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Abstract

We characterize belief-free equilibria in infinitely repeated games with incom-
plete information with an arbitrary number of players and arbitrary information
structures. This generalizes Hörner and Lovo (2008), which restrict attention to the
two-player case and to information structures that have a product structure. Our
characterization requires introducing a new type of individual rational constraint
that links the lowest possible equilibrium payoffs across players. As in the two-
player case, our characterization is tight: we define a set of payoffs that contains all
the belief-free equilibrium payoffs; conversely, any point in the interior of this set is
a belief-free equilibrium payoff vector when players are sufficiently patient.
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1 Introduction

This paper characterizes the set of payoffs achieved by equilibria that are robust to the

specification of beliefs. We consider n-player repeated games with incomplete information

and low discounting. This class of equilibria has been introduced by Hörner and Lovo
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(2008) in two-player games with incomplete information, as defined by Aumann and

Maschler (1995). A strategy profile is a belief-free equilibrium if, after every history, every

player’s continuation strategy is optimal, given his information, and independently of the

information held by the other players. That is, it must be a subgame-perfect equilibrium

for every game of complete information that is consistent with the player’s information.

Such equilibria offer several advantages. From a practical point of view, they do not

require the specification of beliefs after all possible histories, and the verification of their

consistency with Bayes’ rule. From a theoretical point of view, they represent a stringent

refinement, in the sense that such equilibrium outcomes are also equilibrium outcomes for

every Bayesian solution concept, such as sequential equilibrium, for instance. But more

importantly, these equilibria do not rely on the Bayesian paradigm. To predict behavior

in environments with unknown parameters, a model typically includes a specification of

the players’ subjective probability distributions over these unknowns, following Harsanyi

(1967-1968). Since beliefs are irrelevant here, belief-free equilibria do not require that

players share a common prior, or that they update their beliefs according to Bayes’ rule;

and they remain equilibria even if players receive additional information as the game

unfolds.

Nevertheless, as in the case of games with perfect information, players may randomize,

and they maximize their expectation with respect to such lotteries.1 Belief-free equilibria

require precisely as much probabilistic sophistication as is usually assumed in games with

perfect information.

In Hörner and Lovo (2008), the analysis is restricted to two-player games, and infor-

mation has a product structure. That is, the information structure can be represented as

1This is also the standard assumption used in the literature on ‘non-Bayesian’ equilibria (see, for
instance, Monderer and Tennenholtz, 1999).
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a matrix. Each state of nature corresponds to a cell in this matrix. Player 1 knows the

row, and Player 2 knows the column. This paper generalizes the results along those two

dimensions:

1. There are N ≥ 2 players, rather than only two players.

2. Arbitrary finite information structures are considered. In particular, the players’

combined information may not pin down the (payoff-relevant) state of nature.

This latter generalization requires an appropriate extension of the definition of belief-

free equilibrium. We choose the most restrictive version, and require players to use strate-

gies that are best-replies independently of the state of nature, even for those states that

cannot be identified by the players’ combined information. Clearly, such an equilibrium

remains an equilibrium for weaker versions of this definition. For instance, one may wish

to assume that each player has a subjective probability distribution over those states of

nature that the players’ combined information cannot distinguish. We do so for both

practical and theoretical reasons. From a practical point of view, it is immediate to mod-

ify our results to cope with weaker definitions, by replacing for instance such collections

of states by a single state, and payoffs in that state by the relevant expectations. From

a theoretical point of view, it is unclear to us for what reason the optimality criterion

used by an agent should distinguish between uncertainty that can or cannot be identified

collectively.

The focus of the analysis is on the set of belief-free equilibrium payoffs as the discount

factor tends to one. We provide a set of necessary conditions that defines a closed, convex,

and possibly empty set. These necessary conditions have simple interpretations in terms

of incentive compatibility, individual rationality, and joint rationality, an additional re-

quirement absent from the earlier analysis for two-player games, and that is related to the
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fact that, when play is supposed to reveal the players’ private information, inconsisten-

cies might arise for which it is not possible to identify a single deviator. Conversely, we

prove that every payoff vector in the interior of this set is a belief-free equilibrium payoff

provided the discount factor is sufficiently close to one.

As mentioned, this set of payoffs might be empty, and therefore, belief-free equilibria

need not exist. We provide sufficient conditions for non-emptiness. With two players,

for instance, this was known to be the case if there are two states only, or if each player

knows his own payoff, and only one player has private information. We provide necessary

and sufficient conditions on the information structure for non-emptiness, as a function of

the types of payoffs that are considered. For general payoff functions, it must be that no

two players are essential to distinguish between any two states. If the payoff functions

are such that some action profile yields a payoff no larger than the individually rational

payoff (the bad outcome property), for all players and for all states simultaneously, then

it must be that no single player is essential to distinguish between any two states. With

known-payoffs, there is a slight gap between our necessary and sufficient conditions. Non-

emptiness requires that no player be essential, and this is also sufficient if payoffs further

satisfy the bad outcome property. Without this further requirement, a sufficient condition

is that information be embedded, in the sense that one player has superior information to

another player, who in turn has superior information to all other players. This generalizes

the one-sided information condition with two players only. We do not know whether this

sufficient condition can be weakened further.

A special class of games covered by this sufficient condition is the class of ‘reputation’

games in which there is one player whose payoff type is unknown. We identify the value

of reputation for such games. Consider the lowest belief-free equilibrium payoff that this
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player can guarantee for a given set of alternative payoff types he might be. We identify

the highest such payoff, across all sets of alternative types, and identify a set of types

achieving this maximum.

In the case of two players, the set of belief-free equilibrium payoffs had already ap-

peared in the literature, most notably (but not only) in the context of undiscounted Nash

equilibrium payoffs for games with one-sided incomplete information. See, among others,

Cripps and Thomas (2003), Forges and Minelli (1997), Koren (1992) and Shalev (1994).

The most general characterization of Nash equilibrium payoffs is obtained by Hart (1985)

for the case of one-sided incomplete information. A survey is provided by Forges (1992).

Israeli (1999) provides an analysis of reputation in two-player undiscounted games, from

which our proofs in the section on reputations are inspired. Further references to non-

Bayesian studies can be found in Hörner and Lovo (2008).

The concept of belief-free equilibrium is also related to the ex post equilibrium that is

used in mechanism design (see Crémer and McLean, 1985) as well as in large games (see

Kalai, 2004). A recent study of ex post equilibria and related belief-free solution concepts

in the context of static games of incomplete information is provided by Bergemann and

Morris (2007).

The concept of belief-free equilibria has been introduced in games with imperfect mon-

itoring. See Piccione (2002) and Ely and Välimäki (2002) and Ely, Hörner and Olszewski

(2005), among others. In this literature, belief-free equilibria are defined as equilibria for

which continuation strategies are optimal independently of the private history observed

by the other players, and has allowed the construction of equilibria in cases in which only

trivial equilibria were known so far.

Section two introduces the notation and defines belief-free equilibria. Section three
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gives necessary conditions that belief-free equilibrium payoffs must satisfy. Section four

shows that every payoff vector in the interior of the set defined by the necessary conditions

is indeed a belief-free equilibrium payoff vector for low enough discounting. Section five

provides necessary and sufficient conditions for non-emptiness of this set. Section six

applies the previous results to games of reputation with one informed player.

2 Notations

The set of players is N = {1, . . . , N}. Player i chooses action ai from a finite set Ai,

and a ∈ A :=
∏

i Ai is an action profile. The finite state space is K = {1, . . . , K}. Given

a set S, let △S denote the probability simplex over S, 1{S} the indicator function of S,

|S| the cardinality of S, int S the interior of S, and co S the convex hull of S. To avoid

trivialities, assume that |Ai| ≥ 2, all i ∈ N .

Player i’s reward function is a map ui : K×A → R. Let M := maxi∈N,k∈K,a∈A |ui(k, a)|.

A reward profile is denoted u := (u1, . . . , uN). Mixed actions of player i are denoted αi.

The definition of rewards is extended to mixed, possibly correlated, action profiles µ ∈ △A

in the usual way.

At the beginning of the game, each player receives once and for all a signal that allows

him to narrow down the set of possible states of nature. This can be represented by an

information structure is I = (I1, . . . , IN), where Ii denotes player i’s information partition

of K. We let Ii(k) denote the element of Ii containing k. We refer to Ii(k) =: θi ∈ Θi as

player i’s type, and write Θ :=
∏

i Θi, and Θ−i :=
∏

j 6=i Θj. Given θ ∈ Θ, κ(θ) :=
⋂

i∈N θi

denote the set of states that are consistent with type profile θ. Also, for θ−i ∈ Θ−i, we

write κ(θ−i) :=
⋂

j 6=i θj for the set of states that are consistent with a type profile of

the set of players different from i. We do not require that κ(θ) 6= ∅: it might be that
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some type profile cannot arise. Similarly, we do not require that the join of the players’

information partitions need reveal the state i.e., we allow for |κ(θ)| > 1. The information

partitions are common knowledge, but the realized signal is private information.

The game is infinitely repeated, with periods t = 0, 1, 2, . . . A history of length t is

a vector ht ∈ H t := At (H0 := {∅}). An outcome is an infinite history h ∈ H := A∞.

A behavior strategy for player i’s type θi is a mapping σi,θi
: ∪t∈NH t → △Ai. We write

σi := {σi,θi
}θi∈Θi

for player i’s strategy, and σ := (σ1, . . . , σN ) for a strategy profile.

