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Abstract

This paper studies optimal income taxes and retirement benefits in a life-cycle model with
an intensive margin of labor supply and an endogenous retirement age. The government in-
sures and redistributes resources across individuals who privately observe persistent shocks to
their productivity. In this environment, the optimal labor tax is hump-shaped in age, unlike
in existing models with no endogenous retirement choice, in which the optimal tax is every-
where increasing. Because of the retirement margin, the total Frisch elasticity of labor supply
increases with age. This elasticity effect flattens the labor tax for old workers relative to the
model without an extensive margin. In addition, as high-productivity workers retire later than
low-productivity workers, the distribution of productivity in the labor force features, over time,
a higher mean and lower variance than in the general population. This novel composition effect
pushes for a labor tax that declines for old workers. Optimal policy balances these effects with
the insurance benefits of taxation, yielding the hump-shape in tax rates. In numerical simu-
lations, the optimum achieves sizable welfare gains that approximately optimal age-dependent
taxes fail to capture under the current US Social Security system. Yet, an optimal combination
of age-dependent linear taxes with increasing-in-age delayed retirement credits generates welfare
gains that are close to those from the optimum.
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1 Introduction

Planning for retirement and choosing when to retire are important decisions for most people.

Workers pay payroll taxes on their labor income to be eligible for retirement benefits, save and

invest in retirement pensions, and choose whether to retire early or delay retirement.

There is strong evidence that the tax and Social Security (SS) system affects retirement be-

havior. Labor income taxes affect people’s labor supply, which adjusts both through the number

of daily hours worked—an intensive margin—and through the timing of retirement—an extensive

margin. Capital income taxes on retirement savings and the value of retirement pensions deter-

mine income after retirement. In turn, retirement behavior affects the income distribution and the

duration of retirement, which are key inputs of the tax and retirement benefits system.

The goal of this paper is to investigate the consequences of flexible retirement for the optimal

design of income taxes and retirement benefits over a person’s life-cycle. Since Mirrlees (1971) and

Diamond and Mirrlees (1978), the vast majority of optimal tax theory assumes that retirement

occurs at an exogenous date instead of being an endogenous decision. Recent literature analyzes

the consequences of endogenous retirement for optimal tax and pension systems. Until now, the

analysis has been restricted to economies in which agents experience a permanent shock at birth

in a static setting (cf. Michau (2014) and Shourideh and Troshkin (2015)). In realistic life-cycle

settings where earnings risk is gradually resolved over time, the implications of flexible retirement

for the pattern of optimal income taxes and retirement benefits are yet to be understood.

The main question my paper addresses is the following: How is the optimal tax and retirement

benefit system altered when we acknowledge that people choose when to retire? I derive an ana-

lytical characterization of optimal history-dependent policies and describe the economic forces that

shape their patterns over the life-cycle. Finally, I calibrate the model to the US economy and ask

how the welfare gains can be achieved by simple policies. I study two such policy experiments: a

reform of the tax system, and a joint reform of the tax system and SS system.

I jointly determine optimal tax and retirement benefits and the resulting retirement decisions

in a dynamic life-cycle model in which workers adjust their labor supply through working hours and

the timing of retirement. Individuals live for T years, work, consume, and choose when to retire.

During their working years, labor income is the product of intensive labor supply and productivity,

which evolves as a persistent Markov process. A fixed utility cost of staying in the labor market
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creates a non-convexity in the disutility of labor. This fixed cost has important implications for the

retirement decision. First, workers adjust their working hours continuously until they irreversibly

exit the labor force, then their hours of work discretely drop to zero. Second, when productivity is

public information, low-productivity agents efficiently retire earlier than high-productivity agents.

Third, there is an option value of waiting for higher earnings before retirement. As a consequence,

at the retirement age, the marginal utility of staying in the labor market is lower than the marginal

utility from not working. This option value decreases over time as the value of waiting for higher

earnings vanishes at T .

The government chooses consumption, output and retirement age in order to maximize social

welfare. As in the standard Mirrlees (1971) model, individual productivity and labor effort are

privately observed by the workers. Therefore, the government’s goal is to design a dynamic mecha-

nism that is incentive compatible. I describe the distortions to the optimal retirement decision and

analyze constrained efficient allocations by studying the wedges, or implicit marginal taxes, and

consumption after retirement.

Methodologically, because of a large number of incentive constraints, the government’s problem

cannot be treated using a direct approach. A First-Order Approach (FOA) provides analytic

tractability in characterizing allocations. This approach relaxes the problem by imposing only a

subset of incentive constraints. I follow the implementation of this approach by Farhi and Werning

(2013) in the context of optimal taxation. I formulate the model in continuous-time for a sharper

characterization of the retirement decision.

In the analytical part of the paper, I determine how optimal policies evolve over time and I

provide some intuition for the numerical results. I show through two effects, that optimal policies

imply a labor tax that is hump-shaped in age under flexible retirement, while it is increasing in

age under exogenous retirement. First, despite the intensive Frisch elasticity of labor supply being

constant, the total Frisch elasticity increases with age. This is because of the retirement margin

and the decreasing option value of waiting for higher earnings before retirement. This elasticity

effect implies that the optimal labor tax is flatter in age relative to the model without an extensive

margin. Second, in the constrained optimum, agents with a history of high productivity shocks

are provided with higher retirement consumption and are incentivized to retire later than agents

with a history of low productivity shocks. Therefore, through selection, the labor force becomes

increasingly more productive than the pool of all potential workers of the same age. When the forces
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of this composition effect are stronger than the increase of variance in productivity that occurs with

age, the older labor force is also more equal in productivity than the general population. Setting

a decreasing-in-age labor tax for old workers increases the efficiency of the intensive labor supply

of these high-productivity workers. These two effects, balanced with the government’s motive for

increasing the level of insurance with age in the standard dynamic Mirrlees model, imply that the

optimal labor tax is hump-shaped in age. I consider two reference economies that allow me to

decompose the effects of elasticity and composition of the labor force on the pattern of the labor

wedge: one without an extensive margin of labor supply and one where endogenous retirement is

accounted for, by the planner, but is distributed uniformly accross workers at each age.

In the quantitative part of the paper, I exploit a recursive formulation of the FOA to numerically

illustrate these effects. I calibrate the model to the US economy under several specifications of the

fixed utility cost of staying in the labor market. I find that the average implicit labor tax is hump-

shaped in age under flexible retirement, while it is increasing with age under exogenous retirement.

I compute the welfare gains from maintaining the current SS system and moving from the existing

US tax code to the linear age-dependent labor and capital taxes that mimic optimal policies. I find

that this reform brings modest welfare gains under flexible retirement, while it achieves the bulk

of welfare gains when retirement is exogenous. The modest welfare gains are because the current

SS system does not provide appropriate incentives for delayed retirement like the optimal system

does. I find that this tax reform, when coupled with a simple SS reform that increases the delayed

retirement credits, can generate sizeable welfare gains. Because of the fixed cost that is incurred

both by low-productivity workers and high-productivity workers, most of the agents who delay

retirement as a result of the SS reform are highly productive. The decreasing-in-age labor tax for

old workers increases the efficiency of the intensive labor supply of these high-productivity agents

and delivers welfare gains from the age-dependent linear labor tax that is hump-shaped in age.

These calibrations suggest that when the endogeneity of retirement is accounted for, introducing

age-dependency into the tax code alone is not enough, and one needs to reform the SS system as

well in order to capture the bulk of welfare gains from optimal policies.

Related Literature A large empirical literature documents the relationship between retirement

behavior and tax and SS systems around the world. Gruber and Wise (1998), Gruber and Wise

(2002), and their accompanying volumes of comparative studies document that over much of the

second half of the 20th century, disincentives to continue working have created a trend towards early
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retirement. This trend has shown signs of reversing in the mid-2000s because of a combination of

factors including longevity, gender composition, social norms, tax provision and SS reforms.

This paper builds on the insights of the early non-linear income taxation literature. Mirrlees

(1971) develops the theory and optimal tax formulas that Saez (2001) links to estimated elasticities.

Albanesi and Sleet (2006) develop a dynamic Mirrleesian model and focus on the implementation

of the optimal allocations with a restricted set of instruments. The subsequent literature develops

the dynamic Mirrleesian model with persistent productivity shocks (Farhi and Werning (2013))

and focuses on the evolution of implicit labor taxes. Golosov et al. (2016) disentangle the motives

of insurance and redistribution. Stantcheva (2017) incorporates endogenous human capital acqui-

sition. Makris and Pavan (2017) investigate the effects of learning-by-doing on optimal taxes. A

comprehensive survey of the dynamic Mirrleesian literature can be found in Golosov et al. (2006)

and in Golosov and Tsyvinski (2015). All these papers assume an exogenous retirement age and

find that, as inequality in hourly wages increases with age, the average labor tax should increase

with age.

The model considered in this paper is similar to the one in Farhi andWerning (2013), augmented

with an endogenous retirement age. I find that accounting for an endogenous retirement age, the

average labor tax should be hump-shaped in age. I also find that introducing age-dependency into

the tax code alone is not enough and delayed retirement needs to be incentivized through a reform

of the SS system.

The first analysis of retirement and taxation comes from Diamond and Mirrlees (1978). In their

framework, workers are subject to disability shocks. All able workers choose the same retirement

age and, at any given age, they all share the same productivity. Hence, their retirement decisions

do not generate the composition effect, which is at the heart of my analysis. Also, Diamond and

Mirrlees (1978) do not allow for an intensive margin of labor supply. Other papers study optimal

taxation with an extensive margin of labor supply in a static framework (Saez (2002), Jacquet et al.

(2013),Gomes et al. (2017), Rothschild and Scheuer (2013)).

Recent literature has analyzed optimal tax and retirement benefits and the timing of retirement.

Michau (2014), Choné and Laroque (2014), Cremer et al. (2004) and Shourideh and Troshkin (2015)

introduce the retirement margin in the analysis of optimal tax and retirement benefit systems. In

these papers, there is a permanent shock that deterministically pins down the whole history of

productivity, as in a static setting. My paper analyzes a setting in which earnings risk is gradually
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resolved over time and is therefore able to describe the lifetime evolution of the optimal labor

income tax.

This paper is also connected to the literature on age-dependent taxation. In the Ramsey tra-

dition, Erosa and Gervais (2002) focus on linear taxes in an economy without uncertainty within

a cohort, and find that when the intensive elasticity of labor supply varies over an individual’s

lifetime, optimal tax rates are age-dependent. Conesa et al. (2009) postulate a specification of

preferences that are isoelastic in leisure instead of labor. As a consequence, the elasticity of labor

supply is high when labor is low. In their model, a low labor supply corresponds to the labor supply

of older workers; therefore, they find decreasing the labor tax with age to be optimal. Assuming

preferences that feature an increasing intensive elasticity parameter, Karabarbounis (2016) finds

that the optimal labor, within the class of the Heathcote et al. (2014) tax function, is hump-shaped

in age. The result of my paper does not rely on these particular specifications of preferences. I keep

the intensive Frisch elasticity fixed, so that the information structure and increasing inequality in

earnings are responsible for the increasing profile of the labor tax at the beginning of work life,

and the retirement margin and the selection of the labor force are responsible for their decreasing

profile in old age. In a recent contribution, Heathcote et al. (2017) analyze the optimal degree of

progressivity of age-dependent tax systems. Considering a productivity process that is on average

increasing in age and has increasing variance in age, they find that the optimal degree of progres-

sivity in the tax system is U-shaped in age. In the Mirrlees approach, Weinzierl (2011) justifies the

rising age profile of wages as a reason to increase the labor tax with age but limits his sample to

the ages 30 to 59. Farhi and Werning (2013) find that a rising variance of wages justifies increasing

the linear labor tax with age and that such an age-dependent tax achieves nearly the entirety of

welfare gains from the second-best. When one accounts for flexible retirement, the labor tax should

be on average hump-shaped in age and age-dependent taxes alone do not achieve significant welfare

gains unless they are complemented by SS reform.

As for the methodological approach, this paper builds on the dynamic mechanism design and

optimal contracting literatures. Pavan et al. (2014) develop the First Order Approach that sim-

plifies the dynamic mechanism design problem. Bergemann and Strack (2015) adapt the theory

in continuous-time. Strack and Kruse (2013) studies pure stopping problems under private infor-

mation. My paper analyzes the design of optimal mechanisms for optimal stopping problems with

stochastic controls.
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Outline The remainder of the paper is structured as follows. Section 2 sets up the framework

of the model and defines the planning problem. Section 3 solves the first-best planning problem

and highlights features of the retirement decision within the full information benchmark. Section

4 develops a recursive formulation of the second-best planning problem, solves for the optimal

policies and retirement decision, and discusses the parameters and forces that shape them. Section

5 presents the numerical and welfare analyses. Section 6 presents three extensions of the model:

(i) non-separable preferences in consumption and labor, (ii) workers with uncertain lifetimes, and

(iii) productivity-dependent fixed costs of staying in the labor market. Section 7 concludes.

2 Model Setup

In this section, I describe an economy in which workers are ex-ante heterogeneous in productiv-

ity, experience idiosyncratic productivity shocks over their lifetime, and adjust their labor supply

through flexible working hours and the timing of their retirement.

Productivity, Technology, and Preferences Consider a continuous-time economy populated

by a continuum of agents who live until age T . At each time t, each agent privately observes the

realization of his1 current labor productivity θt ∈ (0,+∞). Agents provide lt ≥ 0 units of labor at

time t at a wage rate equal to their productivity and earn gross income yt = θtlt.

At time t = 0, initial productivity θ0 ∈ (0,+∞) is drawn from a distribution F with density f .

A standard Brownian Motion B = {Bt,Ft; 0 ≤ t ≤ T} on (Ω,F ,P) drives the productivity shocks

in future periods. A history of productivities (θt) = {θs}s∈[0,t] is a sequence of realizations of the

productivity process that evolves according to the law of motion

dθt
θt

= µtdt+ σtdBt. (1)

By Ito’s lemma, the real constants µt − 1
2σ

2
t and σt are respectively the drift and volatility of log-

productivity. When the drift and volatility are independent of time, productivity is a Geometric

Brownian Motion (GBM) and log-productivity is the continuous-time limit of a random walk.

Agents have time-separable preferences over consumption {ct}0≤t≤T and labor {lt}0≤t≤T pro-
1Throughout the text, I use the male pronoun for an agent and the female pronoun for the planner.
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cesses that are progressively measurable with respect to the filtration Ft.2 When an agent is

working, (lt > 0), he incurs a flow utility cost of staying in the labor market denoted by a deter-

ministic function of age φ(t); and his current period utility is u(ct, lt)− φ(t), where u is increasing

in consumption, decreasing in labor, twice continuously differentiable, and concave.

Utility along the intensive margin is separable in consumption and labor and isoelastic in labor:

u(ct, lt) = u(ct)− κ
l
1+ 1

ε
t

1 + 1
ε

where ε > 0 is the intensive Frisch elasticity of labor supply. In Section 6, I extend the analysis to

preferences that are non-separable in consumption and labor.

The fixed utility cost of staying in the labor market can be thought of as the utility cost of

commuting time, work-related consumption costs, or taste for leisure. I write it in units of utils

for tractability. This fixed cost creates a non-convexity in the disutility of work as agents prefer

no work to a few hours of work. As in French (2005) and Rogerson and Wallenius (2013), these

non-convexities trigger retirement at some point in the worker’s life. In Section 6, I extend the

analysis to fixed utility costs that depend both on age and current productivity φt(θt).

Retirement, lt = 0, is an irreversible decision. Define a stopping time TR ∈ T ,3 after which a

retired agent provides zero labor effort and does not incur the fixed utility cost. After retirement,

an agent’s utility in each period is u(ct, 0). I define the retirement age as the age at which an

individual chooses to exit the labor force forever4—which the model allows to differ from the age

at which an individual chooses to start claiming the Old-Age, Survivors and Disability Insurance
2Consumption ct(θ

t) and labor lt(θt) depend on the whole history of productivities until time t. In the text, I
drop the realisations θt when referring to Ft.-measurable processes {ct, yt} to simplify the notation.

3A random variable TR is a stopping time if {TR ≤ t} ∈ Ft, ∀t ≥ 0. Intuitively, this definition means that at any
time t, one must know whether retirement has occurred or not.

4The irreversible retirement assumption is motivated by empirical and theoretical reasons. Rogerson and Wallenius
(2013) find empirical evidence in the Current Population Survey data that retirement occurs as abrupt transitions
from full-time to little or no work in the US. By age 70, the age by which individuals should start claiming SS
benefits, 75% of men report working zero hours. In addition, this assumption can actually be easily relaxed. The
main predictions of the model remain unchanged if this paper allows for retirees to return to the labor market at a
lower wage. A more involved theoretical reason is in Grochulski and Zhang (2016). In a setting similar to Sannikov
(2008) that allows for agents to put in zero labor effort temporarily, they find that when the utility of consumption
is unbounded below, workers almost surely provide positive labor efforts as the planner can threaten to provide
arbitrarily low utility to shirking agents with zero consumption. I use a logarithmic utility of consumption in most
of my analysis and it satisfies these assumptions. In my setting the fixed cost of staying in the labor market has
to be paid even if labor effort was allowed to be suspended temporarily; therefore, retirement would be triggered.
This utility function, coupled with the fixed cost, is another justification for an interior labor effort lt > 0 before
irreversible retirement.
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(OASDI) benefits.5

Planning Problem Preferences over consumption and labor {ct, lt} and retirement decisions

{TR} are summarized by an agent’s indirect utility at time zero:

v(θ0) ≡ E
{∫ TR

0
e−ρt[u(ct, lt)− φ(t)]dt+

∫ T

TR

e−ρtu(ct, 0)dt
∣∣∣ θ0

}
(2)

in which ρ is the rate of time preference. A utilitarian planner chooses incentive compatible (IC)

allocations to maximize social welfare:

max
{ct,lt,v(θ0),TR}

∫ ∞
0

v(θ0)dF (θ0) (3)

subject to the law of motion of productivity (1), the definition of indirect utility (2) and an in-

tertemporal resource constraint. For simplicity, I work in partial equilibrium and the planner can

save aggregate resources in a small open economy and borrow at a net rate of return r. I study the

planner’s problem for a single cohort in isolation and abstract from intergenerational redistribution

issues.6 The planner’s resource constraint is therefore:

E
{∫ T

0
e−rtctdt

}
+G ≤ E

{∫ TR

0
e−rtθtltdt

}
. (4)

The left-hand side includes exogenous government spending G7 and the cost of providing lifetime

consumption to agents. The right-hand side is the sum of the net present value of income yt

generated by workers until they retire. Because of a law of large numbers, the aggregate resource

constraint is the expectation over the histories of productivities (θt).

