the arguments

in PS, the second part of ‘proof of proposition 1’ in page 1272.

Case 2: Suppose that the bid function has an atom at some bid bp. Then the monotonicity

of the bidding function implies that b(s) = bp for an interval of signals, S(bp) = (s′, sp) with

s′ < sp and b(s) = bp for every s ∈ S(bp) and b(s) > bp for every s > sp. In steps 1, 2 and

3 below we will show that there can be at most one atom in the bid distribution and that

s′ = 0.

Step 1: The first step is to show that ρ(s1 = sp, p = bp, 1 wins with bp) < ρ∗. On the way

to a contradiction, suppose that it’s not true. Then due to winner’s and loser’s curse (see

PS, page 1272), types in S(bp) would deviate and bid slightly above bp. This follows from

the monotonicity of the bidding function b.

Step 2: We will now argue that

ρ(s1 = s, p, 1 wins with b(s)) < ρ∗

for every s < sp and p ≤ b(s). We first claim that the following is true for every p′ < bp

which is in the range of b.

ρ(s1 = s, p′) < ρ(s1 = s, p = bp, 1 wins with bp).

This is a non-trivial claim and the proof is in Lemma 7. Moreover,

ρ(s1 = s, p, 1 wins with p) ≤ ρ(s1 = s, p).

This inequality is a standard argument from lemma 7 of PS, at page 1272. Combining the

two inequalities in this step with the result in step 1 delivers the claim.

Step 3: We will now argue that all types below sp bid bp.

On the way to a contradiction, assume that a positive measure of types bid strictly below

bp and let s′′ < s′ be such a type. By lemma 7, the probability that type s′′ puts on state L

were she to bid bp and the price is any price between her bid and bp is weakly higher than

that of types who are bidding bp. Formally, for any p′ ≤ bp that is in the range of b, the
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following holds:

Pr(ω = L|s1 = s′′, p′, 1 wins by bidding bp) ≥ Pr(ω = L|s1 = s′, p′, 1 wins by bidding bp).

Since bidding slightly below bp is a feasible strategy, we have that,

u(ρ(s1 = s′, bp, 1 wins by bidding bp)) ≥ bp.

Therefore, bp is weakly less than the value of the object to types who bid bp conditional

on the price being bp and they winning the object. Since this value is strictly less than the

value when the price is strictly lower than bp, these types make strictly positive profits when

the price is strictly less than bp. And finally, the bid of s′′ cannot be an atom because the

value of the object conditional on losing when the price is her bid is strictly larger than the

value if the price was strictly above her bid but not higher than bp, which contradicts her

bid being an atom (This is a completely symmetric argument as lemma 7). More precisely,

for any p′ ∈ (b(s′′), bp] such that b(s) = p′ for some s ∈ (s′′, sp),

Pr(ω = L|s1 = s′′, p = b(s′′), 1 loses by bidding b(s′′)) ≥ Pr(ω = L|s1 = s, p′, 1 wins by bidding p′)

Therefore,

u(ρ(s1 = s′′, p = b(s′′), 1 loses by bidding b(s′′))) ≥ u(ρ(s1 = s, p′, 1 wins by bidding p′)) ≥

p′ > b(s′′).

Therefore, type s′′ would have an incentive to bid strictly above b(s′′), yielding a contradiction

to b(s′′) being an atom. Since b(s′′) is not an atom, s′′ has a strict incentive to bid bp, yielding

the contradiction.

Step 4: Now we consider bids above bp and will show that ρ(s1 = sp, p = bp) > ρ∗

Since we have shown that there can be at most one atom, b does not have a constant part

above sp. Therefore, it should be that ρ(s1 = sp, p = bp) > ρ∗. This follows from monotonicity

of b and the winner’s curse. The reason is that otherwise signals lower and arbitrarily close

to sp would have a provitable deviation to bid above bp (see PS, page 1272 again). Moreover

ρ(s1 = s, p = b(s′)) > ρ∗ for s, s′ > sp from MLRP.

We now conclude that b has to be a la PS for types above sp, i.e., for s > sp, b(s) =

u(ρ(s1 = s, Y k
n−1 = s)). This follows from PS, because the value of the object is strictly

increasing in the probability that the bidder assigns to state R for types above sp. �
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E. Miscellaneous Results

Lemma 5 For any s > sκR, limz ρ
−
z (s) = ρ(s)κ−(1−F (s|R)))

F (s|R)
F (s|L)

κ−(1−F (s|L)))
. There is a unique

signal sp which is a limit point of the cutoffs {spz}z≥0. Moreover either sp = sκR or sp is

the unique signal with the property that satisfies for ρ̄(s) := ρ(s)κ−(1−F (s|R)))
F (s|R)

F (s|L)
κ−(1−F (s|L)))

,

u(ρ̄(s)) = u(ρ(s)).