Conditional on a state, players maximize their payoff, namely the expected average

discounted sum of rewards, where the expectation is taken with respect to mixed action

profiles. Players use a common discount factor δ < 1. That is, given some outcome

{at}t∈N0
, player i’s payoff in state k is

∑
t≥0

(1 − δ)δtui(k, at).

As usual, the domain of rewards is extended to strategy profiles. Neither mixed actions nor

realized payoffs are observed. On the other hand, realized actions are perfectly observed.

Given a strategy profile σ, let µk ∈ △A denote the occupation measure over action profiles

induced by σ when the state is k, that is

µk(a) := (1 − δ) Eσ

[∑
t≥0

δt1{at = a}
]
∀a ∈ A.

Let u(k, µk) ∈ R
N denote the players’ payoffs in state k under the occupation measure

µk:

u(k, µk) :=
∑

a∈A
µk(a)u(k, a).
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Definition: A belief-free equilibrium (hereafter, an equilibrium) is a strategy profile

σ such that, for every state k, σ is a subgame-perfect Nash equilibrium of the game

with rewards u(k, ·). A vector v ∈ R
NK is an equilibrium payoff vector if there exists a

equilibrium σ such that v = u(σ).

In what follows, we write vk for the payoff vector in state k. Let Bδ be the set of

belief free equilibrium (BFE) payoff vectors of the δ-discounted game. The purpose of

this paper is to characterize limδ→1 Bδ.

3 Necessary Conditions

We first derive necessary conditions for a vector v ∈ R
NK to be an equilibrium pay-

off vector. These conditions can be divided into three categories: feasibility, individual

rationality, and incentive compatibility.

3.1 Feasibility

The payoff vector v ∈ R
NK is feasible if there exists (µk)k∈K ∈ (△A)K such that

1. ∀k ∈ K : vk = u(k, µk);

2. ∀k, k′: Ii (k) = Ii (k
′) ∀i ∈ N ⇒ µk = µk′.

The first condition states that an equilibrium payoff must be feasible. That is, there

exists an occupation measure µk that yields the payoff vk.

The second condition states that if the join of the players’ information partitions does

not distinguish between two states, then the equilibrium strategies σ cannot either, and

the equilibrium occupation measures over action profiles that determines the payoff vector
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must be the same for both states. Given the second condition, we may alternatively write

µθ for the occupation measure. Conversely, throughout the paper, the notation (µθ)θ∈Θ

implies that the set (µk)k∈K satisfies the second condition.

3.2 Incentive Compatibility

If two signals θi and θ′i are both consistent with a signal profile θ−i of the other players,

it must be the case that player i weakly prefers the occupation measure µθi,θ−i
to µθ′i,θ−i

for

every state that is possible given (θi, θ−i). Therefore, if v is an equilibrium payoff vector,

then it must be feasible for some probability distributions satisfying a set of incentive

compatibility conditions.

To introduce those, define UDi (for unilateral deviation) as the set of triples (θi, θ
′
i, θ−i) ∈

Θi × Θi × Θ−i such that κ(θi, θ−i) 6= ∅ and κ(θ′i, θ−i) 6= ∅. The incentive compatibility

conditions can be written as

∀i, (θi, θ
′
i, θ−i) ∈ UDi, k ∈ κ (θi, θ−i) : ui(k, µθi,θ−i

) ≥ ui(k, µθ′i,θ−i
). (IC(i, θi, θ

′
i, θ−i))

Lemma 3.1 If v ∈ Bδ, then v is feasible for some (µθ)θ∈Θ that satisfy IC(i, θi, θ
′
i, θ−i)

for all i ∈ N and (θi, θ
′
i, θ−i) ∈ UDi.

Proof: Suppose for the sake of contradiction that for some i ∈ N and (θi, θ
′
i, θ−i) ∈

UDi, the reverse inequality holds. Suppose now that the state is k and consider player i

of type θi. By playing as if his type were θ′i, player i can guarantee ui(k, µθ′i,θ−i
), which

exceeds his equilibrium payoff ui(k, µθi,θ−i
). This is a profitable deviation. �
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3.3 Individual Rationality

A deviating player might be easy to identify or not. For instance, if player i chooses an

action that is inconsistent with all his types’ equilibrium strategies, then it is immediately

common knowledge among players that i deviated.

Define, for θ−i ∈ Θ−i,

ϕi,θ(q) := min
α−i∈

Q

j 6=i △Aj

max
ai∈Ai

∑
k∈κ(θ−i)

q(k)ui(k, α−i, ai).

For each player i and each θ−i ∈ Θ−i, consider the set of inequalities

∀q ∈ △κ(θ−i) :
∑

k∈κ(θ−i)
q(k)vk

i ≥ ϕi,θ(q). (IR(i, θ−i))

Note that if κ(θ−i) = ∅, the inequality is vacuously satisfied. These inequalities are the

immediate generalizations of the individual rationality conditions for the two-player case.

In the definition of ϕi,θ, note that players’ actions are statistically independent.

Lemma 3.2 If v ∈ Bδ, it satisfies the inequalities (IR(i, θ−i)) for each player i and θ−i.

Proof: If these conditions are violated, there necessarily exists one player, a type

profile θ−i and q ∈ △κ(θ−i) such that the reverse inequality holds. This implies that for

every α−i, there exists ai(α−i) such that

∑
k∈κ(θ−i)

q(k)ui(k, α−i, ai(α−i)) >
∑

k∈κ(θ−i)
q(k)vk

i . (1)

Assume by contradiction that v is in Bδ and let σ be the corresponding equilibrium. Note

that players −i play the same strategy in each state in k ∈ κ(θ−i). Consider thus the

strategy τi of player i that plays ai(α−i) after a history h such that σ−i(h) = α−i. The
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stage expected payoff of player i under (τi, σ−i) satisfies the inequality (1) and therefore,

so does the discounted payoff. It follows that there exists a state k ∈ κ(θ−i) at which τ is

a profitable deviation. �

Under these conditions, following Blackwell (1956), players −i can devise a punishing

strategy against player i. The reasoning is exactly the same as in the two-player case.

Given θ−i, and any payoff vector v that satisfies these inequalities strictly, there exists

ε > 0 and a strategy profile ŝ
θ−i

−i for players −i such that, if players −i use ŝ
θ−i

−i , then player

i’s undiscounted payoff in any state k that is consistent with θ−i is less than vk
i − ε in any

sufficiently long finite-horizon version of the game, no matter i’s strategy. By continuity,

this also holds true for sufficiently long finite-horizon versions of the game when payoffs

are discounted, provided the discount factor is high enough, fixing the length of the game.

When players −i use ŝ
θ−i

−i , players −i are said to minmax player i. Player i is the punished

player, and players −i are the punishing players.

However, it might be that i’s action is consistent with some of his types’ strategies, and

so is player j’s action, but no pair of types for which both actions would be simultaneously

consistent exists. Then it is common knowledge that some player deviated, but not

whether it is player i or j. With at least three players, because of this identifiability issue,

we have another condition that links the payoffs of different players. Let D be the set of

type profiles that are impossible, but consistent with some state of nature and a unilateral

deviation. That is, θ is in D if κ(θ) = ∅ and Ωθ := {(i, θ′i) | i ∈ N, κ(θ′i, θ−i) 6= ∅} 6= ∅.

In other words, if players were to report their types, and the reported profile was in D, all

players would know that some player must have lied. Further, the deviating player and

the true state of nature must be such that κ(θ′i, θ−i) 6= ∅. The set Ωθ is the set of pairs

(player, type) that could have caused the problematic announcement θ.
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For each θ ∈ D, consider the condition

∃µ ∈ △A, ∀(i, θ′i) ∈ Ωθ, ∀k ∈ κ (θ′i, θ−i) : vk
i ≥ ui(k, µ). (JR (θ))

These inequalities are called Joint Rationality (JR), since they provide a link across payoffs

of different players.2

Lemma 3.3 Every v ∈ Bδ satisfies all constraints (JR (θ))θ∈D.

Proof: Let v ∈ Bδ be an equilibrium payoff vector and σ be the corresponding equi-

librium. Let θ = (θi)i ∈ D and consider for each (i, θ′i) ∈ Ωθ the deviation τ i of player

i such that, if his type is θ′i, player i plays as if he were of type θi, i.e. τi,θ′i
= σi,θi

, and

which coincides with σi for all other types. Take two elements (i, θ′i) and (j, θ′j) in Ωθ.

The distribution over plays under (τi,θ′i
, σ−i,θ−i

) and (τj,θ′j
, σ−j,θ−j

) are the same, i.e. this

is the distribution under σθ = (σl,θl
)l∈N . In words, there is no way to distinguish the

situation in which player i consistently mimicks type θi and the one in which player j

consistently mimicks type θj . Let µ ∈ △A denote the occupation measure generated by

σθ. If JR (θ) is violated, there exists a player i and a state k ∈ κ (Ii (k) , θ−i) such that

player i’s equilibrium payoff in state k, vk
i , is strictly lower than his payoff if he were to

follow σθi
, a contradiction. �

To conclude this section, we note that the conditions JR (θ) are closely related to the

conditions IR(i, θ). Indeed, using the minmax theorem, we may write those inequalities

in the following alternative and compact way

∀q ∈ △{(i, k) : k ∈ κ(θ−i)} :
∑

i,k
q(i, k)vk

i ≥ min
a∈A

∑
i,k

q (i, k) ui (k, a) .