3 The First-Best Planning Problem

This section solves the planning problem with full information. I highlight features of the optimal

retirement decision that are absent in existing models with no endogenous retirement choice, but
5In a decentralized economy, workers can actually claim SS benefits whenever they want and their optimal re-

tirement benefits system are computed according to the history of their earnings. Because I work with allocations
directly in this primal approach, the SS benefits are implicit in the model.

6Given that I study insurance and redistribution across one cohort, time is equivalent to age for my cohort.
7G can capture many sources of exogenous government revenues and expenses as well as intergenerational transfers

to or from another cohort etc.
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have important implications for optimal policy.

Let the rate of time preference equal the rate of return of government savings, ρ = r. From the

intertemporal Euler equation, there is perfect insurance against productivity shocks and consump-

tion is the same across all histories: u′(ct(θt)) = λ, with λ the multiplier on the planner’s resource

constraint (4). When it is optimal to work, the marginal rate of transformation of labor into con-

sumption is the wage rate θt. Therefore labor supply satisfies κl
1
ε
t = λθt. With full information,

consumption is smoothed and more productive agents work more hours and produce more output.

To maximize social welfare, the planner maximizes total resources available in the economy and

makes high-productivity workers retire later than low-productivity workers, as long as the fixed

cost of staying in the labor market for high-productivity workers is not too high compared to that

of low-productivity workers. The following propositon confirms that it is indeed the case.

Proposition 1. (First-best retirement decision) There exists a time-dependent deterministic pro-

ductivity threshold θfbR (t) such that retirement occurs if and only if productivity falls below it:

T fb
R = inf{t; θt ≤ θfbR (t)}.

The proof is in Appendix A. This proposition means that the planner balances the need to

induce the highly productive (high earning) agents to continue working with the need to avoid the

fixed utility cost for less productive (low earning) workers. In the first-best, it is therefore optimal

to set productivity cut-offs below which retirement occurs. To understand the determinants and

lifetime evolution of these cut-offs, I consider the case in which agents are risk neutral.

The Risk-Neutral Case To qualify results further, I now consider agents who are risk neutral

in consumption, so that u(ct) = ct. Consumption is not pinned down by the Euler equation. I

eliminate consumption from the planner’s problem by replacing the resource constraint into the

planner’s social welfare function:

w ≡ max
TR

E
{∫ TR

0
e−ρt[θtl

fb
t − κ

(lfbt )1+ 1
ε

1 + 1
ε

− φ(t)]dt
}
−G (5)

subject to the law of motion of productivity (1). Normalizing government spending to zero, G = 0,

and replacing the first-best labor allocations using the optimality condition κ(lfbt )
1
ε = θt, the social
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welfare function w(θt, t) satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = max
{
−w(θ, t), −ρw(θ, t)+

θ1+ε

κε(1 + ε)
−φ(t)+(µtθ)∂θw(θ, t)+

σ2
t θ

2

2
∂θθw(θ, t)+∂tw(θ, t)

}
. (6)

The terms to the right of −ρw(θ, t) consist of the marginal social value of labor minus the fixed

cost and derivatives of social welfare with respect to time and productivity.

Now consider the case of productivity that evolves according to a GBM i.e µt and σt are

respectively constants µ and σ. I show that even when the fixed cost is a constant φ(t) = φ, there

is an option value of waiting for higher productivity shocks before retirement. In addition, this

option value decreases over time. Therefore, even when the fixed cost is constant over time, the

elasticity over the retirement margin increases over time. Hence the total Frisch elasticity increases

over time, despite the intensive Frisch elasticity and the fixed cost being constant. The following

corollary summarizes this result in terms of the retirement thresholds θfbR (t).

Corollary 1. (Option value of continued work vs retirement)

1. Suppose φ is constant and productivity is a GBM. Denote θ∗ the unique level of productivity

below which the marginal value of labor is less than the fixed utility cost of work, that is,

θ∗lfb(θ∗)− κ (lfb(θ∗))1+ 1
ε

1+ 1
ε

= φ. Then for all t < T , θfbR (t) ≤ θ∗ and the marginal social value of

continued work is negative, i.e, θfbR (t)lfb(θfbR (t))− κ (lfb(θfbR (t)))1+ 1
ε

1+ 1
ε

− φ ≤ 0 .

2. The retirement threshold function θfbR (t) is increasing in t. In addition, lim
t→T

θfbR (t) = θ∗.

Point 1 of the corollary states that retirement occurs below a productivity level at which it

would be efficient not to work in a static environment. This creates an option value of waiting for

higher productivity shocks and higher earnings before retirement that is not present in models with

permanent productivity shocks like Michau (2014) or Shourideh and Troshkin (2015). Working

today instead of retiring preserves the option of retiring later at a higher wage, hence the term

"option value" of work. Indeed, when there is no uncertainty on future earnings, the marginal

value of labor is equal to the fixed utility cost of work at retirement, and the option value is zero.

In practice, this option value is negative at retirement. Rust (1989), Lazear and Moore (1988) and

Stock and Wise (1988) estimate structural models of retirement with uncertain earnings and find

that people continue to work at any age as long as the expected present utility value of continuing

work is greater or equal to the expected present value of immediate retirement.
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Point 2 of the corollary states that the option value of continued work decreases over time as

the horizon shortens. Therefore, the total Frisch elasticity increases over time, despite the intensive

Frisch elasticity and the fixed cost being constant. The option value of continued work vanishes

at the end of the horizon, and only then is the irreversible retirement decision similar to a static

participation decision and the marginal value of labor equal to the fixed utility cost of work.

To develop some intuition, let us consider the infinite horizon limit T → ∞. In this case, the

HJB equation is time-homogeneous and the retirement threshold is independent of time, θfbR . The

proof in Appendix A proceeds similarly to Leland (1994) by decomposing the value of social welfare

into

w(θ) = Aθ1+ε − φ

ρ︸ ︷︷ ︸
social value of working forever (SVWF)

− (
θfbR
θ

)x︸ ︷︷ ︸
discounting at retirement E[e−ρT fb

R |θ]

[ A(θfbR )1+ε − φ

ρ︸ ︷︷ ︸
SVWF starting at the retirement threshold

]

(7)

where

A =
1

κε(1 + ε)[ρ− (1 + ε)(µ+ σ2

2 ε)]
(8)

and x(ρ, µ, σ) is a positive constant defined in the Appendix A. The value of social welfare w(θ) is

given by the value of lifetime utility of output if the agent were to work forever minus the value of

lifetime utility of output if he were to work forever at the optimal retirement threshold discounted

by the expected value of the discount factor at retirement. This value is zero at retirement. From

a smooth pasting argument as in Dixit (1993), the value of its derivative is also zero at retirement.

This gives an explicit value of the threshold:

θfbR =
(φ
ρ

x

A(1 + ε+ x)

) 1
ε
. (9)

Now, θfbR is increasing in the fixed cost φ.8 Agents retire earlier when their fixed cost is large.

In addition, θ∗ = (φκε(1 + ε))
1
ε . It can be deduced that θfbR < θ∗ since ρ−(1+ε)(µ+σ2

2
ε)

ρ < 1 and
(x)

(1+ε+x) < 1. The marginal social value of continued work is negative at retirement.

In summary, the solution of the first-best planning problem generates the following insights

about the implications of optimal retirement: Low-productivity agents retire earlier than high-

productivity agents. There is an option value of waiting for higher earnings before retiring. Lastly,

the total Frisch elasticity increases over time, despite the intensive Frisch elasticity and the fixed
8For convergence of net present values, I assume that ρ > µ > σ2ε/2 in the proof in the Appendix A.
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cost being constant. When the planner cannot observe productivity, this allocation is not achievable

with constant consumption as any agent would be better off retiring immediately.

4 The Second-Best Planning Problem

This section studies the second-best problem in which productivity and its evolution is private

information to the planner. I start by setting up the planning problem with full IC constraints.

Then, I relax the incentive problem using the First Order Approach (FOA) procedure developed in

Farhi and Werning (2013) and I incorporate the retirement decision. Finally, through a redefinition

of the state space, I write a recursive formulation of the FOA.

4.1 Incentive Compatibility

In the second-best problem, both the agents and the planner observe consumption {ct}, retirement

status TR and income from work {yt}. However, the planner does not observe {θt}, and therefore

does not observe labor {lt = yt/θt} either. As a result, the planner needs to incentivize the agents

with dynamic contracts.

A contract is a consumption process {ct} and a stochastic retirement time TR adapted to

the filtration generated by {yt}.9 By the revelation principle, a contract is a mapping from any

reported process of productivities {θ̃t} to a triplet {c̃t, ỹt, T̃R} of processes adapted to the filtration

generated by {θ̃t}. It specifies how much consumption is given to the agents, how much output

the agents should produce, and whether they should retire or continue to work at any time. An

allocation is IC if it is the outcome of a contract in which it is optimal for the agent to truthfully

reveal his true productivity process {θt}. In other words, for all reporting strategy {σt{θs}s∈[0,t]},

E{v(θ0)} ≥ Eσ{v(σ(θ0))}, where Eσ is the expectation over the paths generated by reports. The

planner commits to a contract at time zero. In particular, the contract is not renegotiable.

After retirement, the incentive problem stops since the agent does not need to be incentivized

to work. Therefore, the planner does not need to distort consumption decisions after retirement.

Lemma 1. Suppose r = ρ and u is strictly concave in consumption. For any allocation that solves

the planner’s second-best problem, consumption is constant after retirement.
9The planner’s objective is concave and the optimal contract cannot be strictly improved by randomization over

allocations and stopping times.
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The result is intuitive: since output is zero after retirement, there is no information for the

planner to learn about the agent’s real productivity after retirement. Since there is no incentive

constraint after retirement, the problem is one of full insurance. The Euler equation holds intertem-

porally, and the marginal utility of consumption at l = 0 is equalized cross-sectionally. Since uc is

strictly decreasing, it follows that consumption is constant after retirement.

This lemma implies that consumption after retirement only depends on the history of pro-

ductivities until retirement. However, it also allows for a jump in consumption “at” retirement.

Because of this possibility, I denote by “cT +
R
” consumption after retirement.10

Following this lemma, allocations before retirement and the retirement decision pin down re-

tirement consumption through the resource constraint. In order to characterize allocations before

retirement, I now relax the planner’s incentive constraints.

4.2 Recursive Formulation of the Planning Problem

Given constant consumption after retirement, an agent’s ex-ante indirect utility, or promised utility,

given consumption and labor {ct, lt = yt/θt} and retirement {TR} is

v0 = E
{∫ TR

0
e−ρt[u(ct,

yt
θt

)− φ(t)]dt+

∫ T

TR

e−ρtu(cT +
R
, 0)dt

}
. (10)

Denote g(t) ≡
∫ T
t e−ρ(s−t)ds = 1

ρ(1− e−ρ(T−t)) a shorthand to represent by how much the utility of

constant consumption is discounted at retirement at t. Promised utility at time t before retirement

is then

vt = E
{∫ TR

t
e−ρ(s−t)[u(cs,

ys
θs

)− φ(s)]ds+ e−ρ(TR−t)u(cT +
R
, 0)g(TR)

∣∣∣Ft} (11)

and the feasibility constraint is

E
{∫ TR

0
e−rtctdt+ e−ρTRcT +

R
g(TR)

}
≤ E

{∫ TR

0
e−rtytdt

}
. (12)

10The fact that consumption is constant after retirement in this setting is linked to different forces than those in
Sannikov (2014). In that model, agents have their consumption distorted and compensations optimally delayed after
retirement. The planner continues to observe positive post-termination output, which itself depends on the persistent
labor effort of the agent; in my model, output is zero after retirement.
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By duality, it is equivalent for the planner to maximize ex-ante promised utility (10) than it is for

her to minimize the cost of providing allocations:

K0(v) = min
{c,y,TR}

E
{∫ TR

0
e−ρt(ct − yt)dt+ e−ρTRcT +

R
g(TR)

}
(13)

subject a minimum promised utility v0 ≥ v, full incentive compatibility and the law of motion of

productivity (1).

The First Order Approach (FOA) relaxes the IC constraints by restricting attention to local

deviations. An IC mechanism must be immune to such deviations. As a result, the sensitivity

of promised utility with respect to reports, denoted by ∆t ≡ ∂θvt, satisfies an envelope condition

on the agent’s optimal reporting problem. I discuss the optimal reporting problem in detail in

Appendix A.

The FOA has been implemented by Kapička (2013), Farhi and Werning (2013) and Golosov

et al. (2016) in the context of optimal taxation and by Williams (2011) and Sannikov (2014) in the

context of optimal contracting in continuous-time. It is a necessary condition for an allocation to

be IC. In general, it is not a sufficient condition to characterize full incentive compatibilty.11 In the

numerical analysis, I verify ex-post that the allocations obtained from the FOA satisfy full incentive

compatibility using a method developed by Farhi and Werning (2013) that does not require solving

for the fully incentive compatible mechanism. I continue the recursive formulation of the problem

and reparametrize the state space in a simpler form. The lemma below derives the law of motion

of promised utility and its sensitivity and allows me to solve the problem recursively.

Lemma 2. (Law of motion of promised utility and the sensitivity process)

1. The law of motion of promised utility is

dvt = (ρvt − u(ct,
yt
θt

) + φ(t))dt+ θt∆tσtdBt (14)

with the boundary condition

vo = v.

11Nevertheless, it gives a lower bound on the cost of providing a given promised utility to the agents.
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2. (FOA) The law of motion of the sensitivity process ∆t ≡ ∂θvt is

d∆t =
[(
ρ− µt

)
∆t − uθ(ct,

yt
θt

)− σ∆,tσt

]
dt+ σ∆,tσtdBt (15)

with the boundary condition

∆0 = arg min
∆

K0(v,∆).

Point 1 of this lemma states that the drift of promised utility is the discounted flow utility.

More importantly it highlights that the volatility of promised utility is controlled by the sensitivity

process. The boundary condition is the promise-keeping constraint. Point 2 of the lemma charac-

terizes how the sensitivity with respect to reports is linked to allocations in an incentive compatible

mechanism, i.e. the evolution of informational rents.12 The term uθ constitutes the rent in the

static Mirrlees model, while the term σ∆,sσt is a dynamic rent that summarizes an agent’s advance

information about his future productivity profile. The term µ∆s captures how a misreport today

affects the planner’s perceived distribution of productivities in the future. The boundary condition

ensures that the initial sensitivity is chosen to minimize the ex-ante cost of providing promised

utility v. The proof is in Appendix A.

These recursive formulations allow me to analyze the relaxed planning problem. Promised

utility vt, its sensitivity with respect to reports ∆t, time t and current productivity θt can be used

as state variables of the recursive formulation. At retirement, promised utility vTR is provided with

a constant consumption cT +
R
, so vTR = g(TR)u(cT +

R
, 0) and cT +

R
= u−1

l=0

( vTR

g(TR)

)
in which u−1

l=0 is

the inverse function of u(c, 0). At each time t the planner’s problem is to minimize the cost:

K(v,∆, θ, t) = min
{c},{y},σ∆,,TR

E
{∫ TR

t
e−ρ(s−t)(cs − ys)ds+ e−ρ(TR−t)g(TR)u−1

l=0

( vTR

g(TR)

)}
(16)

subject to the law of motion of productivity (1), the law of motion of promised utility (14) and the

law of motion of the sensitivity process (15).

In what follows, I work for tractability with dual variables of (vt,∆t) which are derivatives

of the cost function with respect to these state variables. I introduce the co-states λt = Kv and

γt = K∆. The economic intuition behind these variables is that they represent the marginal change

in the cost of providing allocations when promised utility vt or respectively its sensitivity ∆t are
12Informational rents are rents the high-productivity agents derive from having information on their types that is

not available to the planner.
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marginally increased.13

4.3 Optimal Policies

4.3.1 Wedges, Retirement Consumption, and Distortions of The Retirement Decision

The approach to solving the planner’s problem by finding the allocations that maximize her objec-

tive is called the primal approach.14 To characterize the planner’s optimum it is useful to define

some wedges that capture distortions in the constrained optimal allocation relative to the first best.

Definition 1. The labor wedge (or intratemporal wedge) τL on workers is the gap between the

marginal rate of substitution and the marginal rate of transformation between consumption and

labor before retirement.

τLt ≡ 1 +
1
θt
ul(ct,

yt
θt

)

uc(ct,
yt
θt

)
(17)

The capital wedge (or intertemporal wedge) at time t and horizon s is the difference between the

expected marginal rate of intertemporal substitution between time t and time t+ s and the return

on savings.

τKt,s ≡ 1− e−(ρ−r)s uc(ct,
yt
θt

)

Et

{
uc(ct+s,

yt+s
θt+s

)
∣∣∣Ft} (18)

The intertemporal wedge at time t is the marginal intertemporal wedge between t and t + dt

i.e. τKt =
dτKt,s
ds

∣∣∣
s=0

.

A positive wedge on labor means that labor is distorted downwards. The capital wedge rep-

resents the deviation from the Euler equation. These wedges have been the focus of the dynamic

taxation literature. In addition to these wedges, I am interested in consumption after retirement

and its net present value:

{ct}{TR<t≤T} E
{∫ T

TR

e−r(t−TR)ctdt
∣∣∣FTR

}
(19)

and the percentage change, if any, in consumption before and after retirement, which I denote
∆c

T +
R

c
T−
R

with an abuse of notation. Finally, I compare the second-best retirement rule T sb
R to the

13Because of the Pontryagin Maximum Principle, (See Bismut (1973)) this method of working directly with the
Lagrangians of the problem makes the problem tractable.