Proof: Let sp be a limit point of the sequence, and renumber the new seuence so that its

limit is sp. We have already shown that sp ≥ sκR in claim 1 of proof of theorem 2. So now

assume that sp > sκR. Let objects taken denote the random variable which is equal to the

minimum of κz and the number of bidders with signals higher than spz. We first note that,

ρ−z (s
p
z) can be more conveniently expressed by the following equality:

ρ−z (s
p
z) = ρ(spz)

E
[

κz−(objects taken)
z−(objects taken)

|R
]

E
[

κz−(objects taken)
z−(objects taken)

|L
]

Our first observation is that

objects taken

z
|ω →z→∞

in probability 1− F (sp|ω)

Therefore as z → ∞,

E

[

ρz − (objects taken)

z − (objects taken)
|ω

]

→
κ− (1− F (sp|ω))

F (sp|ω)

and hence,

E
[

ρz−(objects taken)
z−(objects taken)

|R
]

E
[

ρz−(objects taken)
z−(objects taken)

|L
] →

κ−(1−F (sp|R))
F (sp|R)

κ−(1−F (sp|L))
F (sp|L)

Therefore as z → ∞,

ρ−z (s
p
z) → ρ(sp)

κ−(1−F (sp|R))
F (sp|R)

κ−(1−F (sp|L))
F (sp|L)

Since all of the above apply to any arbitrary s > sκR, the first claim of the lemma is proven.

Since sp > sκR, as z → ∞, ρ+z (s
p
z) → ρ(sp).
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Since each spz has the feature that u(ρ−z (s
p
z)) = u(ρ+z (s

p
z)), and since for each s > sκR,

ρ−z (s) → ρ(s)

κ−(1−F (s|R))
F (s|R)

κ−(1−F (s|L))
F (s|L)

we have that for s ∈ (sκR, 1),

∆(s) := u

(

ρ(s)

(

κ− (1− F (s|R)))

F (s|R)

F (s|L)

κ− (1− F (s|L)))

))

− u (ρ(s))
(≥)

≤ 0 for s
(≤)

≥ sp.

The term ∆(s) is strictly decreasing in the interval (sκR, 1) and is strictly negative when s is

close to 1, therefore, there should be at most one signal sp that can be a limit point in the

range (sκR, 1).

Now suppose that sκR is a limit point. We will show that no signal s > sκR can be a limit

point. If sκR is a limit point of the sequence, then it should be that limz u(ρ
−
z (s

p
z)) = u(0),

and lim supz u(ρ
+
z (s

p
z)) ≤ u(sκR). But then, for every s > sκR, ∆(s) < 0.

Hence we have shown that if sκR is a limit point, then it is the unique limit point, and if

it is not, and if an s > sκR is a limit point, then it is unique. This completes the argument

that the sequence has a unique limit point. �

Lemma 6 If f(0|L) 6= f(0|R), then ρ−z (s) > ρ+z (s) for any s ∈ (0, 1). Moreover both of

these functions are strictly increasing in s.

Proof: The first claim in this lemma is identical to the argument in Lemma 7 in page

1272 of Pesendorfer and Swinkels (1997), and is called loser’s curse. The claim that ρ+z (s)

and ρ−z (s) are strictly increasing is standard and follows from the MLRP assumption. The

proof can be found in the technical appendix of Milgrom and Weber (1982). �

Lemma 7 In an increasing equilibrium bidding function b, if there is an atom at bid bp,

then for any p < bp the following holds:

Pr(ω = L|s1 = s, p) > Pr(ω = L|s1 = s, p = bp, 1 wins with bp).