2Joint Rationality has been first introduced in Renault (2001) in a three-player setup.
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For the sake of brevity, we often omit arguments and refer to each type of condition

simply as IC, IR, or JR.

4 Sufficient Conditions

Let V ∗ ⊂ R
KN denote the set of feasible payoff vectors that satisfy IC, IR, and JR.

The set V ∗ may be empty. Nevertheless, we show that this set characterizes the set of

belief-free equilibria, up to its boundary.

Let K̂ :=
{
k :

⋂
i∈N Ii(k) 6= {k}

}
be the set of states that cannot be distinguished by

the join of the players’ information partitions. Let û be the matrix (uk
i (a)) with N × |K̂|

rows and |A| where k belongs to K̂. The reward u is generic if the matrix û has rank

N × |K̂|. Indeed, viewing any such matrix as an element of R
N |K̂||A|, this condition is

generically satisfied whenever |A| ≥ N |K̂|. The main result of this paper is the following.

Theorem 4.1 If v ∈ intV ∗ and u is generic, there exists δ̄ < 1, ∀δ > δ̄, v ∈ Bδ.

The interiority assumption is rather standard in the literature on repeated games

with discounting, and has been first introduced by Fudenberg and Maskin (1986). In the

next subsection, we provide a proof under the additional assumptions that there exists

a public randomization device in every period (an independent draw from the uniform

distribution on the unit interval), and that players can send costless messages, or reports,

at the end of every period, as well as before the first period of the game. The proof in

the appendix dispenses with these assumptions. (The proof of the dispensability of the

public randomization follows ideas of Fudenberg and Maskin (1991) and Sorin (1986) and

is only sketched.)
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If I and I ′ are two different information structures for the same game, and V ∗, V ′∗ are

the corresponding sets of feasible, incentive compatible, individually and jointly rational

payoff sets, observe that V ∗ ⊆ V ′∗ if I ′
i is finer than Ii for all i ∈ N . That is, the limit set

of belief-free equilibrium payoffs is monotonic with respect to the information structure.

Simplified Proof

Player i’s message set is Θi. The timing in a given period is as follows.

1. A draw from the uniform distribution on [0, 1] is publicly observed;

2. Actions are simultaneously chosen;

3. Messages are simultaneously chosen.

As far as messages go, players always report their types truthfully in equilibrium. We

refer to the event in which one player does not report truthfully as misreporting by this

player. A type profile is inconsistent if κ(θ) = ∅, and it is consistent otherwise.

As far as actions go, equilibrium play can be divided into three phases: regular phases,

penitence phases and punishment phases. Regular and penitence phases last one period.

Punishment phases last T period, for some T ∈ N to be defined.

In regular and penitence phases, players use an action profile that is coordinated by

the public randomization device. In a punishment phase, a player is minmaxed by his

opponents, in the sense of Blackwell described above.

To ensure that the strategy profile is belief-free, we must make sure that the punished

player is playing the same way independently of the state, and that the punishing players

have incentives to carry out the minmax strategy, even when this strategy calls for mixed

actions. This complicates somewhat the description of the equilibrium strategies.
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There are two kinds of deviations. The punishment phase is triggered if a player

deviates in his choice of an action (‘deviation in action’), and deters him from making such

deviations. The penitence phase is triggered only if an inconsistent type profile is observed,

and deters players from misreporting (‘deviation in report’) to induce an inconsistent type

profile. Incentive compatibility of payoffs deters players from misreporting to induce a

false but consistent type profile.

The equilibrium path consists of an infinite repetition of the regular phases.

Regular phases are denoted Rθ (ε), with κ (θ) 6= ∅ and ε ∈ R
N |κ(θ)|. Penitence phases

are denoted Eθ (ε), where κ (θ) = ∅ and ε ∈ R
NK . Punishment phases are denoted P θ−i,

with κ (θ−i) 6= ∅.

Actions and Messages

(i) Regular phase: In a regular phase, actions are determined by the outcome of the

public randomization device. In phase Rθ (ε), action profiles are selected according to a

probability distribution µθ (ε) in such a way that

ui(k, µθ (ε)) = vk
i + εi

for k ∈ κ (θi, θ−i), and

ui(k, µθi,θ−i
(ε)) > ui(k, µθ′i,θ−i

(ε′)) (2)

for all i, all εi ∈ [−ε, ε], all ε′i ∈ [−ε, ε], all (θi, θ−i) and (θ′i, θ−i) such that κ (θi, θ−i) 6= ∅

and κ (θ′i, θ−i) 6= ∅. Such a distribution exists for sufficiently small ε > 0 given that

v ∈ int V ∗ is strictly incentive compatible.

At the end of a regular phase, all players truthfully report their types.
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(ii) Penitence phase: In a penitence phase, actions are determined by the outcome of

the public randomization device. Consider penitence phase Eθ (ε). Recall that κ (θ) = ∅.

We distinguish two cases.

1. θ ∈ D: by definition, there exist a set Ωθ of players and types (i, θ
′

i) such that

κ
(
θ
′

i, θ−i

)
6= ∅. Action profiles are selected according to a probability distribution

µθ (ε) in such a way that

ui(k, µθ (ε)) < vk
i + εi (3)

for all (i, θ
′

i) ∈ Ωθ, k ∈ κ
(
θ
′

i, θ−i

)
and all εi ∈ [−ε, ε]. Such a distribution exists for

sufficiently small ε > 0 given that v ∈ int V ∗ satisfies (JR) with strict inequality.

2. θ /∈ D (i.e., at least two players misreported): Players use some fixed, but arbitrary

action profile a := {ai}
N
i=1 ∈ A.

At the end of a penitence phase, all players truthfully report their types.

(iii) Punishment phase: A punishment phase lasts T periods. In P θ−i, players −i use

ŝ
θ−i

−i . For some action ai ∈ Ai, let s
ai

i denote the strategy of playing ai after all histories

within the punishment phase.3 Player i plays s
ai

i throughout the phase.

We pick T ∈ N, δ < 1 and ε > 0 such that, for all δ > δ and all k ∈ κ (θ−i), player i’s

average discounted payoff over the T periods is no larger than vk
i − 2ε. This is possible

since v satisfies (IR) with strict inequality.

At the end of each period of a punishment phase, all players truthfully report their

types.

3To avoid introducing additional notation, we have used here the same notation (i.e., a
i
) than in one

of the specifications for the penitence phase. It is irrelevant whether these are the same actions or not.
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Initial phase

All players truthfully report their types at the beginning of the game. Given report

profile θ, the initial phase is Rθ(0).

Transitions

(i) From a regular phase Rθ (ε): Let a denote the (pure) action profile determined by

the public randomization device, a′ the realized action profile, and θ′ the report of types

at the end of the phase.

1. (Unilateral deviation) a′
i 6= ai for some i ∈ N and a′

−i = a−i:

(a) κ(θ′−i) 6= ∅: the next phase is P θ′−i;

(b) κ(θ′−i) = ∅: the next phase is Eθ′ (ε′), where ε′j = −ε if (j, θ′′j ) ∈ Ωθ′ for some

θ′′j ∈ Θj, and ε′j = εj otherwise.

2. (Multilateral deviations, or no deviation) a′
i 6= ai for some i ∈ N and a′

−i 6= a−i, or

a′ = a:

(a) κ(θ′) 6= ∅:

i. θ′ = (θ−i, θ
′
i) for some i ∈ N and θ′i 6= θi: the next phase is Rθ′(−ε, ε−i);

ii. otherwise, the next phase is Rθ(ε);

(b) κ(θ′) = ∅: the next phase is Eθ′ (ε′), where ε′i = −ε if (i, θ′′i ) ∈ Ωθ′ for some

θ′′i ∈ Θi, and ε′i = εi otherwise.
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(ii) From a penitence phase Eθ (ε): Let a denote the (pure) action profile determined

by the public randomization device, a′ the realized action profile, and θ′ the report of

types at the end of the phase.

1. (Unilateral deviations) a′
i 6= ai for some i ∈ N and a′

−i = a−i:

(a) κ(θ′−i) 6= ∅: the next phase is P θ′−i;

(b) κ(θ′−i) = ∅: the next phase is Eθ′ (ε′), where ε′j = −ε if (j, θ′′j ) ∈ Ωθ′ for some

θ′′j ∈ Θj, and ε′j = εj otherwise.

2. (Multilateral deviations, or no deviation) a′
i 6= ai for some i ∈ N and a′

−i 6= a−i, or

a′ = a:

(a) κ(θ′) 6= ∅: the next phase is Rθ(ε);

(b) κ(θ′) = ∅: the next phase is Eθ′ (ε′), where ε′i = −ε if (i, θ′′i ) ∈ Ωθ′ for some

θ′′i ∈ Θi, and ε′i = εi otherwise.

(iii) From a punishment phase P θ−i: The punishment phase lasts T periods. Let hT

denote an arbitrary history of length T . Let θ′ denote the reported type profile in the

T -th period. Then

1. (a) κ(θ′) = ∅: the next phase is Eθ′ (ε′), where ε′i = −ε if (i, θ′′i ) ∈ Ωθ′ for some

θ′′i ∈ Θi, and ε′i = εi otherwise;

(b) κ(θ′) 6= ∅: the next phase is Rθ′(εi(h; P θ−i), ε−i(h; P θ−i)), with εj(h; P θ−i) ∈

[−ε̄, ε̄], all j. The values εj(h; P θ−i) are such that:
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(4) for all k ∈ κ (θ′), and conditional on any history h ∈ HT , playing s
ai

i

in the punishment phase is an optimal continuation strategy for player i,

given ŝ
θ−i

−i ; further, if θ′−i = θ−i, player i’s expected payoff, evaluated at the

beginning of the punishment phase, from playing s
ai

i given ŝ
θ−i

−i (and given

that θ′ is truthfully reported), is equal to
(
1 − δT

)
(vk

j − 2ε) + δT
(
vk

j − ε
)
,

for all k ∈ κ (θ′). That this is possible follows from inequality (6) below.