14As is well known, there can be several policies that implement the planner’s optimal allocations.
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first-best retirement rule T fb
R , which is summarized by the threshold function θfbR (t) in the separable

utility case, to analyze the distortions to the retirement decision.15

4.3.2 Optimal Retirement Policy

Since after retirement consumption is constant and labor effort is zero, promised utility is not sensi-

tive to the reports after retirement. The endogenous retirement boundary is T sb
R = inf{t; ∆(θt) =

0}. For incentive compatibility, given the same past history of productivity, promised utility is

higher for higher reports, so ∂θv = ∆ ≥ 0. The sensitivity process starts at a positive value de-

fined by ∆0 = arg min∆K0(v,∆), follows the law of motion (15) until it hits zero at which point

retirement is triggered.

The second-best retirement decision is more complex than the first-best one and depends on

the whole history of productivities through ∆(θt).16 In Section 6, I show in a risk-neutral case

with a progressive redistributive motive for the government, that the second-best retirement rule

is determined by thresholds as in the first-best. In that case, low-productivity agents retire earlier

than high-productivity agents.

To build intuition on why agents with a history of low productivity shocks retire earlier than

agents with a history of high productivity shocks in the risk-averse case, consider first order condi-

tions for consumption ct, output yt and the variance of sensitivity σ∆,t in the planner’s problem:

[ct] : λt =
1

u′(ct)
, [yt] :

τLt
1− τLt

= −(1 +
1

ε
)
γt
λt

1

θt
, and [σ∆,t] : σ∆,t =

γtσ
−1 −Kv∆θt∆t −K∆θθt

K∆∆
.

These first order conditions determine consumption, output and wedges as a function of the La-

grangians λt, γt. In particular, λt is the inverse of marginal utility of consumption and γt links

the marginal utility of consumption to the labor wedge, the intensive Frisch elasticity, and current
15At each age, the planner compares the expected value of continued work against the expected value of retiring

today taking incentives into account. Corollary 1 implies that there is no simple “marginal benefit = marginal cost”
equation that holds in the first-best and defines a retirement wedge because of the option value of continued work.
This is unlike in Michau (2014) or Shourideh and Troshkin (2015) who define the retirement margin as the deviation
from the retirement age that equalizes the marginal value of labor with the fixed utility cost of work. In my setting,
the marginal value of labor is optimally lower than the fixed utility cost of work at retirement in the first-best. One
can define a retirement margin using equation (7) and the value matching and smooth pasting conditions that define
the retirement thresholds. However one needs to assume first that the optimal retirement rule is a cut-off rule at the
second-best, which in general is not the case. Even if so, the resulting expression does not provide more intuition
than directly comparing the optimal retirement rules.

16The retirement boundary is the optimal exercise boundary of an exotic American option with stochastic dividends.
Its derivation in the space of states (θt) is non-trivial.
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productivity. By definition, γt is the marginal change in the planner’s cost of providing allocations

with respect to the sensitivity ∆. When ∆ is larger, it hits the retirement boundary {∆ = 0}

later, and the expected retirement age is delayed. Agents work longer and the cost of providing

allocations for a given promised utility is lower. This means that γ starts at zero (γ0 = 0) and takes

negative values for all t > 0, γt ≤ 0. The process γ(vt,∆t, θt, t) is defined for ∆t non-zero. Denote

by the same symbol γt, the extension of the process to the whole space of productivity histories.

Since labor effort jumps discontinuously from a positive value to zero at retirement because of the

fixed cost φt, γt jumps from a negative value to zero at retirement. In other words, because of the

fixed cost, the super contact condition17 does not hold at the retirement boundary.

Replacing the first order condition on ct in the law of motion of ∆ yields

d∆t =
[(
ρ− µt

)
∆t −

(1− τLt
λt

)1+ε(θt
κ

)ε
− σ∆,tσt

]
dt+ σ∆,tσtdBt. (20)

Consider two agents with histories {θ̂t} 6= {θt} such that θ̂t = θt and τ̂Lt = τLt . From the first order

condition for yt, these states are those for which the corresponding (γ, λ) are on a given line at time

t, γt = αλt. Assuming the volatility of the sensitivity σ∆ is small, from (20) one can see that the

agent for whom λt is lower has a more negative drift for ∆t, and therefore has an earlier expected

retirement age. Equivalently, this is the agent for whom consumption today is lower by the FOC

on ct. Respectively, the agent for whom γt is lower has an earlier expected retirement age. This

is reminescent of the retirement rule in the first best in Proposition 1 but in a setting in which

past history matters through the level of promised marginal utility of consumption. Agents who

have a history of low productivity shocks, and who have lower consumption, retire earlier than the

agents who have a history of high productivity shocks. In the second-best, current productivity

alone does not determine the retirement decision; but in fact, the whole history as summarized by

the endogenous state variable (λt, γt, θt, t), does.18

17The super contact condition means that the value function is twice differentiable.
18Further, replacing the first order condition on yt in the law of motion (20) yields

d∆t =
[(
ρ− µt

)
∆t −

( θtτ
L
t

(−γt)(1 + 1/ε)

)1+ε(θt
κ

)ε
− σ∆,tσt

]
dt+ σ∆,tσtdBt. (21)

Labor effort is continuous before retirement. At retirement, the labor effort jumps to zero and γt jumps to zero.
Therefore, from (21), at retirement ∆ = 0, the drift of ∆t jumps to −∞ and the volatility σ∆,t jumps to zero. These
jumps but have important implications for the optimal wedges.
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4.3.3 Optimal Capital Wedge

Under separable utility, a standard Inverse Euler Equation of optimal contracting and dynamic

moral hazard models holds.

Proposition 2. (Capital wedge)

1. There exists a process σc,t such that

d
( 1

u′(ct)

)
=

1

u′(ct)
σc,tσtdBt (Inverse Euler Equation) (22)

2. The intertemporal wedge between t and t+ s is positive and satisfies

τKt,s =

∫ t+s

t
σ2
c,t′σ

2
t dt
′

and the intertemporal wedge at time t is τKt = σ2
c,tσ

2
t .

The proof is in Appendix A. Point 1 states that the standard Inverse Euler Equation extends to the

case with endogenous retirement. The inverse of marginal utility of consumption is a martingale.

A direct consequence of this is that the intertemporal wedge is positive since Jensen’s inequality

applies to the inverse function that is concave.

Point 2 highlights that the intertemporal wedge τKt is linked to the volatility of the inverse

of the marginal utility of consumption. This volatility is a control for how much the changes in

productivity translate into changes in consumption. It is, therefore, a measure of risk exposure. A

high volatility of the inverse of marginal utility of consumption implies that the planner exposes

the agents to risk to provide incentives at the expense of insurance.

This risk exposure stops at retirement and the volatility process σc,t goes to zero.19 Because of

the fixed cost, labor effort jumps discontinuously at retirement. This translates into the volatility

process σc,t, and therefore the intertemporal wedge, jumping from a positive value σc,T −R to zero at

retirement. This jump has consequences on the range of values taken by the intertemporal wedge.

Section (5) investigates the magnitude and range of the volatility process and intertemporal wedge

numerically.
19In Sannikov (2014), risk exposure does not go to zero at retirement. Instead, it builds up to target, starts falling

at an age before retirement, and goes to zero at the end of the horizon. The difference is due to the fact that, in my
setting, there is no output after retirement, and therefore there is no need for the agent to be exposed to risk after
retirement.
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4.3.4 Optimal Labor Wedge

The evolution of the labor wedge is obtained from the evolution of γt:

Proposition 3. (Labor wedge)

The law of motion of γt, is

dγt =
[
− θtλtσc,tσ2

t + µtγt

]
dt+ γtσtdBt, γ0 = 0.

In addition, the labor wedge satisfies

d
( τLt

1− τLt

)
= [(1 +

1

ε
)σc,t +

τLt
1− τLt

σ2
c,t]σ

2
t dt−

τLt
1− τLt

σc,tσtdBt.

The proof is in Appendix A. The first order condition on yt, coupled with the law of motion of

γt, implies that

d
(
λt

τLt
1− τLt

)
= [(1 +

1

ε
)λtσc,tσ

2
t ]dt. (23)

This expression states that the process λt
τLt

1−τLt
has zero instantaneous volatility. This means that

for insurance its paths are less dispersed than the paths of productivity. Applying Ito’s lemma to

(23) yields:

d
( τLt

1− τLt

)
= [(1 +

1

ε
)σc,t]σ

2
t dt+

τLt
1− τLt

λtd
(
u′(ct)

)
. (24)

In order to understand the implications of an endogenous retirement age for the patterns of the

labor wedge, define the model with flexible retirement age T sb
R , the “Flexible Retirement model”,

and the model with fixed retirement age E[T sb
R ], the “Fixed Retirement model”. In the Fixed

Retirement model, the planner imposes on all workers to retire exogenously at the same age and

sets the retirement age at E[T sb
R ] before computing allocations. Note that the Fixed Retirement

model generate the counterfactual that agents do not work after E[T sb
R ], and the average labor

wedge is undefined for the ages E[T sb
R ] to T .20

I compare my results to two useful reference economies and motivate their definition. The

first economy is one in which the planner expects all agents to retire at the end of the horizon,

when T planner
R = T and computes optimal policies accordingly. Because agents work longer in

this economy, they produce more output than in the Fixed Retirement model. To make the pair
20The extension of the labor wedge to those ages would be a 100% tax rate in order that all agents retire at E[T sb

R ].
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comparable, I assume in this economy that after the planner has computed optimal policies, agents

retire exogenously in a way that: (i) the retirement distribution is uniformly distributed at each

age across workers and (ii) matches the the labor force participation rate of the Flexible Retirement

model at each age. Formally, there exists an exogenous process T exog
R and, at each age t, a binary

random variable zt ∈ {0, 1}, such that (i) T exog
R = inf{t; zt = 1} and (ii) P (T exog

R = t) = P (T sb
R =

t) for all periods t. This process determines the work status of an agent T agent
R = T exog

R . I call

this model the “Exogenous Retirement model”. In this model, retirement is unanticipated by the

planner but occurs for an exogenous reason.21 The second economy is one in which the planner

expects all agents to retire optimally as in the Flexible Retirement model, T planner
R = T fb

R and

computes optimal policies accordingly. Then agents retire with uniform probability across workers

at each age T agent
R = T exog

R , as in the first economy. This exercise is useful because it captures the

effect of the different labor supply elasticity due to the planner’s anticipation of the endogenous

retirement decision. In addition, it mutes the selection of the labor force by keeping the distribution

of productivity in labor force the same as in the general population. I call this model the “Uniform

Retirement model”. In this model, retirement is anticipated by the planner but occurs for an

exogenous reason.

In the Flexible Retirement model, retirement is anticipated by the planner and is endogenously

determined. Comparing the three regimes (Flexible Retirement, Uniform Retirement, and Exoge-

nous Retirement) is useful for understanding the forces at work. The Uniform Retirement model

eliminates the selection of the labor force that occurs in the Flexible Retirement model by mak-

ing workers retire ex-post uniformly at random. As a result, I decompose the effects of elasticity

and composition on the patterns of the labor wedge using this intermediate economy: I define the

composition effect as the gap in the labor wedge between the Flexible Retirement model and the

Uniform Retirement model. In addition, I define the elasticity effect as the gap in the labor wedge

between the Uniform Retirement model and the Dynamic Mirrless model. I make these compar-

isons in the following paragraphs. But first, the Exogenous Retirement model highlights the forces

that generate an increasing-in-age average labor wedge in the standard model.

The Exogenous Retirement model The labor wedge formula (24) applies to all productivity

histories for which agents work. Consider the time periods for which all agents work, which corre-
21Because the fixed cost enters in the planner’s problem additively, this model is equivalent to the model in Farhi

and Werning (2013) with a fixed cost of staying in the labor market equal to zero.
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spond to the Exogenous Retirement model. On one hand, the first term of (24) is the instantaneous

covariance between log-productivity and the inverse of marginal utility of consumption scaled by

the inverse of the intensive Frisch elasticity of labor supply. When the instantaneous variance of

log-productivity is non-zero, this drift is positive and gives a positive slope to the labor wedge. The

covariance of consumption growth and log-productivity captures the benefits of added insurance

since it depends on the variability of consumption and the degree of risk aversion. Insurance comes

at the cost of decreased incentives for work. The more elastic is the labor supply, the stronger

is the effect, explaining the role of the intensive Frisch elasticity. In addition, the second term is

autoregressive and is scaled by the change in the marginal utility of consumption. Since the inverse

of the marginal utility of consumption is a martingale, the marginal utility of consumption is a

submartingale and its paths trend upwards. Therefore, the labor wedge is increasing at a young

age when all agents are working. These are the standard forces in the Exogenous Retirement model

with a fixed retirement age in Farhi and Werning (2013).

The law of motion of the labor wedge also captures two effects that are present once one

accounts for a flexible retirement age. I compare the Exogenous Retirement model with the Uniform

Retirement model to explain the elasticity effect.

The Elasticity Effect The elasticity over the retirement margin is captured by the jump in

σc,t at retirement from a positive value σc,T −R to zero. When age t inches closer to retirement,

the volatility process decreases on average and the elasticity over the retirement margin increases.

However, in contrast with the Exogenous Retirement model, σc,t goes to zero earlier in the Uniform

Retirement model because in the latter model the planner anticipates retirement. Therefore, the

slope of τLt
1−τLt

is flatter in old age in the Uniform Retirement model. This is a manifestation of

the elasticity effect. A higher total Frisch elasticity of old workers calls for a flatter labor wedge

for old workers. Nevertheless, this does not necessarily translate into the profile of average labor

wedges being hump-shaped. With the elasticity effect alone, a planner in the Exogenous Retirement

model, who then anticipates retirement in the Uniform Retirement model, adjusts the profile of the

increasing average labor distortions in the Exogenous Retirement model by decreasing its slope for

old workers and increasing its slope at a young age while collecting the same revenue.

I compare the Uniform Retirement model with the Flexible Retirement model to explain the

composition effect.
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The Composition Effect The second term in the labor wedge formula is autoregressive and

shows that innovations in the labor wedge must follow innovations in the marginal utility of con-

sumption. When productivity increases, consumption increases and the marginal utility of con-

sumption decreases. Therefore, over short horizons, the labor wedge must decrease when produc-

tivity increases. Farhi and Werning (2013) call this a form of “short-run regressivity”. Here I

highlight the implications of the negative covariance between consumption and the labor wedge

when retirement is endogenous, as in the Flexible Retirement model, compared to when retirement

is exogenous but is anticipated, as in the Uniform Retirement model. When t is closer to retirement,

from Section 4.3.2 retirement occurs earlier for agents with a history of low productivity shocks

compared to agents with a history of high productivity shocks in the Flexible Retirement model.

Therefore, by selection, the labor force becomes more productive than the general population in old

age in the Flexible Retirement model, while such selection does not occur in the Uniform Retirement

model. In the short-run, this calls for lower labor wedges for this more productive sub-population.

This is the novel composition effect. To draw out implications more clearly, apply Ito’s lemma to

the Inverse Euler equation and replace d(u′(ct)) = u′(ct)σ
2
c,tσ

2
t dt− u′(ct)σc,tσtdBt in (24) to obtain

the formula of the labor wedge in the proposition:

d
( τLt

1− τLt

)
=
[
(1 +

1

ε
)σc,t +

τLt
1− τLt

σ2
c,t

]
σ2
t dt−

τLt
1− τLt

σc,tσtdBt. (25)

The full composition effect is captured by the last two terms on the right. As the labor

force becomes increasingly productive when agents retire, over infinitesimal periods the remaining

workforce has on average positive productivity shocks, σtθtdBt > 0. The last term on the right-hand

side of the equation above − τLt
1−τLt

σc,tσtdBt < 0 captures that the labor force in old age becomes

more productive and must have lower labor wedges in short-run. However, the term τLt
1−τLt

σ2
c,tσ

2
t dt

captures the volatility of consumption growth and the increase in volatility of log-productivity over

a longer infinitesimal horizon dt and calls for higher labor distortions. Therefore, there is a race

between selection and rising inequality in productivity and consumption. If the force of selection

into a more productive labor force is stronger than the increase in volatility of log-productivity, the

composition effect yields a decreasing-in-age average labor wedge for old workers.
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4.3.5 Optimal Retirement Consumption

Proposition 4. Consumption after retirement is constant. In addition, consumption after retire-

ment is equal to the final period consumption: cT +
R

= cT −R
.

The fact that consumption after retirement is equal to consumption at retirement is a conse-

quence of the smooth pasting condition of optimal stopping. It implies that the marginal change

in the cost of providing an infinitesimal promised utility before and after retirement are equal.

In the separable utility case, it implies that there is no jump in consumption at retirement, i.e
1

u′(c
T−
R

) = K−v = K+
v = 1

u′
(

vTR
g(TR)

) = 1
u′(c

T +
R

) .

To minimize distortions, agents are given their last period consumption at retirement in the

separable utility case. Agents with a history of high productivity shocks are offered correspondingly

higher retirement consumption than agents with a history of low productivity shocks, in order to

induce them to retire later. In addition, the net present value of retirement consumption only needs

to depend on their remaining life expectancy T − TR and last period consumption (which in turn

depends on the whole history until retirement).22

5 Numerical Analysis

This section highlights the quantitative implications of the model for the evolution of optimal

wedges over the life-cycle and the welfare gains from optimal policies and simple tax and SS reforms.

Subsection 5.1 calibrates the model parameters in a baseline US economy. Then, Subsection 5.2

presents optimal policies for those calibrated parameters. Finally, Subsection 5.3 quantifies welfare

gains from optimal policies and those from simple tax and SS reforms.