Proof: Let the interval of types who are bidding at the atom bid be (s′, s′′). Then Pr(ω =

L|s1 = s, p) > f(ω = L|s1 = s) Pr(ω = L|Y k
n−1 = s′). The term Pr(ω = L|s1 = s, p = bp, 1
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wins with bp) is calculated using the following steps:

1− Ft(s
′, s′′|ω) :=

F (s′′|ω)− F (s′|ω)

F (s′′|ω)

Cn−1−i
j (ω) :=

(

n− 1− i

j

)

(1− Ft(s
′, s′′|ω))j (Ft(s

′, s′′|ω))
n−1−i−j

Di(ω) :=

(

n− 1

i

)

(1− F (s′′|ω))i(F (s′′|ω))n−1−i
∑

n−1−i≥j≥k−i

Cn−1−i
j (ω)

k − i

j + 1

Pr(s1 = s, p = bp, 1 wins with bp|ω) = f(s|ω)
∑

0≤i≤k−1

Di(ω)

Pr(ω = L|s1 = s, p = bp, 1 wins with bp) =
f(s|L)

∑

0≤i≤k−1D
i(L)

f(s|R)
∑

0≤i≤k−1D
i(R)

Explanation: The probability that 1 wins with bp, the price is bp conditional on ω can be

calculated as the sum of the probabilities of winning in each of the following events, wi,j

where i ≤ k − 1 bidders bid above s′′, and k − i ≤ j ≤ n − 1 − i bidders bid the pooling

bid. The probability of winning conditional on event wi,j is k−i
j+1

, since there are k− i objects

remaining for the j+1 bidders bidding the pooling bid. The above expressions calculate the

probability of each event wi,j in each state and calculate the total winning probability in

each state. Similarly the term f(ω = L|s1 = s) Pr(ω = L|Y k
n−1 = s′) is calculated using the

following steps:

Pr(Y k
n−1 = s′|ω) =

(

n−1
1

)

f(s′|ω)
∑

0≤i≤k−1

(

n−2
i

)

(1− F (s′′|ω))i(F (s′′|ω))n−2−iCn−2−i
k−i−1 (ω)

f(ω = L|s1 = s) Pr(ω = L|Y k
n−1 = s′) =

f(s|L) Pr(Y k
n−1

=s′|L)

f(s|R) Pr(Y k
n−1

=s′|R)
.

We will now show the following:

f(s|L) Pr(Y k
n−1 = s′|L)

f(s|R) Pr(Y k
n−1 = s′|R)

>
f(s|L)

∑

0≤i≤k−1D
i(L)

f(s|R)
∑

0≤i≤k−1D
i(R)

,

or equivalently the following,

(

n−1
1

)

f(s′|L)
∑

0≤i≤k−1

(

n−2
i

)

(1− F (s′′|L))i(F (s′′|L))n−2−iCn−2−i
k−i−1 (L)

(

n−1
1

)

f(s′|R)
∑

0≤i≤k−1

(

n−2
i

)

(1− F (s′′|R))i(F (s′′|R))n−2−iCn−2−i
k−i−1 (R)

>

∑

0≤i≤k−1D
i(L)

∑

0≤i≤k−1D
i(R)

.

Let,

Ei(ω) :=

(

n− 1

1

)

f(s′|ω)

(

n− 2

i

)

(1− F (s′′|ω))i(F (s′′|ω))n−2−iCn−2−i
k−i−1 (ω).
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We first obtain the following identity by direct algebra:

Di(ω)

Ei(ω)
=

(1− Ft(s
′, s′′|ω))F (s′′|ω)

f(s′|ω)

∑

k−i≤j≤n−i−1

(k − i)!(n− k − 1)!

(j + 1)!(n− j − i− 1)!

(

1− Ft(s
′, s′′|ω)

Ft(s′, s′′|ω)

)j+i−k

.

A simplification of the above identity via a change of variables by letting u := j − k + i

delivers the following:

Di(ω) = Ei(ω)
(1− Ft(s

′, s′′|ω))F (s′′|ω)

f(s′|ω)

∑

0≤u≤n−k−1

(k − i)!(n− k − 1)!

(k − i+ u+ 1)!(n− k − u− 1)!

(

1− Ft(s
′, s′′|ω)

Ft(s′, s′′|ω)

)u

.

The following are consequences of MLRP:

(1− Ft(s
′, s′′|L))F (s′′|L)

f(s′|L)
<

(1− Ft(s
′, s′′|R))F (s′′|R)

f(s′|R)
,

and, for any positive integer u,

(

1− Ft(s
′, s′′|L)

Ft(s′, s′′|L)

)u

<

(

1− Ft(s
′, s′′|R)

Ft(s′, s′′|R)

)u

.

For any fixed u ∈ {0, ..., n− k− 1}, the term (k−i)!(n−k−1)!
(k−i+u+1)!(n−k−u−1)!

is strictly increasing in i.

Our final observation is that Ei(L)
Ei(R)

is strictly decreasing in i. This observation also follows

from the MLRP assumption and some algebra.

These four observations yield the desired result. �
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