(5) for all k ∈ κ (θ′), and conditional on any history h ∈ HT , playing ŝ
θ−i

j is

an optimal continuation strategy for player j 6= i, given (s
ai

i , (ŝ
θ−i

j′ )j′ 6=j); In

addition εj

(
·; P θ−i

)
is in [ε/3, ε] if θ′j = θj , and it is in [−ε,−ε/3] otherwise

(recall that h specifies θ′). That this is possible follows from inequality (6)

below.

It is clear that these strategies do not depend on players’ beliefs, but only on past

history.

Optimality Verification

Given v ∈ int V ∗, we now pick ε > 0 small to ensure that the probability distributions

introduced above exist, and δ, and T such that the payoff of a punished player is low

enough, as specified above for the punishment phase (see ‘Actions and Messages’). In

addition, we take these values to satisfy

−
(
1 − δT

)
M + δT

(
vk

j + ε/3
)

>
(
1 − δT

)
M + δT

(
vk

j − ε/3
)
, (6)

− (1 − δ) M + δ
(
vk

j − ε
)

> (1 − δ) M + δ
((

1 − δT
)
(vk

j − 2ε) + δT
(
vk

j − ε
))

. (7)
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Given v and ε > 0, these are all satisfied as δT → 1 and T → ∞, so they are also

satisfied for values of T and δ that are large enough. Inequality (6) guarantees that a

variation of 2ε̄/3 in continuation payoffs at the end of a punishment phase dominates any

gains/losses that could be incurred during such a phase. Inequality (7) guarantees that

the punishment phase is long enough to deter deviations in action.

Regular Phase: Rθ (ε) and penitence phases Eθ (ε): Let a denote the (pure) action

profile determined by the public randomization device, a′ the realized action profile, and

θ′ the report of types at the end of the phase.

Actions : Suppose that a′ = (a−i, a
′
i) for some i and a′

i 6= ai, i.e., player i unilaterally

deviates from the prescribed action profile. Then, provided players −i truthfully report,

the punishment phase P θ′−i starts. The maximum that player i can obtain by deviating

is the right-hand side of (7), while by conforming to the prescribed action he gets at least

as much as the left-hand side of (7).

Messages : let θi be player i’s type. We distinguish two cases.

1. Either no or more than one player deviated in action:

If player i reports truthfully, he gets at least vk
i −ε, where k ∈ κ (θ′). If he misreports,

we further distinguish two cases:

(a) κ (θ′) = ∅: assuming the other players report truthfully, the next phase is

Eθ′ (ε′) with ε′i = −ε. So player i’s payoff is at most maxθ′i 6=θi
(1 − δ) ui(k, µθ′i,θ

′
−i

(ε))+

δ
(
vk

i − ε
)
, which is less than vk

i − ε, because of (3).

(b) κ (θ′) 6= ∅: Player i gets at most maxθ′i 6=θi
(1 − δ)ui

(
k, µθ′i,θ

′
−i

(ε)
)

+δ
(
vk

i − ε
)
,

which is less than
(
vk

i − ε
)
, because of (2).
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2. a′ = (a−j, a
′
j) for some j and a′

j 6= aj (i.e., player j deviated in action):

Player j’s report is irrelevant and he can as well report truthfully.

If player i 6= j reports truthfully his type, he gets at least −
(
1 − δT

)
M+δT

(
vk

i + ε/3
)
.

If he misreports, there are two cases:

(a) κ (θ′) = ∅: the next phase is Eθ′ (ε′) with ε′i = −ε, so his payoff is smaller

than (1 − δ)M + δ
(
vk

i − ε
)

<
(
1 − δT

)
M + δT

(
vk

i − ε/3
)
, which is less than

−
(
1 − δT

)
M + δT

(
vk

j + ε/3
)

because of (6).

(b) κ (θ′i, θ−i) 6= ∅: Player i gets at most
(
1 − δT

)
M + δT

(
vk

i − ε/3
)

(assuming he

reports truthfully at the end), which is less than −
(
1 − δT

)
M + δT

(
vk

i + ε/3
)

because of (6).

Punishment phase P θ−i: Let θ′ denote the reported type profile in the T -th period.

Actions : We consider first player i, then Player j 6= i.

1. Player i: as mentioned, inequality (6) guarantees that we can specify εi

(
h; P θ−i

)

such that s
ai

i is optimal after every history in the punishment phase, given ŝ
θ−i

j 6=i.

2. Player j 6= i: similarly, inequality (6) guarantees that we can specify εj

(
h; P θ−i

)

such that ŝ
θ−i

j is optimal after every history in the punishment phase, given ŝ
θ−i

j′ 6=i,j.

Messages : The only payoff relevant message is the one at the end of the punishment

phase. Let θ′ denote the reported type profile in the T -th period. If player i ∈ N reports

truthfully his type, he gets at least vk
i − ε. If he misreports, we distinguish two cases:
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1. (a) κ (θ′) = ∅: the next phase is Eθ′ (ε′) with ε′i = −ε, so player i’s payoff is

at most maxθ′i 6=θi
(1 − δ)ui(k, µθ′i,θ

′
−i

(ε)) + δ
(
vk

i − ε
)
, which is less than vk

i − ε

because of (3).

(b) κ (θ′) 6= ∅ : player i gets at most maxθ′i 6=θi
(1 − δ)ui(k, µθ′i,θ

′
−i

(ε)) + δ
(
vk

i − ε
)
,

which is less than vk
i − ε because of (2).

5 Existence

Our main theorem states that, given V ∗ 6= ∅, all points in the interior of V ∗ are BFE

payoffs if δ is large enough. However, achieving incentive compatibility together with

individual rationality and joint rationality might not be possible, as is already known

from the two-player case, and some conditions are required. In this section, we give

conditions for existence of belief-free equilibria. More precisely, we consider different

classes of games each one characterized by some properties of the reward functions and/or

of the information structure. For each one of these classes we prove that V ∗ is not empty

by identifying payoffs vectors that are IC, IR and JR. More precisely, given the set of

players N , the set of states K and the set of actions profiles A, let U = (RK×A)N be the

set of all payoff functions and Y be the set of information structures. For an information

structure I and a reward function u, we denote by V ∗(I, u) the set of payoff vectors that

satisfy IC, IR and JR.

5.1 Known punishments

Our first objective is to find conditions on the payoff function u such that V ∗ is

nonempty independently of the information structure. Note first that V ∗(I, u) is nonempty
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for all information structure I ∈ Y if and only if V ∗(I, u) is nonempty for the coarser

information structure I i.e. for Ii(k) = K for all i ∈ N and all k ∈ K. Necessity is trivial.

Sufficiency follows from the fact that, for any pair of comparable information structures

I and I ′, with I ′ finer than I (i.e., Ii finer than I ′
i for all i), if V ∗(I, u) is nonempty,

then V ∗(I ′, u) is so. A belief-free equilibrium for a coarse information structure remains

a belief-free equilibrium for any finer information structure. In order to provide neces-

sary and sufficient condition on U such that V ∗(I, u) is nonempty independently of the

information structure I, let

ϕi(q) := min
α−i∈

Q

j 6=i △Aj

max
ai∈Ai

∑
k∈K

q(k)ui(k, α−i, ai).

Proposition 5.1 The set V ∗(I, u) is nonempty for all information structure I if and

only if there exists a distribution over action profile µ∗ ∈ △A, such that for each i ∈ N ,

∀q ∈ △K :
∑

k∈K
q(k)ui(k, µ∗) ≥ ϕi(q).

Proof. It is sufficient to show that when I satisfies Ii(k) = K for all i ∈ N and all k ∈ K

then the conditions of the proposition are necessary and sufficient to have V ∗(I, u) 6= ∅.

Sufficiency: Consider the payoff vector v∗ obtained by implementing the distribution µ∗

independently of the state. This payoff is clearly IC and JR since it is achieved using

a strategy that is independent of the state. This payoff vector satisfies IR since the

condition on µ∗ states that no player i in no state k can guarantee more than vk∗
i when

the other players use the Blackwell punishment strategy corresponding to a situation in

which player i knows the state and the other players do not. Necessity: note first that

the equilibrium play must be independent of the state because of feasibility condition 2.
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Second, suppose that there exists no µ∗ satisfying the condition of the proposition. In

other words for each µ ∈ △A there exists a player i and qµ ∈ △K such that

∑
k∈K

qµ(k)ui(k, µ) < ϕi(q
µ).

This implies that for any candidate equilibrium payoff achieved with some distribution

over action profiles µ that is independent of the state, there exists a player i that finds it

profitable to deviate in some state. �

The condition of proposition 5.1 is trivially satisfied when it is possible to find a

pooling equilibrium distribution µ∗ and a state independent punishment strategy. This is

the case, for instance, in most auction formats and oligopoly games.

When focusing on finer information structures where players have types, punishment

strategies sustaining a pooling equilibrium can be type dependent as illustrated by Propo-

sition 5.2. Let D̂ be the set of type profiles which are either compatible with some state,

or which are compatible with some state after deletion of one type. That is,

D̂ = {θ ∈
∏

i∈N
Θi : ∃i ∈ N, κ(θ−i) 6= ∅}.