5.1 Calibration

In order to provide some background, I start by discussing the empirical evidence on the fixed cost

of staying in the labor market, a crucial parameter in the model.
22As in Proposition 4, consumption after retirement depends on the state (v,∆, θ,TR) that is a sufficient summary

of the whole history until retirement for the purpose of computing allocations. Since at retirement ∆ = 0, one can
infer that retirement consumption depends only on (v, θ,T R), or equivalently (v, C(v, 0, θ,T −R ),TR) in which C is
the function that maps state variables to consumption before retirement. Now, the smooth pasting condition links
the promised utility before retirement v and consumption before retirement C(v, 0, θ,T −R ). Therefore, the net present
value of retirement consumption depends on the history of productivities only through (c

T −
R
,TR).
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Estimates of the Fixed Cost in Dynamic Models French (2005), Rogerson and Wallenius

(2013), Prescott et al. (2009), and Chang et al. (2014) estimate life-cycle models with endogenous

retirement. They consider non-convexities in the labor supply decision due to fixed time costs that

match the hours worked and labor force participation of old workers. They find that, one needs large

fixed time costs, around 5 to 6 hours a day, to match the retirement data. In their estimations

of extensive margin elasticities, Chetty et al. (2012) find, in a model similar to Rogerson and

Wallenius (2013), that extensive margin labor supply responses ought to be very large to explain

the gap between the micro and macro Frisch elasticities. In addition, Banks et al. (1998) and

Aguila et al. (2011) posit that there are sizable fixed consumption costs related to work. In my

analysis, I calibrate the fixed utility cost of staying in the labor market and compare its time value

and consumption value to the time costs and consumption costs estimated in the literature.

Parametrisation I perform the numerical simulation in a discrete time version of the model, in

which agents live for T = 55 periods, with each period corresponding to a year between the ages

of 25 to 79.23 I set the discount factor to e−ρ = 0.95 and the interest rate r = ρ. Since Deaton

and Paxson (1994), there is evidence that inequality in consumption and income increases with age

within a cohort. Consistent with these findings, I assume that productivity is a geometric random

walk as in Farhi and Werning (2013) or Stantcheva (2017):

log(θt) = log(θt−1) + εt

where εt ∼ N (−σ2

2 , σ
2).

Storesletten et al. (2004) have found a high estimate of the volatility σ2
H = 0.0161 and Heath-

cote et al. (2010), a low estimate of σ2
L = 0.00625. In this simulation, I choose an intermediate

value of σ2
M = 0.0095, in line with Heathcote et al. (2005)’s estimate of a medium volatility, and I

perform robustness checks with the low and high volatility estimates in Appendix B.
23The theoretical analysis performed in continuous-time allowed for a simple representation of forces shaping the

dynamics of the wedges. Additionally, the continuous-time analysis allowed for explicit analytic results in special
cases that are not available in discrete time. I choose to perform a numerical simulation of the discrete time model
presented in Appendix B rather than solving the HJB equation, using the Markov Chain Approximation Method as
in Kushner and Dupuis (2013). By using balanced growth preferences, I reduce the dimensionality of the problem in
discrete time with one less state variable.
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Preferences during working years are

log(ct)−
κ

1 + 1
ε

(yt
θt

)1+ 1
ε − φ(t)

with ε = 0.5 and κ = 1, consistent with the estimate of Chetty (2012). During retirement, per

period utility is simply log(ct). While many parameters are readily estimated from the literature,

the fixed cost function φ(t) is an important parameter to calibrate in my model. I endogenously

calibrate the fixed costs in a baseline US economy.

Calibration to US Data in the Baseline Economy The baseline economy is the income

fluctuation model in which agents, who experience idiosyncratic productivity shocks, can freely

borrow, save in a risk-free asset, and choose their consumption, hours worked, and retirement age.

I assume that the agents start claiming retirement benefits when they exit the labor force. The

tax system is set to mimic the US tax system. I follow Heathcote et al. (2014) and set the labor

income tax equal to the approximation function

T (yt) = yt − λy1−τ
t

where the value of the progressivity parameter τ is 0.181. The capital tax is set to a flat tax rate

equal to 20% of capital gains, equivalently 1% of the capital stock.

The SS benefits system features three specific ages that are important for the availability and

value of retirement benefits. The Normal Retirement Age (NRA) is the age at which a worker can

claim the full amount of retirement benefits, the Primary Insurance Amount (PIA). I set the NRA to

66 for the present cohort. The PIA is a function of the Average Indexed Monthly Earnings (AIME)

which is the average monthly earnings of the 35 highest earning years. In the calibration, I set

the replacement rate to the (earnings weighted) average replacement of 40%, i.e PIA=40%AIME.24

The Early Retirement Age (ERA=62) is the age at which an agent can start claiming retirement

benefits. For each year between the ERA and the NRA, an individual who starts claiming benefits

at that age loses 6.67% points of the PIA per early year (the Actuarial Reduction Factor, ARF). For
24In the US SS system, the PIA is a non-linear function of the AIME. The first bracket gives a PIA with a

replacement rate of 90% of the AIME until the AIME reaches $885. The second bracket gives a replacement rate of
32% until it reaches $5,336. Finally, the third bracket replaces 15% of the AIMEs over $5,336 and below $127,200.
Munnell and Soto (2005) report a median replacement of SS benefits of 42% in 2001. I set an (earnings weighted)
average replacement of 40% in my benchmark calibration.
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instance, someone who retires at age 63 gets 80% of his PIA. The End of Eligibility Age (EEA=70)

is the age at which an individual should start claiming benefits that would otherwise be lost. For

each year between the NRA and the EEA, an individual who starts claiming benefits at that age

gains 8% points of the PIA per year delayed (the Delayed Retirement Credit, DRC). For instance,

someone who retires at age 70, gets 132% of his PIA. These “actuarial”25 adjustments to benefits

stop at the EEA and are capped at 132% of the PIA. The SS benefits system of my calibration

features these adjustments.

In this baseline economy, I calibrate different specifications of φ(t). One target I match is the

labor force participation rate for ages 65 to 69 in the US population. In Toossi (2015), the Bureau

of Labor and Statistics reports a labor force participation rate of individuals between ages 65 to

69 of 31.6% in 2014. For the specification with a constant fixed cost φ(t) = φ over the life-cycle,

I match the labor force participation rate for ages 65 to 69 with a fixed cost that is the utility

equivalent of 6.8 hours per day. To compute the time value of fixed utility costs, I follow Shourideh

and Troshkin (2015) and use parameters from Chang et al. (2014) who estimates a model similar

to this paper’s baseline economy. I take the estimates of κ̂ = 82.70 from Table 1 of Chang et al.

(2014) for ε = 0.5 and the lowest variance σx which (annualized) is closest to the variance σM in

my model. I link the estimate of the fixed utility cost φ̂ to its time cost l̂ by solving κ̂
l̂1+1/ε

1 + 1/ε
= φ̂.

For this specification, the average retirement age in the baseline economy is 63.73 years old. In

the Flexible Retirement model, the optimal average retirement age is large and equal to 76 years

old. I find, similarly to Rogerson and Wallenius (2013) that with a constant fixed cost one needs

a large φ to generate retirement.26 The intuition is that with a constant fixed cost, the only force

for an extensive Frisch elasticity of labor supply that increases with age is the decreasing option

value of staying in the labor market. With the medium instantaneous variance of productivity of

σ2
M = 0.0095, this option value is low.

To obtain a more realistic optimal average retirement age, I calibrate a specification of fixed

costs that increase in age. On top of the labor force participation rate for ages 65-69, I target

a measure of dynamic total elasticity of labor supply, as in French (2005), at age 65.27 In this
25The standard term used for these adjustments does not necessarily imply that they are actuarially fair.
26The average retirement age in the baseline economy is significantly lower than the optimal average retirement

age when φ is constant. The SS sytem in the baseline economy is such that most agents retire at the ERA or at the
NRA. In the optimum however, there are no retirement spikes at the ERA or the NRA in the optimal distribution of
retirement ages induces by the retirement benefits.

27I define the dynamic extensive elasticity of labor supply by computing the ratio of a 1% unexpected increase in
income at age 65 on the percentage change in the average retirement age. The total elasticity is obtained by adding
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specification, the fixed cost is constant until age 55 - when the first point of entry into retirement

through the Social Security’s disability program occurs in the US - then increases linearly until age

79 as φ(t) = a + b(t − 55)+. I calibrate a and b targeting the labor force participation rate for

ages 65-69 and a total elasticity of labor supply at age 65 of 1.3 in the range of values estimated in

French (2005).28

The qualitative result of the average labor wedge eventually declining with age only needs φ(t)

not to decrease too fast with age given the evolution of the option value. A constant φ(t) = φ,

in particular, can generate an average labor wedge that eventually declines with age as I show

in Appendix B. However, to make the decline quantitatively significant, it is useful to have an

increasing φ(t). The calibration controls for the speed by which the fixed cost increases with age

given the persistence of the productivity process. This section presents results for this specification.

concept functional form values source/target

Exogenously parametrized

log θt = log θt−1 + εt σ2
L = 0.00625 Heathcote et al. (2010)

productivity
ε ∼ N(−σ2

2 , σ
2)

σ2
M = 0.0095 Heathcote et al. (2005)

σ2
H = 0.0161 Storesletten et al. (2004)

utility log c− κ
1+ 1

ε

(yθ )1+ 1
ε κ = 1, ε = 0.5 Chetty (2012)

Endogenously calibrated in baseline US economy

fixed cost φ(t) = a+ b(t− 55)+
a = 0.32 (5.42h/day) lfp65-69=31.6% (BLS)

b = 0.03 (+7mn/day/year) εtotal_60 = 1.3 French (2005)

Table 1: Calibration

Table 1 summarizes the calibrated values. I obtain a fixed cost equivalent to 5.42 hours per day

in terms of time cost at age 55 that increases by 7 minutes each year until attaining 8.28 hours per

day at age 79. These estimates are within the range of estimates in Chang et al. (2014). Although

the qualitative features of the model are unaffected for a wide range of parameters, the quantitative

results are. Therefore, I perform several alternative calibrations in Appendix B including robustness

checks with respect to the variance of productivity, the specification of a constant fixed cost φ, other

specifications of φ(t) and other targets for the value of the dynamic elasticity.

the intensive Frisch elasticity ε = 0.5 with the dynamic extensive elasticity.
28Alpert and Powell (2013) report extensive elasticities with respect to after-tax labor income equal to 0.76 for

women and 0.55 for men at age 65. These measures are slightly lower than, but of the same magnitude as, my target
of a dynamic extensive elasticity of 0.8 as in French (2005).
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I compute the policy functions in the Flexible Retirement model for the calibrated values above.

From these policy functions, I perform a Monte Carlo simulation with N=1,000,000 draws. I set

the initial states and the rate of taxation λ in the labor income tax function T (yt) to yield a zero

present value resource cost for the allocations, G = 0. This provides comparable allocations across

simulations.

5.2 Optimal Policies

In this section, I describe the properties of the optimal policies obtained from the simulations of

optimal allocations in the Flexible Retirement Model.

Optimal Labor Force Participation Rate The left panel of Figure 1 shows the optimal labor

force participation rate as a function of age. The labor force participation rate decreases until age

75 after which it is non-zero at each age but less than 0.1%. The Average Retirement Age (ARA)

is 65.84 and the labor force participation rate at age 65 is 53.63%. These are larger than in the

baseline economy in which the ARA is 63.66 and the labor force participation rate at age 65 is the

target of 31.6%. This is consistent with the fact there are still considerable implicit disincentives

to continued work between ages 62 and 65 in the US tax and SS system as documented by Gruber

and Wise (1998).
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Figure 1: Left: Labor force participation rate as a function of age. Right: Average capital wedge
as a function of age.

Optimal Capital Wedge The right panel of Figure 1 shows the cross-sectional average of the

capital wedge as a function of age. Distortions on savings decline on average with age. As shown in
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Section 4.3, the capital wedge is directly linked to the variance of consumption growth τKt = σ2
c,tσ

2
t .

This variance decreases over time until it equals zero at retirement when consumption is constant.

Because of the discontinuity in labor effort, σc,t jumps to zero one period before retirement. Since

in discrete time there is always a positive mass of agents retiring at each time, when the variance

jumps to zero at retirement before T , the average capital wedge sharply declines.29 In addition,

the average capital wedge is small in magnitude, going from a tax rate of 0.7% of the capital stock

or equivalently 14% of capital gains to zero percent at age 79.

Optimal Labor Wedge Figure 2 displays the average labor wedge as a function of age. The

profile of the average labor wedge is hump-shaped in age. The blue curve (solid line) represents

the average labor wedge over the whole population. The red curve (double dashed line) and yellow

curve (dashed-dotted line) represent the average labor wedge in a population of agents with a

history of low and high productivity shocks respectively.30 For incentive compatibility, the average

over the population with low productivity shocks is higher than the average in the population with

high productivity shocks. Since the red (double dashed) curve is above the yellow (dashed-dotted)

curve, once low-productivity agents start retiring, the blue (solid) curve comes closer to the yellow

(dashed-dotted) one. This is a manifestation of the composition effect. At age 73, the blue (solid)

curve and the yellow (dashed-dotted) curve are indistinguishable as the remaining labor force is

mainly composed of highly productive workers. Overall, the average labor wedge increases from

2.16% at age 25 to 42.5% at age 64 then decreases up to 32% at age 79.

As a reminder from the analytic section, I consider two other reference economies. The Exoge-

nous Retirement model is the model where retirement is unanticipated by the planner but occurs for

an exogenous reason. The Uniform Retirement model is the model where retirement is anticipated

by the planner but occurs for an exogenous reason. In the Flexible Retirement model, retirement is

anticipated by the planner and is endogenously determined. Comparing the three regimes (Flexible

Retirement, Uniform Retirement, and Exogenous Retirement) is useful for understanding the forces

at work. The Uniform Retirement model, eliminates the selection of the labor force that occurs in

the Flexible Retirement model by making workers retire ex-post uniformly at random. I describe,
29The inflection points in the capital wedge curve are therefore a result of the bunching of many agents at the same

retirement age in discrete time rather than computational imprecision from state variable grids. The downside of my
approach is that with a time step of 1 year a significant mass of agents retires at each period when old.

30I define the population with a history of low productivity shocks as agents who receive at each period a shock lower
than the mean shock plus the quarter of the standard deviation of instantaneous shocks, such that exp(εLt ) ≤ 1 +σ/4
and the population with a history of high productivity shocks as agents who receive at each period a shock higher
than the mean shock minus the quarter of the standard deviation of instantaneous shocks, with exp(εHt ) ≥ 1− σ/4.
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Figure 2: Labor wedge in the Flexible Retirement model

in what follows, the gap in the labor wedge between the Flexible Retirement model and the Uniform

Retirement model—the composition effect—and between the Uniform Retirement model and the

Dynamic Mirrless model—the elasticity effect.

The Elasticity Effect The left panel of Figure 3 plots, as a function of age, the average capital

wedge of the Uniform Retirement model in red (dashed) and the average capital wedge of the

Exogenous Retirement model in blue (solid). Suppose the planner starts from the solid curve and

realizes that the total Frisch elasticity is larger for old workers than in the Exogenous Retirement

model. The planner can lower distortions on old agents and raise the same revenue as in the solid

curve by decreasing the average capital wedge for the old and increasing it for the young. This is

what the red curve accomplishes.

Similarly, the right panel of Figure 3 plots, as a function of age, the average labor wedge of

the Uniform Retirement model in red (dashed) and the average labor wedge of the Exogenous

Retirement model in blue (solid). Suppose again that the planner starts from the solid curve and

wants to lower distortions on the old while raising the same revenue. The planner makes the

average labor wedge curve flatter for old agents and steeper for the young; this is what the red

curve accomplishes. Since the slope of the average labor wedge is in part determined by the variance

of consumption and therefore the capital wedge, this is consistent with the left panel of Figure 3.

Therefore, the elasticity effect calls for an average labor wedge curve for old workers that is flatter
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in age. The largest average labor wedge is 51.58% for the Exogenous Retirement model and 48.32%

for the Uniform Retirement model, which is a -3.26% decrease in the average labor wedge due to

the elasticity effect.
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Figure 3: Elasticity effect. Left: Capital wedge. Right: Labor wedge.

The Composition effect The left panel of Figure 4 plots, as a function of age, the average

labor wedge of the Uniform Retirement model in red (dashed) and the average labor wedge of the

Flexible Retirement model. When the composition effect is strong enough as illustrated in the

model with endogenous retirement in Figure 2, the average labor wedge is hump-shaped in age.

Despite the fact that φ(t) increases with age in the simulation, the average labor wedge of the

Uniform Retirement model increases in age. This further justifies that the hump-shaped profile of

the average labor wedge in the Flexible Retirement model is not mainly driven by extensive margin

elasticity through φ(t) but is a result of the composition effect. The average labor wedge for the

Flexible Retirement model is equal to 31.91% in the final period, which compared to the Uniform

Retirement model (48.32%) implies a -16.41% reduction due to the composition effect.

The right panel of Figure 4 shows the allocations over the working population in the model with

endogenous retirement. Average output is in blue (solid) and average consumption in red (dashed).

Until age 58 almost all agents work. Average consumption is constant and the average output is

decreasing. After 58, agents with a history of low productivity shocks start retiring. The labor

force becomes increasingly selected towards more productive agents. As a result, average output

among workers increases and average consumption increases. This justifies that there is a selection

of the labor force as a result of the nature of the retirement decision that creates the composition
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effect in the pattern of the average labor wedge.
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Figure 4: Left: Composition effect, Right: Mean allocations over working population

Retirement Consumption and Allocations The left panel of Figure 5 displays the allocations

over the whole population. With log utility, the Inverse Euler equation implies that consumption

is a martingale. Therefore, average consumption (dashed) is constant both before retirement and

after retirement, while average output (solid) decreases slowly when most agents are working and

decreases sharply once agents start retiring. The right panel of Figure 5 plots the mean consumption

of retired agents. Over time, agents with higher consumption retire, which increases the average

consumption of the retirees. The average consumption of retirees is increasing until almost all

agents have retired, at which point it equals the average consumption of the whole population.
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5.3 Welfare Analysis

5.3.1 Welfare Gains and Simple Policies

The first line of Table 2 summarizes key features of the baseline economy, with a target labor force

participation rate at 65 of 31.6% and an Average Retirement Age (ARA) of 63.66. The second

line of the Table 2 shows the welfare gains from the second-best (fully optimal) system compared

to the baseline economy.31 In the second-best, agents retire later on average compared to the

baseline economy, with an ARA of 65.84 and a labor force participation rate at 65 of 53.63%. The

second-best improves welfare as an equivalent increase in consumption at all histories and periods

of +3.75%. These welfare gains are large and correspond to an upper bound on welfare gains from

jointly reforming the US tax system and SS system when productivity is unobservable.