The following condition guarantees that V ∗ is non-empty.

Proposition 5.2 If there exists a distribution over action profile µ∗ ∈ △A, such that for

each θ ∈ D̂, there exists µθ ∈ △A, such that for each i in N and each k ∈ κ(θ−i),

max
ai∈Ai

ui(k, ai, µ
θ
−i) ≤ ui(k, µ∗),

then V ∗ is non-empty.
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Proof. It is sufficient to show that that v := (ui(k, µ∗))i∈N,k∈K is in V ∗. IC: The payoff

vector v can be achieved by implementing the occupation measure µ∗ irrespective of the

announcements, hence it is incentive compatibility. IR and JR: the condition on µθ implies

that when distribution over action profile µθ is implemented, then in all possible states a

player cannot gain more than v even if he unilaterally deviates or misreport generating an

inconsistent report profile. Thus, µθ can be used to deter unilateral deviation or misreport

guaranteeing that v is individually and jointly rational. �

Proposition 5.2 is the equivalent for the N -player case of condition 4 in Hörner and

Lovo (2008) Still, this condition might not be met in general.

In the remainder of this section, we focus on information structure such that for each

k, ∩i∈NIi(k) = {k}. In this instance, k̂ = ∅ and the reward function u trivially satisfy

the genericity condition of Theorem 4.1. 4 Given a set of payoff functions S ⊆ U , our aim

is to provide necessary and sufficient conditions on the information structure I in order

to have: V ∗(I, u) 6= ∅, ∀u ∈ S.

5.2 No restriction on payoffs: S = U

The result follows from Renault and Tomala (2004) who study the existence of com-

pletely revealing equilibria in infinitely repeated undiscounted games. They show that a

fully revealing equilibrium exists for any payoff function if and only if a simple majority

rule allows players to learn the true state during the announcement phase, even under

some unilateral misannouncement. To formalize this idea, we give some definitions.

For each player i and state k, let I−i(k) = ∩l 6=iIl(k) denote the meet of the information

4This is without loss of generality when players have known-own payoff, but not always innocuous
otherwise. For example, if each player’s payoff function depends only on his own action and on the state,
and the optimal action is not the same in two states that no player distinguishes, then BFE do not exist.
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partitions of the other players at k. For each pair of players i, j, let I−ij(k) = ∩l 6=i,l 6=jIl(k)

denote the meet of the information partitions of players other than i and j.

Definition 5.3 1. Player i is essential at k if I−i(k) 6= {k}.

2. The pair of players i, j is essential at k if I−ij(k) 6= {k}.

If player i (or the pair i, j) is essential at k, then his information is needed in order to

learn the state k.

Definition 5.4 1. The information structure I has no essential player (NEP), if for

each state k, no player is essential at k.

2. The information structure I has the majority property (MAJ) if it has no essential

player and for each state k, no pair of players is essential at k.

In two-player games, NEP and MAJ both require that each player knows the state:

Ii(k) = {k} for each i = 1, 2 and each k. With at least three players, MAJ requires that

for every pair of states k, k′, there exists at least three players i for which Ii(k) 6= Ii(k
′).

Thus, MAJ clearly implies NEP. The converse is not true, as shown by the following

example.

Example 5.5 There are 4 players and 4 states, K = {k1, k2, k3, k4}. Let Ii be the infor-

mation partition of player i such that player i distinguishes state ki from the other states,

but cannot tell these other states apart: Ii(ki) = {ki}, Ii(k) = K\{ki} for k 6= ki. This is

represented by the following matrix, where the i-th line gives the information of player i

(∗ stands for K\{ki}).
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k1 k2 k3 k4

1 k1 ∗ ∗ ∗

2 ∗ k2 ∗ ∗

3 ∗ ∗ k3 ∗

4 ∗ ∗ ∗ k4

I

Note that this information structure I satisfies NEP but not MAJ. On one hand, no

player is essential, but on the other hand, without the information of players 3 and 4, it is

impossible to tell apart k3 from k4. The following information structure J satisfies MAJ.

k1 k2 k3 k4

1 k1 k2 ∗ ∗

2 ∗ k2 k3 ∗

3 ∗ ∗ k3 k4

4 k1 ∗ ∗ k4

J

For instance, there are three players (1,2 and 4) who distinguish k1 from k2.

We have the following result:

Proposition 5.6 V ∗(I, u) 6= ∅, ∀u ∈ U , if and only if I has the majority property.

Proof. The proof is straightforward and follows the arguments of Renault and Tomala

(2004). To see that the majority property is a sufficient condition, assume that the

information structure has the majority property and for each state k fix an payoff vector

vk that is individually rational in the full complete information game corresponding to
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state k. If the profile of announcements is such that, deleting the announcements of

some pair of players i, j, a state k is identified by the announcements, then the action

profile implementing vk is played (if there are several such pair of players, pick one at

random). Otherwise, some fixed action profile is played. This clearly defines a point in

V ∗(I, u): it satisfies individual rationality by construction, and no player has an incentive

to unilaterally misreport since the true state is revealed anyway.

The necessity part is as follows. Suppose that MAJ is not satisfied, but that NEP is.

This means that there exists two players i, j, say players 1 and 2, and two states k, k′

such that I1(k) 6= I1(k
′), I2(k) 6= I2(k

′) and for each player l 6= 1, 2, Il(k) = Il(k
′). We

are thus in a situation where only two players are informed. The following example is

due to Renault (2001) and shows that individual rationality and joint rationality might

be mutually exclusive.

Example 5.7 Each player has two actions. Player 1 chooses the row, player 2 chooses

the column and player 3 chooses the matrix. There are two states k, ℓ. Players 1 and 2

are informed of the state, player 3 is not. The payoff matrix in state k is the following:

L R

T 1, 1, 0 1, 1, 0

B 1, 1, 0 1, 1, 0

W

L R

T 0, 0, 1 0, 0, 1

B 0, 0, 1 0, 0, 1

E

The payoff matrix in state k′ is:

L R

T 0, 0, 1 0, 0, 1

B 0, 0, 1 0, 0, 1

W

L R

T 1, 1, 0 1, 1, 0

B 1, 1, 0 1, 1, 0

E
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Suppose that there exists a payoff vector in V ∗(I, u). If players 1 and 2 both announce

k, individual rationality implies that player 3 plays E. The payoff vector in state k is thus

(0, 0, 1). Similarly, if players 1 and 2 announce k′, player 3 plays W and the payoff vector

in state k′ is (0, 0, 1).

Now, suppose that player 1 announces k and player 2 announces k′: either the true

state is k and player 2 is misreporting, or the true state is k′ and player 1 is misreporting.

Joint rationality implies that there exists an occupation measure µ such that u1(k
′, µ) ≤ 0

and u2(k, µ) ≤ 0. This is impossible, since for each action profile a, u1(k
′, a)+u2(k, a) = 1.

If neither MAJ nor NEP are satisfied, then there exists a player i, and two states k, k′

such that Ii(k) 6= Ii(k
′) and for each j 6= i, Ij(k) = Ij(k

′). This is the case, for instance,

in two-player games with one sided incomplete information for which it is easy determine

the payoff function u such that V ∗(I, u) = ∅. As an illustration, see example 5.10 below.

This concludes the proof of Proposition 5.6. �.

In the sequel, we show how, by restricting the possible payoff functions, the require-

ments on the information structure ensuring existence can be relaxed.

5.3 Bad outcome

Definition 5.8 The payoff function has a Bad Outcome (BO) if there exists a possibly

correlated distribution over action profiles that provides each player with no more than his

minmax payoff in each state:

∃µo ∈ △A, ∀i ∈ N, ∀k ∈ K, ui(k, µo) ≤ uk
i ,
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with uk
i = minα−i∈

Q

j 6=i △Aj
maxai∈Ai

ui(k, ai, α−i). Let B be the set of payoff functions that

have a bad outcome.

Theorem 5.9 V ∗(I, u) 6= ∅, ∀u ∈ B, if and only if I has no essential player.

Proof. Sufficiency. For each state k, fix a vector vk that is individually rational in the full

information game corresponding to state k, i.e., vk ≥ uk. We show that v :=
{
vk

}
is in V ∗.

IC and JR: when there is no essential player, the information held by players other than

i is sufficient to reveal the state. Thus, Player i has no other choice than letting the state

be revealed or being inconsistent with the other players. The distribution corresponding

to the bad outcome can be used to deter a player from being inconsistent. IR: The

distribution corresponding to the bad outcome can be used to deter unilateral deviations.

Thus, no player has an incentive to deviate nor of being inconsistent with the play of

other players as this would bring about the distribution over actions profile corresponding

to the bad outcome.

Necessity. Consider the following game that has a bad outcome and where player 1 is

essential to learn the state. For this game, V ∗(I, u) = ∅.

Example 5.10 (This example is adapted from Hörner and Lovo, 2008). There are two

states k, k′, and two players. Players 1 is informed of the state, player 2 is not. The

payoff matrix in state k is the following:

L M R

T 10,−4 1, 1 10,−4

B 1, 1 0, 0 −1,−4

The payoff matrix in state k′ is:

30



L M R

T 0, 0 1, 1 10,−4

B 1, 1 10,−4 −1,−4

Action profile {B, R} is the bad outcome. Player 1 can guarantee a payoff of at least 3

in one of the states by randomizing equally between U and D and player 2 can guarantee

at least 0 in each state. This implies that the equilibrium distribution over action profiles

cannot assign probability more than 1/5 to action profiles yielding −4 to player 2. In turn,

this implies that player 1’s payoff is at most 14/5 in each state, a contradiction.

5.4 Known-own payoffs

In two-player games, existence obtains whenever players know their payoffs and infor-

mation is one-sided; i.e., whenever player 1 has more information than player 2 (Shalev,

1994). These conditions are also necessary in two-player games: Hörner and Lovo (2008)

and Koren (1992) provide examples where existence fails if information is two-sided. In

this section, we show how these results extend to N -player games.

Definition 5.11 The game has known-own payoffs (KOP) if the payoff of each player i

depends only on the action profile and on her type. That is, for each action profile a and

each pair of states k, k′:

Ii(k) = Ii(k
′) =⇒ ui(k, a) = ui(k

′, a).

Let SI be the set of KOP payoff functions when the information structure is I.
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Note that in games with known own payoff implies that
⋂

i∈N Ii(k) = {k}. First we

provide a sufficient condition on the information structure to get V ∗(I, u) 6= ∅, ∀u ∈ SI .

We say that player i has more information than player j if player i can deduce player

j’s type from her own type, i.e. if player i’s information partition is finer than player j’s

partition: Ii(k) ⊆ Ij(k) for each k.

Definition 5.12 1. The information structure is embedded if for each pair of players

(i, j), i has more information than j or j has more information than i.

2. The information structure is weakly embedded (WE) if there exists a pair of players

i, j, say players 1 and 2, such that player 1 has more information than any other

player and player 2 has more information than any player other than 1.

We have the following:

Theorem 5.13 In a game with known-own payoffs and weakly embedded information,

V ∗(I, u) is non-empty.

Proof. First, we may assume without loss of generality, that the types of players 3, 4, . . . , n

are commonly known. Indeed, let players announce their types. For each i ≥ 3, players 1,

2 and i know the type of player i. Each player can thus find out the true type of player i

from the announcement profile by applying the majority rule: even if there is a one report

that differs from all others, at least two players’ reports reveal the type of player i. It is

thus sufficient to prove the following statement.

Proposition 5.14 Consider a game with known-own payoffs and an information struc-

ture such that: player 1 knows the state and players 3, . . . , n have no information (i.e.

∀k, I1(k) = {k}, I3(k) = · · · = In(k) = K). Then, V ∗(I, u) is non-empty.
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Proof. Denote by ui the minmax level of player i = 3, . . . , n, by uk
1 the minmax level of

player 1 in state k and by uθ
2 the minmax level of player 2 of type θ. For each type θ of

player 2, consider the set Aθ of mixed actions profiles α such that:

• For each i = 3, . . . , N ,

∀a2 ∈ A2, ui(α1, a2, α3, . . . , αN) ≥ ui;

• α2 is a best-reply of player 2 of type θ to (α1, α3, . . . , αN).

The set Aθ is clearly compact.

Claim 5.15 Aθ is non-empty.

Proof. We fix α1. For i ≥ 3 consider the correspondence Fi(α1, ·) :
∏

j /∈{1,2,i}△Aj → △Ai

defined by

Fi(α1, α−1−2−i) = {αi : ∀a2, ui(α1, a2, αi, α−1−2−i) ≥ ui}.

This correspondence is convex and compact valued. Let us prove that this is also non-

empty valued. For a given α−1−2−i, player i has a mixed action that yields a payoff no

less than

max
αi

min
a2

ui(α1, a2, αi, α−1−2−i) = min
α2

max
ai

ui(α1, α2, ai, α−1−2−i),

where the equality follows from the minmax theorem. Now,

min
α2

max
ai

ui(α1, α2, ai, α−1−2−i) ≥ ui,

and Fi(α1, α−1−2−i) is non-empty.
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Denote by BR2,θ the best-reply correspondence of player 2 of type θ and by BR1,f the

best-reply correspondence of player 1 when his payoff function is f : A → R. Consider

the correspondence Φf,θ from
∏

i △Ai to itself defined by

Φf,θ(α) = {β : β1 ∈ BR1,f (α−1), β2 ∈ BR2,θ(α−2), ∀i ≥ 3, βi ∈ Fi(α1, α−1−2−i)}.

The correspondence Φf,θ has non-empty, convex and compact values and it is straightfor-

ward to check that it has a closed graph. Thus, it admits a fixed point ᾱ by Kakutani’s

fixed point theorem. Clearly, ᾱ is in Aθ. Note that this profile has the additional property

to lie on the best-reply graph of player 1. We thus have some degrees of freedom as we

can choose any payoff function for player 1. This ends the proof of the Claim.

Let αk be a mixed action profile that maximizes u1(k, α) over α ∈ AI2(k). We claim

that the payoff vector

(u1(k, αk), u2(I2(k), αk), u3(α
k), . . . , uN(αk))

is in V ∗. Under the assumptions of Proposition 5.14, the constraints defining V ∗ are the

following:

• Individual rationality for player 1.

For each θ and each q ∈ △θ,

∑
k∈θ

qku1(k, αk) ≥ min
α−1

max
α1

∑
k∈θ

qku1(k, α1, α−1).
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• Individual rationality for players 2, 3, . . . , N :

For each k, u2(I2(k), αk) ≥ u
I2(k)
2 , for each i ≥ 3, ui(α

k) ≥ ui.

• Incentive compatibility for player 1:

For each k, k′ such that I2(k) = I2(k
′), u1(k, αk) ≥ u1(k, αk′

).

• Joint rationality for players 1 and 2:

For each announcement (k′, θ) such that θ 6= I2(k
′), set αk′,θ = (αk′

−2, α
k′,θ
2 ), where

αk′,θ
2 is a best-reply of player 2 of type θ to αk′

. The true state is either k′ (and

player 2 is misreporting) or k ∈ θ (in which case player 1 is misreporting). The

following must hold:

u1(k, αk) ≥ u1(k, αk′,θ) for k ∈ θ, and u2(I2(k
′), αk′

) ≥ u2(I2(k
′), αk′,θ).

Let us check all these points.

Individual rationality for player 1. Fix θ and q ∈ △θ. It follows by construction that

∑
k∈θ

qku1(k, αk) =
∑

k∈θ
qk max

α∈Aθ

u1(k, α) ≥ max
α∈Aθ

∑
k∈θ

qku1(k, α).

Let ᾱ be a fixed point of Φf,θ where f is chosen to be
∑

k∈θ qku1(k, ·). We get that

max
α∈Aθ

∑
k∈θ

qku1(k, α) ≥
∑

k∈θ
qku1(k, ᾱ) = max

α1

∑
k∈θ

qku1(k, α1, ᾱ−1),

where the last equality holds since ᾱ is on the graph of BR1,f . The right-hand-side is no

less than minα−1
maxα1

∑
k∈θ qku1(k, α1, α−1).
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Individual rationality for players 2, 3, . . . , N . Individual rationality for players 3, . . . , N

holds by construction of Aθ. Individual rationality for player 2 holds since she plays a

best-reply to some mixed action profile.

Incentive compatibility for player 1. Suppose that the true state is k and let θ = I2(k).

Player 1 gets the payoff maxα∈Aθ
u1(k, α). If player 1 reports instead that the state is k′

with I2(k
′) = θ, the induced action profile αk′

also belongs to Aθ, and the resulting payoff

for player 1 is at most maxα∈Aθ
u1(k, α).

Joint rationality. As above, suppose that the true state is k ∈ θ, but player 1 reports that

the state is k′ with θ′ = I2(k
′) 6= θ. Still, the action of player 2 is dictated by her type

θ, so that the induced action profile belongs to Aθ. Thus, player 1 does not increase her

payoff by this deviation.

Suppose now that the true state is k′ but player 2 pretends that her type is θ. Players

other than 2 play αk′

−2 and the best-reply of player 2 of type θ′ is αk′

−2 by construction.

Player 2 has thus no incentive to misreport. �

Now, we provide a necessary condition to get existence in all KOP games.

Definition 5.16 The information structure has the 1EP property if the information

structure is such that there exists at most one essential player at every state. That is, for

every k, there exists i, such that, for every j 6= i, I−j(k) = {k}.

Note that NEP implies 1EP and WE implies 1EP. A typical instance in which 1EP

holds, but not NEP, is when the state is the list of types for all players, player 1 knows

the state, and all other players know their own type only. The next theorem states that
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1EP is necessary for existence in games with known-own payoffs, and it is necessary and

sufficient for existence in games with a bad outcome and known-own payoffs.

Theorem 5.17 1. If V ∗(I, u) 6= ∅, ∀u ∈ SI , then I satisfies 1EP.

2. V ∗(I, u) 6= ∅, ∀u ∈ SI ∩ B if and only if I satisfies 1EP.

Proof of 1. Assume for the sake of contradiction contradiction that I does not satisfy

1EP. This means that there exists a state k and two players i, j, say players 1 and 2, such

that I−1(k) 6= {k} and I−2(k) 6= {k}. This implies that there exists two states k′ and k′′

such that:

• I1(k) 6= I1(k
′) and for each l 6= 1, Il(k) = Il(k

′),

• I2(k) 6= I2(k
′′) and for each l 6= 2, Il(k) = Il(k

′′).

Thus, the situation is similar to two-sided incomplete information, where two players have

private information. So we can find a payoff function with V ∗(I, u) = ∅ by building on

the counter-example of Hörner and Lovo (2008), or Koren (1992), as follows.