From the optimal policies found above, I conduct several experiments. In all these experiments

I am interested in the welfare gain relative to the current US tax code in the baseline economy. The

simple policies I study are history independent but age-dependent. I consider linear taxes (marginal

tax that are flat in income) equal to the cross-sectional average of taxes from the simulations. I

compare their welfare gains or losses with respect to the US tax and SS system as a percentage

of the welfare gains from the second-best. These experiments are motivated by the fact that they

yield the bulk of the welfare gains in the optimal taxation literature that assumes a fixed retirement

age (Farhi and Werning (2013), Golosov et al. (2016)).32 I qualify their results accounting for a

flexible retirement age.

Average Wedges from the Flexible Retirement model In this reform, the labor tax and

capital tax in the baseline economy are replaced by the linear (flat in income marginal tax) taxes

equal to the average labor wedge (hump-shaped in age) over the working population and the average

capital wedge (small and decreasing in age) over the whole population in the model with a flexible

retirement age. The goal of this experiment is to measure the welfare gains from a reform of

the tax code alone. The third line of Table (2) shows the welfare gains achieved by this reform.
31The literature has usually compared the welfare from the second-best to the welfare achieved in a laissez-faire

economy with no taxes or subsidies. Because of the importance of the SS benefits system, here the relevant econ-
omy to compare the second-best with is the baseline US economy. In addition, such a direct comparison with a
parametrization of the US tax code allows me to measure welfare gains of tax reforms.

32Optimizing over age-dependent taxes in this dynamic economy is computationally heavy because of the number
of tax functions, one for each period, and the non-negligible time it takes for the income fluctuation algorithm to run
for one set of parameter values.
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Replacing the tax code with the hump-shaped one brings modest welfare gains, with an increase

in consumption at all histories and periods equivalent to 47.20% to that of the second-best. These

welfare gains in consumption of +1.77% are slightly higher than the welfare gains in Farhi and

Werning (2013) in absolute terms but significantly lower than those under the second-best policies.

While Farhi and Werning (2013) find that, with a fixed retirement age, simple age-dependent taxes

achieve 95% of welfare gains from the second-best, I find that with flexible retirement those welfare

gains shrink to less than half the gains from the second-best. A reform of the tax code alone,

despite the increasing then decreasing-in-age labor tax, induces agents to retire even earlier than

in the baseline economy with an ARA of 59.11; and almost all agents retire by 65. The current

SS system does not provide as much incentives for delayed retirement as the optimal system does

and the increasing-in-age linear labor tax before age 64 is, for most ages, above the current levels

of taxation, and induces agents to retire even earlier than in the baseline economy.

Table 2: Welfare gains from reforming the tax system while maintaining the current SS system.

reforms welfare gains l. f. p. 65-69 ARA

baseline economy age-independent tax system N/A 31.6% 63.66

history-dependent optimal policies (sb) +3.75% ct 53.63% 65.84

τK(t) and hump-shaped in age τL(t) from Flexible R. m. 47.20% of sb < 0.1% 59.11

τK(t) and increasing-in-age τL(t) from Fixed R. m. 45.87% of sb < 0.1% 59.12

τK(t) and increasing-in-age τL(t) from Exogenous R. m. 46.67% of sb < 0.1% 59.09

τK(t) and increasing-in-age τL(t) from Regression m. 44.27% of sb <0.1% 59.92

Line 1 summarizes the labor force participation rate for ages 65 to 69 and the Average Retirement Age
(ARA) in the baseline economy. Line 2 reports welfare gains from the second-best policies. Line 3 reports

welfare gains from replacing the tax system with the hump-shaped in age linear labor tax over the
cross-section of workers from the optimal policies. Line 4 to 6 gives welfare gains from alternative tax
reforms with an increasing-in-age linear labor tax. Under the current SS system, a hump-shaped in age

linear labor tax and an increasing-in-age linear labor tax achieve comparable welfare gains that are modest
compared to those from second-best policies.

To capture more welfare gains, I augment this tax reform with a reform of the SS system that

aims to match the optimal labor force participation for ages 65-69 in the optimum which is 53.63%

from the second line of Table 2. Because I assumed the retirement age and benefits claiming age

are the same, changing the replacement rate of SS benefits from 40% has little effect on labor

force participation. Instead, I focus on reforms that increase the absolute value of the “actuarial”

adjustment rates of SS benefits (the Actuarial Reduction Factor before the NRA and the Delayed

Retirement Credit after the NRA) that affect at the margin workers’ decision to retire before or after
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the NRA. These rates are equalized in absolute value and increased until the retirement distribution

matches its counterpart in the second-best. This reform requires setting a large uniform adjustment

rate of 16%.33 The goal of this experiment is to measure the welfare gains from a joint reform of

the tax code and SS system that simply tries to mimic the optimal history-dependent system in

the second-best.

The second line of Table 3 summarizes welfare achieved by this reform. Tilting the retirement

distribution to match the retirement distribution of the second-best achieves sizable welfare gains

with an increase in consumption at all histories and periods equivalent to 81.33% to that of the

second-best. Like French (2005) found, exit from the labor force between ages 62-65 is mostly

determined by the tax structure of SS benefits. By increasing “actuarial” adjustment rates of SS

benefits in absolute value, one can induce agents to retire later. Because of the fixed cost that is

incurred both by low-productivity workers and high-productivity workers, most of the agents who

delay retirement are highly productive. The decreasing-in-age labor tax after age 64 increases the

efficiency of the intensive labor supply of these high-productivity agents and we obtain the bulk of

welfare gains from the age-dependent linear tax that is hump-shaped in age. These two experiments

suggest that, when accounting for flexible retirement, reforming the tax code alone is not enough

and the SS system also needs to be reformed to correct for the retirement distribution.

I also investigate the benefits of reforming the SS system alone while keeping the tax system as

in the status quo system in the baseline economy in the first line of Table 3. The optimal retirement

distribution is matched by an increase in absolute value of the Actuarial Reduction Factor from

-6.67% to -7%. The welfare gains from a reform of the SS system alone are a small fraction, 5%,

of the welfare gains from the second-best, which is equivalent to a 0.19% increase in consumption

in all histories and all periods. The joint reform of the tax system and SS system achieves more

welfare gains than the sum of each individual reform alone.

5.3.2 Alternative Reforms

I consider a series of alternative reforms in order to determine: (i) how important the hump-shaped

profile of the labor tax is in terms of welfare compared to the family of increasing-in-age labor
33Another reform would be to increase the NRA. The actuarial adjustment I found, that is the double of the current

Delayed Retirement Credit and Actuarial Reduction Factor, is equivalent to a 14 months increase of the NRA for a
65-year-old worker and 28 months increases of the NRA for a 64-year-old worker and so on.
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Table 3: Welfare gains from joint reforms of the tax system and the SS system

reforms welfare gains ARA

SS reform alone 5.01% of sb 65.12

SS reform + τK(t) and hump-shaped in age τL(t) from Flexible R. model 81.33% of sb 65.84

SS reform + τK(t) and increasing-in-age τL(t) from Fixed R. model 69.60% of sb 63.47

SS reform + τK(t) and increasing-in-age τL(t) from Exogenous R. model 72.53% of sb 63.52

SS reform + τK(t) and increasing-in-age τL(t) from Regression model 67.47% of sb 64.29

SS reforms set a uniform Actuarial Reduction Factor (ARF) and Delayed Retirement Credit (DRC) and
the resulting actuarial adjustment rate is increased to match the labor force participation rate for ages

65-69 in the optimum equal to 53.63%. Line 1 reports welfare gains from a reform of the SS alone. Line 2
gives welfare gains from jointly choosing an age-dependent labor tax that is hump-shaped in age from the
optimum and reforming the SS system. Lines 3 to 5 reports welfare gains from from alternative tax reforms
with an increasing-in-age linear labor tax coupled with SS reforms. With a SS reform, through an increase
in Delayed Retirement Credits, a hump-shaped in age linear labor tax achieves a large fraction of those

from the second-best and significantly more welfare gains than those from an increasing-in-age linear labor
tax or a reform of the SS system alone.

taxes and (ii) how important a joint reform of the tax system and SS system is in terms of welfare

compared to a reform of the tax code alone.

Average Wedges from the Fixed Retirement model The labor tax and capital tax in

the baseline economy are replaced by linear labor taxes respectively equal to the average labor

wedge (increasing in age) and the average capital wedge (small and decreasing in age) in the Fixed

Retirement model at age E[T sb
R ] = 66. The goal of this experiment is to see whether the standard

result of an average labor wedge that is increasing in age achieves significant welfare once I account

for a flexible retirement age.

The fourth line of Table 2 shows welfare achieved by such a reform. Changing the tax code with

a “wrong” model and increasing-in-age linear labor tax actually achieves welfare comparable to the

hump-shaped in age labor tax (45.87% of the second-best for the former and 47.20% for the latter)

but by significantly less than the second-best optimum. This is consistent with the finding in Farhi

and Werning (2013) or Golosov et al. (2016) that with a fixed retirement age, an increasing-in-age

linear labor tax is close to optimal. With a flexible retirement age, the increasing-in-age linear labor

tax achieves similar welfare as the hump-shaped in age labor tax because they both induce agents

to retire even earlier than in the baseline economy with an ARA of 59 so that almost all workers

retire by 65. Therefore, the welfare gains from the decreasing portion of the hump-shaped in age

38



labor tax after age 64 are not present without a reform of SS system. Line 3 of Table 3 shows the

welfare gains from a joint reform of the tax and SS system, 69.6% of the second-best. Compared to

the first line, 81.33% of the second-best, the welfare gains from the increasing-in-age linear labor

tax are significantly lower than the welfare gains from the hump-shaped in age labor tax once the

SS system is reformed to correct for the retirement distribution. The increasing-in-age linear labor

tax achieves a lower ARA (63.47) than the hump-shaped one that surprisingly achieves the same

ARA as the second-best of 65.84 (while only the labor force participation rate for ages 65-69 of the

second-best is targeted by the SS reform). This suggests that a decreasing-in-age the labor tax for

old workers and reforming the SS system can be welfare improving by allowing high-productivity

agents to work longer (over the extensive margin) and more efficiently (over the intensive margin).

Average Wedges from the Exogenous Retirement model One might worry that the above

comparison does not give justice to the Fixed Retirement model because this model implicitly sets a

linear labor tax of 100% after age 66. Therefore, I investigate the reforms that use the average labor

wedges from the Exogenous Retirement model defined earlier, in which retirement is unanticipated

by the planner but occurs for an exogenous reason.

The fifth line of Table 2 gives the welfare gains from replacing the tax system with the linear

labor tax equal to the average wedges from the Exogenous Retirement model. As expected, this

reform achieves similar welfare gains (46.67% of the second-best) as the reform with the average

wedges from the Flexible Retirement model when the SS system is unchanged. However, once the

SS system is reformed as well, fourth line of Table 3, it achieves fewer welfare gains (72.53% of

the second-best) than the hump-shaped in age linear labor tax (81.33% of the second-best) and its

ARA (63.52) is significantly lower than that of the second-best. Therefore, this reform suggests

that the hump-shaped in age linear labor tax from the Flexible Retirement model achieves at least

8.8% more welfare as a fraction of the second-best welfare gains, or +0.33% consumption at all

histories at all times compared to the planner using the “wrong” Exogenous Retirement model in a

context where retirement is flexible.

Average Wedges from the Regression Model However, one can argue that the increasing-in-

age linear labor tax from the Exogenous Retirement model in a context where retirement is flexible

is expected to underperform compared to the hump-shaped one from the Flexible Retirement model

because the model of the economy is the wrong in the former model. To make the point about
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comparing the performance of hump-shaped in age linear labor taxes against the class of increasing-

in-age linear labor taxes, I run a linear regression of the average labor wedges from the Flexible

Retirement model as a function of age.

The best linear (in age) approximation of the hump-shaped in age average labor wedge from

the Flexible Retirement model gives a flat labor tax of 13.51% at age 25 that increases linearly in

age until age 79 when it becomes 45.37%. The last line from Table 2 shows that replacing the tax

system with the increasing-in-age labor tax from the Regression model and the capital tax with the

average capital wedge of the Flexible Retirement model brings 44.27% of the welfare gains from

the second-best, this sits in the low end of range of welfare gains from other reforms. In addition,

since the labor tax from the Regression model is lower than that of the Flexible Retirement model

at most ages before 64 (because the former is a linear-in-age approximation of the latter that is

hump-shaped in age), the ARA in the former reform (59.92) is higher than the ARA in the latter

(59.11). Once the SS system is reformed as well, as shown on the last line of Table 3, the Regression

model only achieves 67.47% of the welfare gains from the second-best. These reforms suggest that a

hump-shaped in age linear labor tax improves welfare more compared to an increasing-in-age linear

labor tax even when both taxes are set to mimic the optimal wedges of the “right” model with a

flexible retirement age.

6 Extensions

In this section, I present the extensions of my results to the case of non-separable utility in con-

sumption an labor, agents with stochastic lifetimes and productivity-dependent fixed costs.

6.1 Non-Separable Utility

In this section, I relax the assumption of separable intensive preferences in consumption and labor.

In particular, I allow for non-separabilities between consumption and leisure. Saez (2002) argues

that this non-separability is important to study optimal income taxation. Non-separability between

consumption and leisure brings difficulties in that the Inverse Euler equation does not hold. It is well

known that with nonseparable preferences, the no capital tax result of Atkinson and Stiglitz (1976)

does not hold. The reason is that income and productivity now directly affect the intertemporal
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rate of substitution for consumption. Intertemporal distortions allow to separate types and relax

incentive constraints.

Denote the consumption function C(y, u, θ) the inverse of u(·, yθ ). Define

η(y, u, θ) ≡
−θCyθ(y, u, θ)
Cy(y, u, θ)

.

By differentiation of the implicit function C, Cy = −uy/uc = |MRSt| = 1 − τLt is the

marginal rate of substitution between consumption and leisure. Therefore η represents the elastic-

ity −d log |MRSt|
d log θt

and plays an important role in this section. In the separable isoelastic utility case

above, this elasticity is η(y, u, θ) = 1 + 1
ε . Define the co-state λt = Kv as in the separable utility

case. With non-separable utility, λ is still a martingale dλt = σλ,tσtdBt but is not the inverse of the

marginal utility of consumption since the Inverse Euler equation does not hold. The labor wedge

satisfies

d
( 1

uc

1

η

τLt
1− τLt

)
= [λtσλ,tσ

2
t ]dt. (26)

The no-volatility result generalizes: the stochastic process 1
uc

1
η

τLt
1−τLt

has zero instantaneous volatility

so that its realized paths vary much less than those for productivity, in the sense that they are

of bounded variation. To qualify the wedges further, I consider the Greenwood et al. (1988)

preferences

u(c, l) =
1

1− ν

(
c− l1+ 1

ε

1 + 1
ε

)1−ν
(27)

for ν > 0. Then η = 1 + 1
ε and the labor wedge satisfies

d
( τLt

1− τLt
1

uc

)
= [(1 +

1

ε
)λtσλ,t]σ

2
t dt.

as well as

d
( τLt

1− τLt

)
= [(1 +

1

ε
)(λtuc)σλ,t]σ

2
t dt+

τLt
1− τLt

1

uc
d(uc). (28)

The dynamics of the labor wedge depend on the covariance between growth in λ and log-productivity,

the inverse intensive Frisch elasticity of labor supply, λtuc (which is one in the separable utility

case) and the innovations in marginal of consumption. The first term of labor wedge is positive

and pushes the labor wedge up as in the Exogenous Retirement model. The term that mirrors
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the marginal utility of consumption is responsible for the composition effect. Therefore as long as

high-productivity agents retire earlier than low-productivity agents, the composition effect is active

and the average labor wedge is hump-shaped in age. The following lemma shows that it is the case

in the first-best problem.

Lemma 3. Suppose u is a Greenwood et al. (1988)-type utility function. The optimal retirement

rule in the first-best is a cut-off rule T fb
R = inf{t; θt ≤ θfbR (t)}.

The proof is in Appendix A. The conjecture could be made from this lemma that in the

second-best as well, agents with a history of low productivity shocks retire earlier than agents with

a history of high productivity. Hence the composition effect would push for a hump-shaped in age

labor wedge in the non-separable utility case as well.

As for retirement consumption, it is constant after retirement as in the separable utility case.

However, because the Inverse Euler does not hold, little is known about consumption before retire-

ment and about whether such consumption drops at retirement in the second-best. In the first-best

though, the smooth pasting condition implies that marginal utility of consumption is continuous

at retirement and consumption drops at retirement cT +
R

= cT −R
+

θfbR (t)1+ε

1+1/ε to counter the discrete

fall in labor.

6.2 Stochastic Lifetime

There is empirical evidence that life expectancy is positively correlated with income.34 Chetty et al.

(2016) find that in the United States, between 2001-2014, the gap in life expectancy between the

richest 1% and poorest 1% of individuals is 14.6 years.

To model this positive correlation, I assume that there exist an exogenous productivity thresh-

old θD such that T = TD = inf{t ∈ R, θt ≤ θD}. Then the discounting function after retirement

with productivity θ ≥ θD is g(θ) = 1
ρ

(
1−

(
θ
θD

)γ−)
(increasing in current productivity θ) in which

γ− is the negative solution of ρ = µγ + σ2

2 γ(γ − 1). This modeling choice has the convenience

that time is not a state variable of the planner’s problem anymore while each agent have a finite

expected lifetime.35 Since the problem is time homogenous, I focus on retirement consumption
34 Not necessarily causal in one direction or the other.
35This allows me in work in progress to have an in-depth look at optimal policies for human capital acquisition in

a setting in which life expectancy is positively correlated with income and human capital.
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rather than the life-cycle pattern of the wedges. The HJB equation becomes

0 = max
ct,yt,TR,σ∆,t

{
−K + g(θ)u−1

l=0(
v

g(θ)
) , −ρK + (ct − yt) + L(v,∆, θ, t) ◦K

}
where the derivatives operator over state variables L(v,∆, θ, t) is defined in Appendix A. For a

given promised utility v, retirement consumption u−1
l=0( v

g(θ)) is decreasing in current productivity.

In addition, the net present value of retirement benefits are g(θ)u−1
l=0( v

g(θ)) and for a given promised

utility v they are lower for high-productivity agents compared to low-productivity agents.36 Other

things equal, with stochastic lifetime correlated with income, the planner can take advantage of the

fact that high-productivity agents have longer life expectancy than the general population in order

to give them lower retirement consumption and lower net present value of consumption compared

to a model in which the end of the horizon is the average life expectancy T = E[TD].

6.3 Productivity-Dependent Fixed Costs

In this section, I consider the case when the fixed depends on current productivity and age φt(θt).

Proof of results on wedges in Appendix A have been done so far under this general case, so that

results on wedges are unaffected by this assumption. Only the retirement decisions are left to

be determined. The retirement decision depends on φ′t, i.e. how fast the fixed cost increases in

productivity. I consider two subcases.

6.3.1 Slow-Increasing Fixed Costs

Proposition 5. (First-best retirement decision) Suppose that for some ψ > 0, ∀(θ, t), φ′t(θ) ≤ ψθε.

There exists a time-dependent deterministic productivity threshold θfbR (t) such that, in the first-best,

retirement occurs if and only if productivity falls below it: T fb
R = inf{t; θt ≤ θfbR (t)}.

The proof is in Appendix A. Proposition 1 generalizes to productivity-dependent fixed costs as

long as the fixed cost of staying in the labor market for high-productivity workers is not too high

compared to that of low-productivity workers

Risk Neutrality and Pareto Optimal Retirement To understand how the retirement deci-

sion is affected by the dependence of the fixed utility cost in productivity, and compare the first-best
36For a concave utility function u, the function g 7→ gu−1(v/g) is decreasing.
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retirement decision to the second-best one, I consider the case where agents are risk neutral that

is more tractable than the risk averse agents case.

Consider the case of agents who are risk neutral in consumption and productivity is a GBM.

Risk neutrality in consumption implies that consumption need not be distorted. Because of the

strict concavity of u(c) in the case of risk-averse agents with a utilitarian planner, the equivalent

generalized social marginal welfare weights (as in Saez and Stantcheva (2016)) reflect decreasing

marginal utility of consumption. Low-productivity agents have lower consumption and higher

marginal utility and therefore higher social welfare weights. To ensure comparability between the

risk-averse utilitarian and the risk neutral cases, I assume that the planner puts Pareto welfare

weights α(θ0) on each agent with initial type θ0. Since with concave utility, marginal utility of

consumption is non-increasing, I assume the function α : Θ0 7→ (0; +∞) is non-increasing. I

normalize the sum of Pareto weights to one
∫∞

0 α(θ0)dF (θ0) = 1 and call the summand of weights

Λ(θ) =
∫ θ

0 α(θ0)dF (θ0).

The following lemma formulates the retirement decision problem by subtituting optimal allo-

cations in the planner’s problem.

Lemma 4. (Allocations and wedges) The labor wedges are time invariant and depend only on initial

heterogeneity and the welfare weights

τLt
1− τLt

=
τ(θ0)

1− τ(θ0)
= (1 +

1

ε
)

1

θ0

Λ(θ0)− F (θ0)

f(θ0)
(29)

In addition, the planner’s problem is to choose the retirement rule so as to solve:

max
TR

∫ ∞
0

E
{∫ TR

0
e−ρt

[
(1−τ(θ0))ε[yfbt −κ

(
yfbt
θt

)1+ 1
ε

1 + 1
ε

]−[φt−
τ(θ0)

1− τ(θ0)

ε

1 + ε
θtφ

′
t(θt)]dt

}
dF (θ0) (30)

The proof of the lemma is in Appendix A. The normalization of Pareto weights and the as-

sumption of non-increasing weights implies that Λ(θ0) − F (θ0) is always non-negative. The labor

wedges are therefore non-negative. In the risk neutral case, with GBM productivity, the labor

wedges only depend on the inverse intensive Frisch elasticity of labor supply, initial heterogeneity,

and the welfare weights of the planner. Because there is no income effect, consumption can be

allocated freely over time without distorting the labor margin.

In the context of private information, labor distortions are such that the flow utility of con-
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sumption and disutility of labor is lower than it is in the first-best. This is captured by the factor

(1− τ(θ0))ε < 1 in front of [yfbt − κ
(yfbt /θt)1+1/ε

1+1/ε ] in the planner’s objective. These labor distortions

create incentives for the agents to retire early. However, the virtual fixed cost either increases or

decreases depending on the sign of φ′t(θt).

If φ′t is negative, the virtual fixed cost increases compared to the first-best. Its effect goes

in the same direction as the decrease in output y and agents retire earlier than in the first-best.

Therefore, if φ′t is negative, all agents retire earlier in the second-best compared to the first-best.

In addition, retirement is a cut-off rule. If φ′t is positive, the virtual fixed cost decreases compared

to the first-best and depends negatively on the intensive Frisch elasticity of labor and the labor

wedge. Its effect goes in the opposite direction as the decrease in y. Therefore, the distortion on

the retirement rule is ambiguous. Suppose there exists ψ > 0 such that φt(θt) = ψθt. Having solved

the retirement decision problem in the first-best case, the derivation of the analogous rule for the

second-best scenario is relatively simple. Dividing the planner’s objective by (1− τ(θ0))ε, one can

observe that the choice of the retirement rule in the second-best is equivalent to the choice of the

retirement rule in the first-best when the fixed utility cost is replaced by a virtual cost φ̃ defined

as φ̃(t, θt) =
φ(t, θt)

(1− τ(θ0))ε
(1− τ(θ0)

1− τ(θ0)

ε

1 + ε
). In contrast to the first-best case, the retirement

rule depends on initial productivity. Defining S(τ(θ0)) ≡ φ̃(t, θt)/φ(t, θt), the following proposition

summarizes the results on retirement distortions.

Proposition 6. (Retirement distortions)

1. There exists a time-dependent and initial productivity dependent deterministic retirement

threshold θsbR (t, θ0) such that T sb
R = inf{t; θt ≤ θsbR (t, θ0)}.

2. Suppose φt(θt) = ψθt with ψ ∈ R , at the infinite horizon limit, T = +∞ the retirement

thresholds are time-invariant θ̂sbR : Θ0 7→ R+∗, T sb
R = inf{t; θt ≤ θsbR (θ0)} and

θsbR (θ0) = θfbR S(τ(θ0))
1
ε .

3. If ψ ≤ 0, retirement occurs earlier in the second-best compared to the first-best for all agents

θsbR (t, θ0) ≥ θfbR (t). If ψ > 0 , a criterion for whether retirement happens early or is delayed

compared to the first-best is

S(θ0) =
1

(1− τ(θ0))ε
(1− τ(θ0)

1− τ(θ0)

ε

1 + ε
).
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For a given T < +∞, retirement occurs earlier in the second-best compared to the first-best:

θsbR (t, θ0) ≥ θfbR (t) for all t ≤ T if and only if S(θ0) ≥ 1.

Point 1 of the proposition highlights that retirement thresholds depend on the initial pro-

ductivity of the agents. Again, the option of continued work compared to retiring is negative at

retirement. The second point gives an explicit formula for the optimal retirement threshold at

infinite horizon as in the discussion after Corollary 1.37 Point 2 gives an explicit expression for the

retirement thresholds at infinite horizon.

Point 3 of the proposition states that if the fixed utility cost is increasing in productivity,

there is a force that pushes for delayed retirement. High types have a high fixed cost and lower

information rents than in the case when the fixed cost is independent of productivity. This creates

an effect that goes in the opposite direction of the income tax. Depending on the strength of this

effect retirement may occur early or be delayed compared to the first-best. The proposition shows

that the relative weight of the two forces depends on the criterion S that in turn depends on the

intensive Frisch elasticity of labor and the welfare weights of the planner. This criterion allows one

to determine what productivity types should be induced to retire before S(θ0) ≥ 1 or after the

first-best S(θ0) < 1.

����� ���	��
���

������
 ���	��
���

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

������	�� ��	��� �����	�	��� ε�����

�
�
�
�
�
��
�
τ
�

����� ���	��
���

������
 ���	��
���

��� ��� ��� ��� ���

���

���

���

���

���

���

���

������	�� ��	��� �����	�	��� ε�����

�
�
�
�
�
��
�
τ
�

Figure 6: {τ : S(τ) ≥ 1} as a function of ε. On the vertical axis τ(θ0) and on the horizontal axis
εmicro ∈ [0; 0.5] on the left and εmacro ∈ [2; 4] on the right. Early retirement in blue (bottom),
delayed retirement in red (top).

Figure 6 shows that the size of the intensive Frisch elasticity of labor is important in deter-

mining the individual retirement decisions and therefore the optimal hazard rate and labor force
37There is no concern for immiseration at infinite horizon here since, with risk neutrality in consumption, consump-

tion is not pinned down by first order conditions.
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participation rate of the elderly. The larger the intensive Frisch elasticity, the more agents there

are who delay retirement compared to the first-best. Reichling and Whalen (2012) and Peterman

(2016) provide a survey of the estimates of the Frisch elasticity of labor supply in the micro and in

the macro literature.

Figure 6’s left panel illustrates the optimal deviations of retirement compared to the first-

best for typical values of the intensive Frisch elasticity of labor supply from the micro literature,

with εmicro ∈ [0; 0.5]. When ε is small, agents’ labor is inelastic and the incentive effect of labor

distortions is small. The effect of distortions through rents induced by the fixed cost dominates

once an agent faces labor distortions that lie in the red (upper) region. There is a large disparity

in optimal retirement behavior. For instance, for a an intensive Frisch elasticity of labor supply

of ε = 0.2, agents facing a marginal labor income tax rate38 below 26% retire early while agents

facing a marginal tax rate above 26% delay retirement optimally.

Figure 6’s right panel illustrates the optimal deviations of retirement compared to first-best for

typical values of the Frisch elasticity of labor from the macro literature, with εmacro ∈ [2; 4]. When

ε is large, agents’ labor is elastic and the incentive effect of labor distortions is large. Therefore,

most agents retire earlier than in the first-best. One need a high optimal tax rate, above 54%, for

the distortions through rents induced by the fixed costs increasing in productivity for the agents

to delay retirement compared to first-best. The curve {S(τ) = 1} asymptotes to around τL = 54%

for large values of ε up to infinity.

This discussion highlights that an accurate estimate of the intensive Frisch elasticity of labor

supply and the variations in the extensive elasticity through φ
′
(θ) are important in determining

individual retirement decisions and therefore the optimal hazard rate and labor force participation

rate of the elderly.

6.3.2 Fast-Increasing Fixed Costs

I assumed that the fixed utility cost of staying in the labor market grows slowly in productivity i.e

there exists ψ > 0, such that ∀(θ, t), φ′t(θ) ≤ ψθε. This section relaxes this assumption and shows

that if the fixed utility cost of staying in the labor market grows fast in productivity, when agents

promised utility becomes high, they become too costly to incentivize to work and they retire.
38In this setting, allocations can be implemented by non-linear labor income taxes equal to the wedges.
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Lemma 5. Suppose there exists ψ > 0 such that φt(θt) ≥ ψθ1+ε
t . Then, for each t there exists a

promised utility v∗t such that if vt ≥ v∗t , the planner collects more revenue from retiring the agent

than from making him work.

The proof is in Appendix A. The argument of the proof is mechanical and comes directly from

the fast growth in φt(θt). The lemma applies to any allocations, even non-incentive compatible

ones.

Note that the lemma does not imply directly that under the conditions specified there is an

upper retirement boundary since promised utility is an endogenous state variable of the problem.

The existence of such a boundary depends on how big the government exogenous revenue −G is to

achieve high promised utility. Indeed, if ψ is high it becomes more and more costly to incentivize

high types who need to be retired whenever they have accumulated a high promised utility.39 Under

these conditions, both agents with a history of low productivity shocks and agents with a history of

high productivity shocks retire earlier than agents with a history of average productivity. Therefore

the composition effect is less strong than when φt(θt) is constant or slowly growing in productivity.

If ever40 high-productivity agents experience fixed costs of staying in the labor market much higher

than low-productivity agents, or equivalently when the extra benefit of retirement leisure is much

higher for the former than the latter, the composition effect pushes for increasing ever more the

labor wedge for old workers.

7 Conclusion

This paper studies the optimal design of taxes and retirement benefits in a dynamic life-cycle model

with an endogenous flexible retirement age. Individuals adjust their labor supply both through the

number of hours worked, an intensive margin, and the timing of their retirement, an extensive

margin. A utilitarian government provides insurance and redistributes resources across agents who

experience persistent idiosyncratic productivity shocks. Productivity and its evolution are private

information of the workers, and the government’s goal is to design an incentive compatible mecha-

nism. I obtain the allocations of this second-best problem by following a First Order Approach that
39For instance, following the notation in the proof in Appendix A, for log utility the highest promised fixed

consumption before retirement occurs is c̄(t, v∗t ) = 1/K. This quantity decreases with ψ; therefore when ψ is high
the likelihood of an upper retirement boundary being endogenously hit is higher.

40On another planet.
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relaxes the incentive constraints on the government. I derive the formulas of the optimal implicit

taxes, or wedges and describe the forces that determine their evolution. Finally, I describe the

optimal retirement decision as a solution of an optimal stopping problem.

A standard result in the dynamic optimal taxation literature is that, when the variance of

individual productivity increases with age, and retirement is exogenous, the optimal labor tax

increases with age. I qualify this result accounting for an endogenous flexible retirement age. I

show through two effects that the optimal labor tax decreases with age for old workers and that

the labor tax curve is hump-shaped in age. First, the elasticity effect implies a pattern of the

optimal labor tax that is flatter in age relative to an equivalent model without an extensive margin.

Second, workers with a history of low productivity shocks retire earlier than workers with a history

of high productivity shocks. Through selection, the labor force becomes increasingly productive in

old age. When the forces of this novel composition effect are strong enough, the distribution of

productivity in the old age labor force features higher mean and lower variance than the one in

general population. Setting a decreasing-in-age labor tax for old workers increases the efficiency of

the intensive labor supply of this highly productive subpopulation.

Another standard result in the dynamic optimal taxation literature is that simple linear (in

income) age-dependent taxes achieve the bulk of the welfare gains from the history-dependent

fully optimal system. My simulations show that simple linear age-dependent taxes that mimic the

history-dependent system achieve modest welfare gains under the current SS system. I augment

this tax reform with a simple SS reform that increases the delayed retirement credits, and I find

that this pairing achieves sizeable welfare gains from the fully optimal system. These calibrations

suggest that when the endogeneity of retirement is accounted for, introducing age-dependency into

the tax code alone is not enough, and one needs reform the SS system as well in order to capture

the bulk of welfare gains from optimal policies. Further work would be needed to investigate how

robust this result is to other modeling choices such as a different process for productivity or different

values of the coefficient of risk aversion.

The theory proposed in this paper leads to two open empirical questions that are important

in quantifying the magnitude of optimal policies. Empirical estimates of the time fixed costs

and monetary fixed costs of work would improve the calibration of macro models to match micro

evidence on extensive margin elasticities. Furthermore, an empirical estimate of the mean and

variance of hourly wages among full-time workers age 60-70, would help quantify the strength of
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the novel composition effect highlighted in this paper.
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A - Analytic Appendix

1 Proof of Propositions 1 and 5

Proof. The planner’s problem is

max
{λ,ct,lt,TR}

E
{∫ T

0
e−ρs[u(ct)− λct]dt+

∫ TR

0
e−ρs[λθtlt − κ

(lt)
1+ 1

ε

1 + ε
− φt(θt)]dt

}
subject to the law of motion of productivity (1). From the optimal allocations u′(c) = λ and

κl
1
ε
t = λθt, denote E

{∫ T
0 e−ρs[u(ct)− λct]dt

}
= h(λ). Then the above objective rewrites as

max
{λ,TR}

h(λ) + E
{∫ TR

0
e−ρt[λ1+ε (θt)

1+ε

κε(1 + ε)
− φt(θt)]dt

}
.

Denote a maximizer by λ∗. By an envelope condition, the expected change in the payoff if retirement

is delayed an infinitesimal short time is λ∗1+ε (θt)
1+ε

κε(1 + ε)
− φt(θt). Taking ψ < λ∗1+ε

κε in the condition

of growth bounded from above of φt(θ) in Proposition 1 or assuming that G is high enough such

that marginal utility of consumption λ∗1+ε is high and the inequality holds, then the expected

change in payoff is increasing in productivity. The dynamic single crossing condition in Strack

and Kruse (2013) holds and Theorem 4.3 of Jacka and Lynn (1992) implies that the shape of the

stopping region (retirement rule) is determined by a time-varying threshold.

Note that when φt is independent of productivity, or nonincreasing in productivity, the “bounded

growth from above” condition in the Propositon holds, implying Proposition 1.

2 Proof of Corollary 1

Proof. Consider the infinite horizon model, T = +∞. To ensure convergence of social welfare, I

assume

ρ > (1 + ε)(µ+
1

2
σ2ε). (31)

Social welfare is now time-independent and replacing the HJB equation in this setting is

max{0− w(θ),−ρw(θ) + µθwθ +
σ2θ2

2
wθθ +

θ1+ε

κε(1 + ε)
− φ}. (32)
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I conjecture that the solution is of the following form: there is a threshold θfbR such that an agent is

retired if and only if his productivity falls below the threshold θt ≤ θfbR . This implies that w(θ) = 0

for all θ ≤ θfbR and for θ > θfbR , w is a nonnegative solution to the equation

− ρw(θ) + µθwθ +
σ2θ2

2
wθθ = − θ1+ε

κε(1 + ε)
+ φ. (33)

Moreover, w must be C1 on its entire domain. This implies that w(θfbR ) = 0 a value matching

condition and wθ(θ
fb
R ) = 0, a smooth pasting condition. Finally, observe that, for θ ≤ θfbR , the

second term in the right hand side of (32) implies that
θ1+ε

κε(1 + ε)
≤ φ i.e. at retirement and

afterwards, the marginal social value of continued work is negative. In particular θ̂fbR ≤ θ∗.