Example 5.18 Payoffs depend on the actions players 1 and 2 only and payoffs in state

k, k′, k′′ are as follows. Player 1 chooses rows and player 2 chooses columns.

L R

T 3, 1 0, 0

B 0, 0 1, 3

state k

L R

T 3, 0 0, 1

B 0, 0 1, 1 + ε

state k′′
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L R

T 1 + ε, 1 1, 0

B 0, 0 0, 3

state k′

Here, 0 < ε < 1/36. The proof that V ∗(I, u) = ∅ for this game is in Hörner and Lovo

(2008). The argument is as follows. In state k′, player 1 has a dominant strategy, and

individual rationality requires T to be played with probability at least 1 − ε in that state.

Now, in state k, player 1 may claim that the state is k′. Incentive compatibility requires

thus (T, L) to be played with probability at least 3/4−3ε in state k. A symmetric argument

for player 2 shows that (B, R) must be played with probability at least 3/4− 3ε in state k.

These two requirements are mutually inconsistent for small enough ε.

Proof of 2. Necessity follows from observing that (B, L) is a bad outcome in the exam-

ple above. Consider now a game with known-own payoffs and a bad outcome, and an

information structure which satisfies 1EP. We may partition the set of states as follows,

K = K0 ∪ K1 ∪ · · · ∪ KS,

where for each k ∈ K0, there is no essential player at k, and for each s = 1, . . . , S, there

exists a unique player is such that:

a) for all k, k′ in Ks, Iis(k) 6= Iis(k
′),

b) for all k, k′ in Ks and all players j 6= is, Ij(k) = Ij(k
′),

c) for all k ∈ Ks, k′ /∈ Ks, there exists j 6= is such that Ij(k) 6= Ij(k
′).
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To construct a cell Ks of this partition, consider a state k such that some player i is

essential at this state. This means that I−i(k) 6= {k}. Set then Ks = I−i(k) and is = i.

Property b) is clearly satisfied. Property a) holds since I−i(k) ∩ Ii(k) = {k}. Property c)

holds since if k′ /∈ Ks = I−i(k), then there must exist j 6= is such that Ij(k) 6= Ij(k
′).

Choose, for each k ∈ K0, an individually rational payoff vk in state k. For each

s = 1, . . . , S, consider the game with incomplete information Γs where:

• It is common knowledge that the state belongs to Ks,

• Player is knows the state and other players have no information.

Let V ∗
s be the set of IC, IR and JR payoffs of this game. The information structure of Γs

is weakly embedded. Thus, from Theorem 5.13, V ∗
s is non-empty. Pick a payoff vector in

this set for each s. We construct the overall equilibrium as follows. Let players announce

their information.

• If the announcements reveal a state k ∈ K0, the action profile yielding vk is played.

• If, given the announcements, the set Ks is common knowledge, the chosen equilib-

rium of Γs is played.

• If the announcements are inconsistent, the bad outcome is chosen.

The induced payoff vector is individually rational. We argue now that no player has

an incentive to misreport. Player i who is not essential at state k has no choice but

letting the state be revealed or being inconsistent with the other players’ reports. The

bad outcome ensures that he weakly prefers to tell the truth. Consider player is at some

state k ∈ Ks. If he announces Iis(k
′) for some k′ ∈ Ks, the announcements are consistent.

Each player knows now that the state may be any k in Ks and the equilibrium of Γs can
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be played. If player is announces Iis(k
′) for some k′ /∈ Ks, property c) above implies that

this announcement is inconsistent with some other player’s announcement. Player is has

thus no choice but letting Ks be revealed, or inducing the bad outcome. This ensures

truth-telling.

6 Reputations

It follows from the previous section that V ∗ is non-empty when players know their

own payoffs, and the incomplete information concerns one player’s payoff only, so that

the payoffs of all players but one are commonly known. Formally, for every player i,

ui(k, ·) = ui(θi, ·), and for all i 6= 1, |Θi| = 1. This environment with one-sided incomplete

information is the focus of a large literature on ‘reputations,’ starting with Fudenberg and

Levine (1989), and is assumed throughout this section. In Hörner and Lovo (2008), it was

shown how results by Israeli (1999) for the set of undiscounted Nash equilibrium payoffs

in two-player games with such information structures could be applied with hardly any

change to the set of belief-free equilibrium payoffs as the discount factor tends to one.

In this section, the generalization of those results to n players is presented. Proofs are

straightforward generalizations of those by Israeli.

Fix one (payoff) type of player 1, the rational type. The purpose of this section is to

identify how much the rational type is guaranteed to get in equilibrium, as the discount

factor tends to one, as a function of his other possible payoff types. The rational type’s

payoff is denoted u1, while his other possible payoff types are denoted uk
1, k = 2, . . . , K.

We fix throughout the payoff functions (u2, . . . , uN) of players i = 2, . . . , N . Given some

payoff function uk
1, ui, let uk

1, ui denote the corresponding minmax payoffs valuk
1 and

val ui.
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Given any vector uK := (u2
1, . . . , u

K
1 ) such that V ∗ is non-empty, let v1(u

K) be the

infimum of the payoff of player 1’s rational type over V ∗. We define the reputation payoff

of player 1’s rational type as

u∗
1 := sup

{uK :K≥2}

v1(u
K).

Observe that the rational type’s equilibrium payoff must be at least equal to

min
µ∈△A

u1(µ) such that uk
1(µ) ≥ uk

1, ui(µ) ≥ ui, ∀i, k ≥ 2.

Indeed, if the state is k, the play specified by the equilibrium strategies must be an

equilibrium of the game with complete information in state k, and therefore this play

must be such that all players get at least their minmax payoff in that state. Since player

1’s rational type can always follow the strategy of player 1’s type k, he must receive at

least as much as he would get from following this play. Therefore, it must be that

u∗
1 ≥ sup

{uK :K≥2}

{
min
µ∈△A

u1(µ) : uk
1(µ) ≥ uk

1, ui(µ) ≥ ui, ∀i, k ≥ 2

}
.

Focusing on K = 2, the dual problem is

sup
u2

1

max
{pi≥0:i=1,...,N}

p1u
2
1 +

∑N

i=2
piui such that p1u

2
1 +

∑N

i=2
piui ≤ u1.

Since the constraint must bind, the reputation payoff is at least

sup
{pi≥0:i=2,...,N}

val (u1 −
∑N

i=2
pi(ui − ui1)),

where 1 is a vector in R
|A| with all entries equal to one. Note that this lower bound is
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always larger than u1 (take (p2, . . . , pN) = 0). The following theorem shows that this

lower bound is actually achieved, and provides an alternative characterization of it.

Theorem 6.1 The reputation payoff is equal to

u∗
1 = sup

{pi≥0:i=2,...,N}

val (u1 −
∑N

i=2
pi(ui − ui1)) = sup

α1∈△A1

min
α−1∈Y (α1)

u1(α1, α−1),

where Y (α1) := {α−1 ∈ △A−1 : ui(α1, α−1) ≥ ui, ∀i = 2, . . . , N}. The reputation payoff

is achieved if K = N and uk
1 = −uk, ∀k = 2, . . . , N :

u∗
1 = v1(−u2, . . . ,−uN).

As is clear from the alternative characterization, the reputation payoff is lower than the

usual Stackelberg payoff

sup
α1∈△A1

min
α−1∈B(α1)

u1(α1, α−1),

where B(α1) is the set of Nash equilibria in the one-shot game between players i =

2, . . . , N , given α1. A Stackelberg sequence is any sequence {an
1}n∈N achieving the supre-

mum.

A game has conflicting interest if, for some Stackelberg sequence {an
1}n∈N, all Nash

equilibria in B(an
1 ) yield players i 6= 1 exactly their minmax payoff, for all n ∈ N. It

follows immediately from the theorem that player 1 can secure the Stackelberg payoff in

all games of conflicting interest.

We further discuss the result after the proof.
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Proof: Define

u′
1 := sup

{pi≥0:i=2,...,N}

val (u1 −
∑N

i=2
pi(ui − ui1))

and

u′′
1 := sup

α1∈△A1

min
α−1∈Y (α1)

u1(α1, α−1).

We have already argued that u∗
1 ≥ u′

1. Let us first show that u′
1 ≥ u′′

1. By definition, for

all ε > 0, there exists (p2, . . . , pN) ≥ 0 and α1 ∈ △A1 such that

u′
1 − ε ≤ val (u1 −

∑N

i=2
pi(ui − ui1))

≤ min
α−1

{u1(α1, α−1) −
∑N

i=2
pi(ui(α1, α−1) − ui)}

≤ min
α−1

{u1(α1, α−1) −
∑N

i=2
pi(ui(α1, α−1) − ui1) : α−1 ∈ Y (α1)}

≤ min
α−1

{u1(α1, α−1) : α−1 ∈ Y (α1)} ≤ u′′
1.

Conversely, for every ε > 0, there exists α1 ∈ △A1 such that minα−1∈Y (α1) u1(α1, α−1) ≥

u′′
1 − ε. Therefore, fixing α1 ∈ △A1, for every α−1 ∈ R

|A−1|
+ ,

(ui(α1, α−1) − ui

∑|A−1|

a=1
α−1,a)i6=1 ≥ 0 ⇒ u1(α1, α−1) − (u′′

1 − ε)
∑|A−1|

a=1
α−1,a ≥ 0.