Define the quadratic polynomial P (x) = −ρ+ µx+ σ2

2 x(x− 1). The homogeneous equation

− ρw(θ) + µθwθ +
σ2θ2

2
wθθ = 0 (34)

admits the general solution

w(θ) = C−θ
x− + C+θ

x+ (35)

in which x− and and x+ are the negative and positive roots of P . I find a particular solution for

each non-homogenous term, respectively denoted Aθ1+ε and B in which A = − 1

κε(1 + ε)P (1 + ε)

and B = −φ
ρ
. By the assumption in (31), P (1 + ε) < 0. The sum of these particular solutions

Aθ1+ε +B is the value of social welfare if agents never retire.

By the superposition principle of linear homogenous ODEs the solution takes the form

w(θ) = Aθ1+ε +B + C−θ
x− + C+θ

x+ (36)

for θ > θfbR and w(θ) = 0 for θ ≤ θfbR . From (31) I ensure that x+ > 1 + ε. Since lfb − κ (lfb)1+ 1
ε

1+ 1
ε

=

θ1+ε

κε(1 + ε)
I can conjecture that w(θ) =θ→+∞ O(θ1+ε). Therefore D+ = 0.

By the value matching and smooth pasting conditions:

A(θfbR )1+ε +B + C−(θfbR )x− = 0 (37)

(1 + ε)A
(θfbR )1+ε

θfbR
+ x−C−

(θfbR )x−

θfbR
= 0. (38)
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Multiplying (37) by x− and (38) by θ̂fbR and subtracting the two yields

(1 + ε− x−)A(θfbR )1+ε = x−B. (39)

Thus the expression of θfbR and w in Corollary 1 follow by replacing the values of A and B.

Now in finite horizon, the problem is time dependent and thresholds are time dependent. When

time goes to T , the value of waiting for productivity to improve decreases and thresholds converge

to θ∗. Only the dynamic single crossing property of the derivative operator is needed in finite

horizon for this to hold. This is again an application of Jacka and Lynn (1992).

3 The First Order Approach

3.1 First Order Approach under Risk Neutrality

I first introduce the First Order Approach (FOA) in the simpler setting in which agents are risk

neutral in consumption and productivity is a GBM. I relax incentive compatibility by considering a

family of deviations that Bergemann and Strack (2015) call consistent deviations. The effect of these

deviations on promised utility can be summarized by what Pavan et al. (2014) call the impulse

response function. This FOA is standard in the dynamic contracting literature with persistent

shocks.

The value of the agent’s productivity if he reports his productivity truthfully is

θt = θ0 exp((µ− σ2

2
)t+ σBt).

I define Φ by θt ≡ Φ(t, θ0, Bt) and set the following definition, which is motivated by Bergemann

and Strack (2015).

Definition 2. (Consistent deviations). A deviation is called consistent if an agent, with real pro-

ductivity θt = Φ(t, θ0, Bt) and associated initial shock θ0, misreports his initial shock by announcing

θ̃0 ∈ Θ0 at t = 0 and continues to misreport θ̃t = Φ(t, θ̃0, Bt) instead of his true productivity θt at

all future dates t ≤ T .

With this definition, an agent who follows a consistent deviation misreports his true type in all

future periods. An agent’s reported productivity θ̃t = Φ(t, θ̃0, Bt) would be equal to the productivity
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he would have had if his initial shock had been θ̃0 instead of θ0. From these misreports, the planner

can infer the true realized path of Brownian shocks Bt. However, since the allocations depend on the

history of productivities instead of the Brownian shocks, the inference on the Brownian shocks is not

of immediate use for the principal. Bergemann and Strack (2015) show that incentive compatibility

with respect to consistent deviations—which is a one-dimensional class of deviations—is sufficient

for full incentive compatibility in the risk-neutral and GBM case. This result allows me to derive

the incentive-compatible optimal allocations and retirement distortions.

Consider the ex-ante utility at time 0 of an agent with initial productivity θ0 who announces

θ̃0 and follows consistent deviations; denoting it v(θ0, θ̃0). Then

v(θ0, θ̃0) = E{θ̃}
{∫ T

0
e−ρtct(θ̃0)dt−

∫ TR(θ̃0)

0
e−ρt[κ

(
yt(θ̃0)

Φ(t,θ0,Bt)

)1+ 1
ε

1 + 1
ε

+ φt

(
Φ(t, θ0, Bt)

)
]dt
∣∣∣θ̃0

}
. (40)

Restricting attention to consistent deviations alone, the incentive problem turns into a static one.

Truthful reports at time zero are necessary for incentive compatibility, i.e. v(θ0) = max
θ̃0

v(θ0, θ̃0)

and an envelope condition allows me to obtain the derivative of ex-ante utility. The sensitivity of

ex-ante utility with respect to initial reports satisfies:

vθ(θ0) = E
{∫ TR

0
e−ρt[(1 +

1

ε
)(

Φθ(t, θ0, Bt)

θt
)κ

(ytθt )
1+ 1

ε

1 + 1
ε

− Φθ(t, θ0, Bt)φ
′
t(θt)]dt

∣∣∣θ0

}
. (41)

Φθ(t, θ0, Bt) is what Pavan et al. (2014) call the impulse response function and Bergemann and

Strack (2015) call the stochastic flow in continuous-time. Here with GBM productivity the stochas-

tic flow is the ratio of current productivity to initial productivity, that is,

Φθ(t, θ0, Bt) = exp((µ− σ2

2
)t+ σBt) = θt/θ0.

Then the incentive compatibility constraint simplifies to

vθ(θ0) =
1

θ0
E
{∫ TR

0
e−ρt[(1 +

1

ε
)κ

(ytθt )
1+ 1

ε

1 + 1
ε

− θtφ
′
t(θt)]dt

∣∣∣θ0

}
. (42)

3.2 First Order Approach under Risk Aversion

Here, I relax incentive compatibility by considering specific types of deviations as in the risk neutral

case. Suppose the agent has reported his type truthfully until time t, {θ̃t} = {θt} and then decides
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to misreport his type. Since the planner observes continuous reports from the agent, she can

construct a process Bθ̃
t from the reports that evolves according to dBθ̃

t = dθ̃t−µtθ̃tdt
σtθ̃t

. Under truth-

telling, Bθ̃
t = Bt. Therefore, the agent is restricted to reports that make Bθ̃

t a Brownian motion.

The Girsanov Theorem implies that there exist misreports −ηt such that dBt = dBθ̃
t + ηtdt under

the measure Q of the Brownian motion Bθ̃
t and gives the formula for the change of measure from

P to Q. An incentive compatible mechanism must be immune to these deviations.

Lemma 6. (Sensitivity of promised utility) IC ⊆ FOA. Moreover, If an allocation {c, y, ν} ∈ FOA

then there exists a process {σ∆,t} such that the sensitivity process {∆t} has the integral form:

∆t = E
{∫ TR

t
e−ρs[µs∆s + uθ(cs,

ys
θs

)− φ′t(θt) + σ∆,sσs]ds
∣∣∣Ft} (43)

Proof. Denote {θ̃} the process reported by the agent. Let θt = θ at time t. By Girsanov’s theorem,

there exists a process {η} is adapted to Ft such that

dθ̃t = dθt + ηtdt = (θtµt + ηt)dt+ θtσtdBt. (44)

The agent’s problem is to choose controls ηt to maximize promised utility for given allocations {c, y}

and retirement rule TR. Denote {θη} ≡ {θ̃} the misreports generated by {η}. Global incentive

compatibility is equivalent to the fact that the optimal report is truth-telling i.e η?t = 0 ∀t. Now

with the FOA, assume that all the controls ηs,∀s ∈ [0, t) have been equal to 0 so far. Promised

utility at time t given the control η is

wt(θ, θ
η) = sup

{η}
E
{∫ TR(η)

t
e−ρ(s−t)

[
u
(
cs(η),

ys(η)

θs

)
−φs(θs)

]
ds+

∫ T

TR(η)
e−ρ(s−t)[u(cs(η), 0)]ds

∣∣∣Fηt }.
(45)

The expectation above is taken with respect to the realization of the process {θ̃}, since it is reports

that determines the allocation and the retirement rule. If the agent follows a process η then

dBη
t =

dθηt − ((θηt −
∫ t

0 ηsds)µt + ηt)dt

(θηt −
∫ t

0 ηsds)σt
(46)

forms a standard Brownian motion. Therefore, there is exists nonnegative process γη and some

sensitivity process Y ′η such that

dwt(θt, θ
η
t ) = (ρwt(θt, θ

η
t )− u(ct,

yt
θt

) + φt(θt))dt− γηt dt+ σtY
′η
t dB

η
t .
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Then replacing the standard Brownian from (46) in this equation we have

dwt(θt, θ
η
t ) = (ρwt(θt, θ

η
t )− u+ φ)dt− γηt dt+ σtY

η
t [dθ

η
t − ((θηt −

∫ t

0
ηsds)µt + ηt)dt]. (47)

Since the dependence on past controls η = 0 is completely captured by the current value of θη,

vt = wt(θt, θ
η=0). Ito’s formula implies that

dwt(θt, θ
η
t ) = ∂twt(θt, θ

η)dt+∂θηwt(θt, θ
η
t )(θtµt+ηt)dt+∂θηwt(θt, θ

η
t )θtσtdBt+

1

2
∂2

(θη)2wt(θt, θ
η
t )θ2

t σ
2
t dt.

(48)

The equation (47) becomes with the FOA ηs = 0,∀s ∈ [0, t):

dwt(θt, θ
η
t ) = (ρwt(θt, θ

η
t )− u(ct,

yt
θt

) + φt(θt))dt− γηt dt+ θηt σtY
η
t dBt.

Comparing equations (48) and (47) and equalizing their drifts yield:

∂twt(θt, θ
η
t )+∂θηwt(θt, θ

η
t )(θtµt+ηt)+

1

2
∂2

(θη)2wt(θt, θ
η
t )θ2

t σ
2
t = (ρwt(θt, θ

η
t )−u(ct,

yt
θt

)+φt(θt))dt−γηt dt.

Now I obtain the Hamilton-Jacobi-Bellman equation for wt

ρwt(θt, θ
η
t ) = sup

ηt

{
∂twt(θt, θ

η)+∂θηwt(θt, θ
η
t )(θtµt+ηt)+

1

2
∂2

(θη)2wt(θt, θ
η
t )θ2

t σ
2
t +u(ct,

yt
θt

)−φt(θt)
}
.

Therefore following Theorem 3.1, p. 95 in Hartman (2002), The envelope theorem implies41

ρ∂θwt(θt, θ
η
t ) = ∂t,θwt(θt, θ

η) + ∂2
θη ,θwt(θt, θ

η
t )(θtµt + ηt) + ∂θηwt(θt, θ

η
t )µt +

1

2
∂3

(θη)2,θwt(θt, θ
η
t )θ2

t σ
2
t

+∂2
(θη)2wt(θt, θ

η
t )θtσ

2
t + uθ(ct,

yt
θt

)− φ′t(θt).

This expression can be evaluated at ηt = 0, writing∂wt(x,θ)∂θ = ∆t(x, θ) and considering the fact that

when ηt = 0 we have ∂wθη(θ, θη) = ∆t, so that

ρ∆t = ∂t∆t + ∂θ∆t(θtµt + 0) + ∆tµt +
1

2
∂2

(θ)2(∆t)θ
2
t σ

2
t + ∂θ∆tθtσ

2
t + uθ(ct,

yt
θt

)− φ′t(θt).

41For a fully rigorous argument, one needs to make regularity assumptions on TR and use Mallliavin calculus to
differentiate with respect to stochastic processes. See Di Nunno et al. (2009).
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The Feynman-Kac formula applies to this differential equation and we deduce that

∆t = E
{∫ TR

0
e−ρs[∆sµs − uθ(ct,

yt
θt

) + φ′t(θt) + ∂θ∆sθsσ
2
s ]ds+ ∆TR

∣∣∣Ft

}
.

After retirement, an optimal allocation must give constant consumption. Therefore the sensitivity

is zero at retirement. This with ∂θ∆sθs = σ∆,s, implies the result:

∆t = E
{∫ TR

0
e−ρs[∆sµs − uθ(ct,

yt
θt

) + φ′t(θt) + σ∆,sσ
2
s ]ds

∣∣∣Ft

}
.

Hamilton-Jacobi-Bellman Equation First, for the sake of legibility we drop the state 4-tuple

(v,∆, θ, t) from the notation. The associated Hamilton-Jacobi-Bellman equation to this problem is

then:

0 = max
ct,yt,σ∆,t

{
−K + g(t)u−1

l=0

( v

g(t)

)
, −ρK + (ct − yt) + L(v,∆, θ, t) ◦K

}
(49)

in which L(v,∆, θ, t) is the derivative operator with respect to state variables:

L(v,∆, θ, t) ◦K = Kv[ρvt − u+ φt] +K∆[(ρ− µ)∆t − uθ + φ
′
t − σ∆,tσ] +Kt +Kθθtµ (50)

+
1

2
Kvvθ

2
t∆

2
tσ

2 +
1

2
K∆∆σ

2
∆,tσ

2 +
1

2
Kθθθ

2
t σ

2

+Kv∆θt∆tσ∆,tσ
2 +Kvθθ

2
t∆tσ

2 +K∆θθtσ∆,tσ
2.

The first component of the right-hand side of this dynamic equation captures that once an

agent is retired with promised utility v, the cost of providing such utility is the discounted value of

the flow consumption u−1
l=0( v

g(t)). The second component captures the fact that before retirement,

the flow cost over an infinitesimal time dt is the discounted cost −ρKdt, flow consumption minus

output, and the derivatives of the cost function with respect to state variables. By optimality, these

should sum up to zero in the working region.
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4 Proof of Lemma 2

Proof. For given consumption, output, {c, y} and retirement rule TR, the expected utility of an

agent is at time t is:

vt = E
{∫ TR

t
e−ρ(s−t)u(cs,

ys
θs

)ds+

∫ T

TR

e−ρ(s−t)u(cs, 0)ds
∣∣∣Ft}

Then

e−ρtvt +

∫ t

0
e−ρsu(cs,

ys
θs

)ds = E
{∫ TR

0
e−ρsu(cs,

ys
θs

)ds+

∫ T

TR

e−ρsu(cs, 0)ds︸ ︷︷ ︸
W

∣∣∣Ft} ≡Wt.

By iterated expectation, Wt is a martingale. By the Martingale Representation Theorem, there

exists a square integrable process such that Wt = E[W ] +
∫ t

0 σ
′v
s dBs. This implies that e−ρtvt =

E[Y ]−
∫ t

0 e
−ρsu(cs,

ys
θs

)ds+
∫ t

0 σ
′v
s dBs. Therefore e−ρtvt is an Ito process. Applying Ito’s lemma,

dvt = (ρvt − u+ h)dt+ σvt dBt

in which σvt = ertσ
′v
t . By Feynman-Kac, σvt = θt∆tσt and

dvt = (ρvt − u+ h)dt+ θt∆tσtdBt

with the initial value condition

v0 = v.

The law of motion of the sensitivity process is a direct application of this idea to Lemma (6).

5 Proof of Proposition 2

Proof. Applying Ito’s lemma to λt = Kv(vt,∆t, θt, t) yields

dλt = L(vt,∆t, θt, t) ◦Kvdt+ (Kvvθt∆t +Kv∆σ∆,t +Kvθθt)σtdBt.

Using the envelope theorem, differentiate HJB with respect to v to get −ρKv − L(vt,∆t, θt, t) ◦

Kv + ρKv = 0, i.e L(vt,∆t, θt, t) ◦Kv = 0. Therefore, the drift of dλt is zero and λt is a martingale.
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The drift process is determined by σc,t = Kvvθt∆t +Kv∆σ∆,t +Kvθθt.

6 Proof of Proposition 3

Proof. Applying Ito’s lemma to yt = K∆(vt,∆t, θt, t) yields

dγt = L(vt,∆t, θt, t) ◦K∆dt+ (K∆vθt∆t +K∆∆σ∆,t +K∆θθt)σtdBt.

Using the envelope theorem, differentiate HJB with respect to ∆ to get

−ρK∆ − L(vt,∆t, θt, t) ◦Kv + (ρ− µt)K∆ +Kvvθ
2
t∆tσ

2
t +Kv∆θtσ∆,tσ

2
t = 0

using this equation, the first order condition for σ∆,t and the expression for σc,t, the drift of γt is

(−θtλtσc,tσ2
t dt+ µtγt)dt and the drift is γtσtdBt. Hence the result.

7 Proof of Lemma 3

Proof. Denote λ the Lagrangian on the government’s resource constraint. The first order condition

on ct when an agent works is
(
ct − l

1+ 1
ε

t

1+ 1
ε

)−ν
= λ and c−νt = λ when an agent is retired. The

first order condition for the labor of workers is l
1
ε
t λ = λθt so that lt = θεt . After rearranging and

simplifying, the terms inλ cancel out and the planner’s retirement problem is rewritten as:

max
{λ,TR}

E
{∫ TR

0
e−ρt[λ

(θt)
1+ε

(1 + ε)
− φt(θt)]dt

}
.

The proof ends as in the proof of Propositon 1 applying Theorem 4.3 in Jacka and Lynn (1992).

8 Proof of Lemma 4

Proof. The problem of the planner is to choose allocations {c, y} and a retirement rule TR to

maximize social welfare subject to the definition of ex-ante utility, the resource constraint (4), the

relaxed incentive compatibility constraint (42) and the law of motion of productivity (1). I rewrite
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the problem below for reading convenience.

max
{c,y,v,TR}

∫ ∞
0

α(θ0)v(θ0)dF (θ0)

s.to
dθt
θt

= µdt+ σdBt

v(θ0)= E0

{∫ T

0
e−ρtctdt−

∫ TR

0
e−ρt[κ

(ytθt )
1+ 1

ε

1 + 1
ε

+ φt]dt
∣∣∣θ0

}
0 ≤E

{∫ TR

0
e−ρtytdt

}
− E

{∫ T

0
e−ρtctdt

}
vθ(θ0)=

1

θ0
E0

{∫ TR

0
e−ρt[(1 +

1

ε
)κ

(ytθt )
1+ 1

ε

1 + 1
ε

− θtφ
′
t(θt)]dt

∣∣∣θ0

}
(FOA)

Eliminate consumption from the problem by plugging the definition of ex-ante utility at time zero

into the feasibility constraint (4). The feasibility constraint then becomes:

∫ ∞
0

(
v(θ0) + E0

{∫ TR

0
e−ρt

[
κ

(ytθt )
1+ 1

ε

1 + 1
ε

+ φt

]
dt
∣∣∣θ0

})
dF (θ0) ≤

∫ ∞
0

E0

{∫ TR

0
e−ρtytdt

∣∣∣θ0

}
dF (θ0).

(51)

Denote by λ the multiplier on the new feasibility constraint (51). If v(θ0) is interior, the first order

conditions on v: α(θ0)f(θ0)− λf(θ0) = 0 integrated over Θ0 yields λ = 1. The problem si then to

maximize the Lagrangian

∫ ∞
0

α(θ0)v(θ0)dF (θ0)−
[ ∫ ∞

0

(
v(θ0) + E0

{∫ TR

0
e−ρt[κ

(ytθt )
1+ 1

ε

1 + 1
ε

+ φt]dt
∣∣∣θ0

})
dF (θ0)

−
∫ ∞

0
E0

{∫ ν

0
e−ρtytdt

∣∣∣θ0

}
dF (θ0)

]
subject to the incentive constraints from the FOA (42)and the law of motion of productivity (1).

By partial integration

∫ ∞
0

v(θ0)dF (θ0) =

∫ ∞
0

1− F (θ0)

f(θ0)
vθ(θ0)dF (θ0) + lim

θ→0
v(θ)∫ ∞

0
α(θ0)v(θ0)dF (θ0) =

∫ ∞
0

1− Λ(θ0)

f(θ0)
vθ(θ0)dF (θ0) + lim

θ→0
v(θ).
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Eliminating v from the Lagrangian using partial integration and the expression of vθ from in the

incentive compatibility constraint, the planner’s problem becomes

∫ ∞
0

E0

{∫ TR

0
e−ρt

[
yt−κ

(ytθt )
1+ 1

ε

1 + 1
ε

[
1+(1+

1

ε
)
Λ(θ0)− F (θ0)

f(θ0)

1

θ0

]
−[φt−

Λ(θ0)− F (θ0)

f(θ0)

θt
θ0
φ′t(θt)]

]
dt
∣∣∣θ0

}}
dF (θ0).

(52)

The first order condition for yt implies that the labor wedge is time invariant and depends only on

initial heterogeneity and the welfare weights.

τLt
1− τLt

=
τ(θ0)

1− τ(θ0)
= (1 +

1

ε
)

1

θ0

Λ(θ0)− F (θ0)

f(θ0)
.

Since yfbt − κ
(
y
fb
t
θt

)1+ 1
ε

1+ 1
ε

=
θ1+ε
t

κε(1+ε) and ysbt − κ
(
ysbt
θt

)1+ 1
ε

1+ 1
ε

[
1 + (1 + 1

ε )Λ(θ0)−F (θ0)
f(θ0)

1
θ0

]
= (1− τ(θ0))ε

θ1+ε
t

κε(1+ε)

then I can replace ysb in the planner’s objective (52) to obtain

max
ν

∫ ∞
θ

E
{∫ TR

0
e−ρt

[
(1−τ(θ0))ε[yfbt −κ

(
yfbt
θt

)1+ 1
ε

1 + 1
ε

]−[φt−
τ(θ0)

1− τ(θ0)

ε

1 + ε
θtφ
′
t(θt)]dt

}
dF (θ0). (53)

9 Proof of Lemma 5

Proof. For a fixed θ, the function y 7→ h( y
θ

)+φt(θt)

y is minimized at a y that satisfies 1
θh
′(yθ ) =

h( y
θ

)+φt(θt)

y (marginal utility cost equals average utility cost). This yields ymin
θ =

(
φt(θ)(1+ε)

κ

) ε
1+ε

and the minimum value of average cost is 1
θh
′(yminθ ) = κ

ε
1+ε

((1+ε)φt(θt))
1

1+ε

θt
. With the assumption

on φt I have uniformly on θ and t, h(ytθt ) + φt(θt) ≥ Kyt in which K = κ
ε

1+ε ((1 + ε)ψ)
1

1+ε .

For any vt and t define c̄ the constant consumption level which, given continually to the agent

after t, gives him an expected utility of vt: g(t)u(c̄(t, vt)) = vt. Also define v∗t by u′(c̄(t, v∗t )) = K.

Such a level exists provided that u′(0) > K, a condition without which the agent would never work

even in the full information solution (and which is true by definition for log utility). Then for

vt ≥ v∗t the agent does not work and the optimal contract is ct′ = c̄(t, vt) for all t′ ≥ t. To see this,

let vt ≥ v∗t , then u′(c̄(t, vt)) ≤ K. From concavity of u and inequality on h,

vt = E
(∫ T

t
e−r(s−t)(u(cs)− 1s≤TR [h(

ys
θs

) + φs(θs)])ds
)
≤ E

(∫ T

t
e−r(s−t)(u(c̄(t, vt))
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+(cs − c̄(t, vt))u′(c̄(t, vt))− 1s≤TRKys)ds
)

≤ g(t)u(c̄(t, vt))− u′(c̄(t, vt))E
(∫ T

t
e−r(s−t)(1s≤TRys − cs)ds+ g(t)c̄(t, vt)

)
.

Since vt = g(t)u(c̄(t, vt)) and u′ ≥ 0 , the revenue from any allocation (c, y) is less than −g(t)c̄(t, vt)

which is the revenue from retiring the agent with constant consumption c̄(t, vt). It follows that for

vt ≥ v∗t the agent does not work.
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B - Computational Appendix

1 Dynamic Mirrlees Model Numerical Algorithm

1.1 Planning Problem

I do a numerical simulation of a discrete time version of the model. I present the discrete time

model and the algorithm of the numerical simulation below. An agent working until time t, reports a

productivity history θt and the planner recommends {c(θt), y(θt), v(θt),∆(θt), s(θt)}. A retirement

decision s equal to zero means the agent works work in period t + 1 and equal to one means the

agents retires forever independently of θt+1.

Define u(c, y; θ) = u(c, yθ ) and f t(θt|θt−1) the conditional density of θt. With the savings rate

denoted q−1, the planner’s problem is to minimize the cost K such that, for a working agent s = 0:

K(v,∆, θ−, t, 0) = min
[ ∫
{c(θ)− y(θ) + qK(v(θ),∆(θ), θ, t+ 1, τ(θ))f t(θt|θ−)dθ

]

subject to for all θ ∈ Θ

w(θ) = u(c(θ), y(θ); θ)− φt(θ) + βv(θ)

ẇ(θ) = uθ(c(θ), y(θ); θ)− φθ(θ) + β∆(θ)

And

v =

∫
w(θ)f t(θ|θ−)dθ

∆ =

∫
w(θt)∂θ−f

t(θ|θ−)dθ.

Define

βtfact =
1− βT+1−t

1− β
.
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For a retired agent s = 1 and ∆ = 0:

K(v, 0, θ, t+ 1, 1) = βt+1
factu

−1
( v

βt+1
fact

)
.

The relaxed planning problem can be recovered by setting t = 1 and treating ∆ a as control

variable:

K(v) = min
∆

K(v,∆, θ0, 1, 0).

1.2 Normalization

The process for productivity is a geometric random walk: θt = θt−1εt in which εt is log-normal

log εt ∼ N(−σ2

2 , σ
2). Preferences are separable in consumption and labor and u(ct) = log(ct) and

I denote h(yt/θt) the disutility of labor. The fixed cost of staying in the labor market is a funtion

of age φ(t). To reduce the number of state variables I re-normalize ỹt ≡ yt/θt−1, c̃t ≡ ct/θt−1,

h(yt/θt) = h(ỹt/εt).

Denote g the density of εt. The densities of θt and εt are linked by f(θt|θt−1)dθt = g(εt)dεt

and ∂θt−1f(θt|θt−1)dθt = 1
θt−1

(g(εt) + εtg
′(εt))dεt (See the derivation in Stantcheva (2017)). Denote

g̃(εt) = g(εt) + εtg
′(εt).

Normalized continuation variables are defined as:

ṽt ≡E
( TR(θt)∑
s=t+1

βs−t−1(log(cs/θt)− h(ys/θs)− φ(s)) +

T∑
s=τ(θt)+1

βs−t−1 log(cs/θt)
)

=vt − βfactt+1 log(θt),
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w̃t(θ
t) ≡u(c̃t)− h(ỹt/εt)− φ(t) + β

( τ(θt)∑
s=t+1

βs−t−1(log(cs/θt−1)− h((ys/θt−1)/(θs/θt−1))− φ(s))

+
T∑

s=τ(θt)+1

βs−t−1 log(cs/θt−1)
)

=u(c̃t)− h(ỹt/εt)− φ(t) + βṽt + βfactt log(εt)

=wt − βfactt log(θt−1),

∆̃t−1 ≡ ∆t−1/θt−1.

Renormalized constraints The promise-keeping constraint

vt−1 =

∫
wt(θt)f

t(θt|θt−1)dθt

implies

ṽt−1 + βfactt log(θt−1) =

∫
[w̃t(θt) + βfactt log(θt−1)]f t(θt|θt−1)dθt.

Therefore

ṽt−1 =

∫
w̃t(εt)gε(εt)dεt.

Sensitivity of promised utility

∆t−1 =

∫
wt(θt)∂θt−1f

t(θt|θt−1)dθt

becomes

∆t−1 =

∫
[w̃t(εt) + βfactt log(θt−1)]gt(θt|θt−1)dθt.

The integral in log is zero because it’s the derivative of the expectation of a constant. Therefore

∆t−1 =

∫
w̃t(εt)

g̃(εt)

θt−1
dεt
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and

∆̃t−1 =

∫
w̃t(εt)g̃(εt)dεt.

In addition
∂w̃(εt)

∂εt
=
ỹt
ε2
t

h′(
ỹt
εt

) + β
∆̃t

εt
.

1.3 Normalized Planning Problem

Let K̃ = K/θt−1. The planner’s problem is then

K̃(ṽ, ∆̃, t, 0) = min
[ ∫
{c̃(ε)− ỹ(ε) + qεK̃(ṽ(ε), ∆̃(ε), t+ 1, s̃(ε))g(εt)dεt

]

Subject to

w̃t(εt) = u(c̃t)− h(ỹt/εt)− φ(t) + βṽt + βfactt log(εt)

∂w̃(εt)

∂εt
=
ỹt
ε2
t

h′(
ỹt
εt

) + β
∆̃t

εt

ṽt−1 =

∫
w̃t(εt)g(εt)dεt

∆̃t−1 =

∫
w̃t(εt)g̃(εt)dεt

and for retired agents:

K̃(ṽ, 0, t, 1) = min
[ ∫
{c̃(ε) + qεK̃(ṽ(ε), 0, t+ 1, 1)g(εt)dεt

]

Subject to

w̃t(εt) = u(c̃t) + βṽt + βfactt log(εt)

ṽt−1 =

∫
w̃t(εt)g(εt)dεt.
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1.4 Hamiltonian and First Order Conditions

Dropping the tildes, the Hamiltonian of the normalized problem is, while working:

[Ct(y(ε), w(ε)− βv(ε), ε)− y(ε)]g(ε)

+q[K(v(ε),∆(ε), ε, t+ 1, s(ε))]g(ε)

+λ[v − w(ε)g(ε)] + γ[∆− w(ε)g̃(ε)]

+p(ε)[utθ(C
t(y(ε), w(ε)− βv(ε), ε), y(ε), ε) + β∆(ε)]

And the limits of the co-state p(ε) are zero at zero and infinity. The co-state satisfies:

dp(ε)

dε
= −

[ 1

u′(c(ε))
− λ− γ g̃(εt)

g(εt)

]
g(εt) (54)

The FOCs for ∆(ε), v(ε) and y(ε) are:

p(ε)

ε2g(εt)
= − q

β
γ(ε)

1

u′(c(ε))
=
q

β
ελ(ε) (55)

1− 1

ε

h′( ỹ(ε)
ε )

u′(c(ε))
=

p(ε)

ε2g(εt)
h′(

ỹ(ε)

ε
)[1 +

ỹ(ε)

ε

h′′( ỹ(ε)
ε )

h′( ỹ(ε)
ε )

]. (56)

In these equations, I denote the extensions of λ and γ to retired states with the same notation.

1.5 Algorithm

Since the model is in finite horizon, the algorithm solves policy functions backwards from t = T ,

vT (ε) = 0,∆T (ε) = 0, sT (ε) = 1.

The algorithm takes as state space the dual (λ−γ−, ε, s−). I truncate ε between the first

percentile and the 99% percentile. The algorithm goes in the following steps:

• If in working state at time t: s− = 0

1. Start with a guess for the promised utility of the lowest type in a given period: wt(εlow)
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(a) Solve for yt(λt, st, εt, pt, wt(εlow)) using (56) and (55).

(b) Solve for λt(st, εt, pt, wt(εlow)) from (55), replacing c as a function of w and v using

the solution for yt(λt, st, εt, pt, wt(εlow)) computed in 1(a).

(c) Solve for γt(st, εt, pt, wt(εlow)).

(d) Replace 1/u′(c) using (55) in the ODE (54)satisfied by the co-state p and solve the

ODE.

i. While solving the ODE compareKt+1(λt(st = 0), γt(st = 0), ε, 0) toKt+1(λt(st =

1), γt(st = 1), ε, 1) and set st equal to the work status with lowest cost.

2. Check the boundary condition p(εhigh).

(a) If the boundary condition is not met within the tolerance level change wt(εlow) and

go to 1.

3. Once the boundary condition is met, follow 1. in reverse order to compute policy func-

tions.

(a) Compute w̃t, ṽ−, ∆̃− using their integral definitions.

• If in retired state at time t: s− = 0

– Set λt = λ−/ε, γt = 0, st = 1, c̃t = λ−, ỹt = 0.

2 Baseline Economy Numerical Algorithm

I present the income fluctuation of the model in the baseline US economy. In this economy, agents

who face idiosyncratic productivity shocks, consume and save in a risk-free asset, choose their

working hours and the age at which they retire. I define retirement as an irreversible exit of the

labor force. I assume that the retirement age and the SS benefits claiming age are the same. Denote

s the last working period of an agent, i.e s = t if the agent works at time t and s < t if the agent

retired before t. The productivity θt represents current productivity if s = t and last working

productivity if s < t, θt = θs. With log utility, agents never hit their borrowing constraints because

they consume at each period a constant fraction of their net worth. Denote T (yt) the Heathcote

et al. (2014) income tax function and b({yt′}t′∈[0,s], s) the SS benefits as a function of the history

of earning and the retirement age. I make a Tauchen approximation of the productivity process

θt = θρt−1εt where ρ = 0.999 and denote the transition matrix π.
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For a given asset level at and productivity θt, a working agent’s continuation utility is

vt (at, θt , t) = max
ct,yt,at+1,st+1

ln (ct)−
κ

1 + 1
ε

(
yt
θt

)1+ 1
ε − φ(t) + β

∑
θt+1|θt

Vt+1 (at+1, θt+1, st+1)π (θt+1|θt)


s.t. ct +

q

1− τK
at+1 = at + yt − T (yt).

For s < t, a retired agent’s continuation utility is:

v (at, θt , s) = max
ct,yt,at+1

{ln (ct) + βVt+1 (at+1, θt+1, s)}

s.t. ct +
q

1− τK
at+1 = at + b({yt′}t′∈[0,s], s).

Then the intertemporal Euler equation holds,
1

ct
=

βq

1− τK
E[

1

ct+1
] and for workers, the intratem-

poral equation holds κ
y

1/ε
t

θ
1+1/ε
t

=
1

ct
(1− T ′(yt)).

The algorithm follows these steps.

• Set aT+1 = 0, sT+1 = T.

• For each t, if s = t:

1. For given at+1 and st+1 ∈ {t, t+ 1} solve for ct using the Euler equation

2. Solve for yt using the intratemporal equation

3. Set st+1 to the work status that yields higher vt

4. Solve for at using the budget constraint of the workers, ct(at+1, st+1) and yt(at+1, st+1)

5. Interpolate the policy functions for the missing values at

• For each t, if s < t:

1. For given at+1 and st+1 = s solve for ct and cs using the Euler equation

2. Solve for ys using the intratemporal equation at time sand comput b({yt′}t′∈[0,s], s) taking

{yt′}t′∈[0,s] = {ys}

3. Solve for at using the budget constraint of the retired ct(at+1, s) and yt(at+1, s)

4. Interpolate the policy functions for the missing values at
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At the end of the algorithm I check that |y(at, θt, t)−y(a
′
(at, θt, t), θt+1, t+1)| < η for some tolerance

level ηto make sure that agents do not overwork just before retirement to validate the assumption

in Step 2, when s < t.

3 Alternative Calibration

Constant Fixed Cost With a calibration of a constant fixed cost φ(t) = φ, over the life-cycle,

I match the labor force participation rate for ages 65 to 69 with a fixed cost that is the utility

equivalent of 6.8 hours per day. The average retirement age (ARA) in the baseline economy is

63.73 years old.

The left panel of Figure 7 plots the labor force participation rate as a function of age. In the

Flexible Retirement model, the optimal ARA is large and equal to 76 years old and is much larger

than in the baseline economy. With a constant fixed cost, the only force for an extensive Frisch

elasticity of labor supply that increases with age is the decreasing option value of staying in the

labor market. With the medium instantaneous variance of productivity of σ2
M = 0.0095, this option

value is low. The retirement region doe not evolve much over time and 27.12% of agents work at

age 79.

The right panel of Figure 7 plots the average labor wedge for the general population and

subpopulations of workers with a history of low productivity shocks and high productivity shocks

respectively. The average labor wedge is slightly hump-shaped, increasing from 2.11% at age 25 to

47.82% at age 75 then decreasing to 46.22% at age 79. The small size of the hump is consistent

with the low retirement rate in the population and a small composition effect.

As a result from the large gap between the optimal ARA and the ARA in the baseline economy,

there are large welfare gains from the second-best optimum with the welfare equivalent of +7.36%

consumption at each history at each time compared to baseline economy. However, because this

same gap, a reform of the tax system alone only captures 6% of those welfare gains.
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Figure 7: Left: Labor force participation rate as a function of age. Right: Average labor wedge as
a function of age.
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