By Farkas’ Lemma, there exists (p2, . . . , pN) ≥ 0 and a constant γ ∈ R
|A−1|
+ such that, for

every α−1 ∈ △A−1,

u1(α1, α−1) − u′′
1 + ε =

∑N

i=2
pi(ui(α1, α−1) − ui) + γ · α−1

≥
∑N

i=2
pi(ui(α1, α−1) − ui).
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Therefore,

u′
1 + ε ≥ val (u1 −

∑N

i=2
pi(ui − ui1)) + ε ≥ u′′

1.

We now show that the bound is attained by uk
1 = −uk, ∀k = 2, . . . , N . Given some equilib-

rium, let µi ∈ △A be the occupation measure when player 1 is of type i (the rational type

is type 1). Player i’s individual rationality is equivalent to, for all i, ui(µ
i) ≥ ui. Further,

player 1’s individuality rationality condition states that, for every p ∈ △{1, . . . , N},

p1u1(µ
1) +

∑N

i=2
pi(−ui(µ

i)) ≥ val (p1u1 −
∑N

i=2
piui),

and therefore, for the choice pi = 1, pj = 0, all j 6= i, it follows that −ui(µ
i) ≥ val (−ui) =

−ui. Hence, ui(µ
i) = ui. Thus, we can rewrite the individual rationality condition as

u1(µ
1) ≥ val (u1 −

∑N

i=2

pi

p1
(ui − ui1)),

i.e. u1(µ
1) ≥ u′

1. Incentive compatibility of (µi)i is obvious.

It remains to show that, for every choice of K and uK, there always exists an equilib-

rium in which player 1’s rational type does not exceed u′
1. Pick any such game. Let

vk
1 := max

µ∈△A
{uk

1(µ) : u1(µ) ≤ u′
1, ui(µ) ≥ ui, ∀i ≥ 2},

for all k = 1, . . . , K, with u1
1 = u1. Since u′

1 ≥ u1, the folk theorem under complete

information ensure that the set on the right-hand side is non-empty, so that vk
1 is well-

defined. Clearly, the action profiles αk are incentive compatible, and individually rational

for all players i ≥ 2. It remains to show that it is incentive compatible for player 1, i.e.,
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that for all p ∈ △{1, . . . , K},

∑K

k=1
pkv

k
1 ≥ val (

∑K

k=1
pku

k
1).

From the definition of vk
1 , it follows that for every k = 1, . . . , K and α ∈ R

|A|
+ ,

ui(α) ≥ ui1 · α, u′
11 · α ≥ u1(α) ⇒ vk

11 · α ≥ uk
1(α).

By Farkas’ Lemma, for every k = 1, . . . , K, there exists γk ≥ 0, λk
i ≥ 0 such that vk

11−uk
1 ≤

γk(u′
11 − u1) +

∑N
i=2 λk

i (ui − ui1). Therefore, for all p ∈ △{1, . . . , K},

val (
∑K

k=1
pku

k
1) ≤

∑K

k=1
pkv

k
1−

∑K

k=1
pkγ

ku′
1+val (

∑K

k=1
pk(γ

ku1−
∑N

i=2
λk

i (ui−ui1))),

and so individual rationality for player 1 is satisfied if

∑K

k=1
pkγ

ku′
1 ≥ val (

∑K

k=1
pk(γ

ku1 −
∑N

i=2
λk

i (ui − ui1))).

This is satisfied if
∑K

k=1 pkγ
k = 0, and if not, defining

νi := (
∑K

k=1
λk

i pk)/(
∑K

k=1
pkγ

k) ≥ 0,

it is equivalent to

u′
1 ≥ val (u1 −

∑N

i=2
νi(ui − ui1))),

which is satisfied by definition of u′
1. �

While there exists a large literature on reputation in two-player games, Ghosh (2007)
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is, to the best of our knowledge, the only paper considering reputations when the informed

player faces multiple opponents. He considers the case in which the set of possible types

includes all strategies of bounded recall mapping the past history of his opponents’ actions

into a pure action (these are not payoff types). He shows that the informed player rational

type payoff can be as low as

l := max
a1∈A1

inf
α−1∈W (a1)

u1(a1, α−1),

where

W (a1) := {α−1 ∈ △A−1 : ui(a1, α−1) ≥ max
a′
1
∈A1

min
α−1,−i

max
αi

ui(a
′
1, αi, α−1,−i), ∀i = 2, . . . , N}.
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Appendix: Proof without communication device

Actions are periodically used as messages. Because players might have as few as two

actions, each such communication phase might require several periods. As the actions

played during this phase affect payoffs, communication phases must be short relative

to regular phases. We shall not dispense with the randomization device altogether,

as this allows us to achieve exactly the desired continuation payoff. Details on how to

eliminate the public randomization device might be omitted altogether are the same

as in the two-player case, following ideas introduced by Sorin (1986) and Fudenberg

and Maskin (1991), and we refer the reader to Hörner and Lovo (2008).

Because communication requires several periods, strategies must also specify how a

player plays within a communication phase if his own previous action already pre-

cludes him from reporting correctly his private information, or if his opponent’s action

already precludes his opponent from doing so. The construction must ensure that the

specification is belief-free in both cases, and this explains why the construction that

follows is more involved than one might have guessed. (In particular, it is the cause

for the different kinds of communication phase described below.)

Play is divided into phases (or classes of phases): Communication phases, regular

phases, penitence phases, and punishment phases.

Actions

Communication Phase

The communication phase replaces the communication stage. There are different

versions of communication phase, denoted C, Ci, or C∗
i . (Roughly, a phase is indexed
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by player i if i’s report during this phase is essentially ignored.5) A communication

phase lasts c periods, where

c ≥ 1 + max
i∈N

ln |Θi|

ln |Ai|
,

so that |Ai|
c−1 ≥ |Θi|, all i ∈ N . We fix two arbitrary but distinct actions for each

player, denoted U and B, and a mapping

mi : Θi → Ac−1
i ,

from his set of types into sequences of actions of length c − 1. Player i (or his play)

reports θi if his play in the communication phase is equal to (mi(θi), B) (so B is the

action that he takes in the last period of this phase.) For any other play, he reports

(U, nU
i ) where nU

i is the number of periods in the communication phase in which

ai = U . We also write U rather than (U, nU
i ) whenever convenient, and let

θ ∈
∏

i∈N
Θi ∪ ∪c

l=0(U, l)

denote a report, or message profile. For k ∈ K, let uC
i (k, θ) denote player i’s average

payoff from the communication phase if the state is k and the report is θ.6

In a communication phase C, player j’s type θj plays the sequence mi(θj , B), as

long as his previous play in the phase does not preclude him from doing so. In a

communication phase Ci so does player j 6= i, while player i plays (U, c). If a player’s

5It cannot be entirely ignored, since we must give i incentives that do not depend on his type.
6This is an abuse of terminology, as payoffs are not uniquely identified by the report profile whenever

a player reports U , since there might be many sequences of actions corresponding to this report. What
is meant is the payoff given the actual sequence of action profiles.
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past play prevents him from reporting his type θi, he plays U in every remaining

period of the phase.

Transitions are described below.

Regular Phase

A regular phase is denoted R(θ, ε), where κ(θ) 6= ∅, and ε ∈ [−ε, ε]N , for some ε > 0

to be specified.

A regular phase lasts at most n periods (to be specified), where n > c. We fix a

(possibly correlated) mixed action profile µ(θ, ε) ∈ △A such that, ∀k ∈ κ(θ), ∀i ∈ N ,

∀ε, ε′ ∈ [−ε, ε]N and ∀θ′i ∈ Θi, θ
′
i 6= θi, such that κ(θ′i, θ−i) 6= ∅,

uR
i (k, µ(θ, ε)) := (1 − δn)ui(k, µ(θ, ε)) + δnuC

i (k, θ) = vk
i + εi,

and

uR
i (k, µ(θ, ε)) > uR

i (k, µ(θ′i, θ−i, ε
′)),

and

uR
i (k, µ(θ′i, θ−i, ε

′)) ≤ vk
i − 2ε.

The strict inequalities can be satisfied for δ close enough to 1 and ε close enough to

0, since v is strictly incentive compatible.

In any period of the regular phase, players play µ(θ, ε). The regular phase R(θ, ε)

stops immediately after a unilateral deviation from µ(θ, ε), or if not, after n periods.

Transitions are described below.
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Penitence Phase

A penitence phase is denoted E(θ, ε), where ε ∈ [−ε, ε]N , θ ∈ Θ, κ(θ) = ∅, and

θ ∈ D. A penitence phase lasts at most n periods. We fix a sequence a(θ, ε) ∈ An

such that ∀(i, θ′i) ∈ Ωθ, k ∈ κ(θ′i, θ−i), ε ∈ [−ε, ε]N ,

uE
i (k, a(θ, ε)) :=

1 − δ

1 − δn

∑n−1

t=0
δtui(k, at(θ, ε)) < vk

i − 2ε.

Such a penitence phase E(θ, ε) stops immediately after a unilateral deviation from

the sequence a(θ, ε), or if not, after n periods. In period t of the penitence phase,

players play at(θ, ε).

Transitions are described below.

Punishment Phase

A punishment phase, indexed by i, is denoted Pi(θ−i, t), where θ−i ∈ Θ−i is such that

κ(θ−i) 6= ∅ and t = n or T (to be defined) denotes the length of the punishment

phase.

As before, we fix an action ai ∈ Ai and let s
ai

i denote the strategy of playing ai in

every period, independently of the history. In the punishment phase, player i uses

s
ai

i , and players −i use s
θ−i

−i .

We pick n, T, δ < 1 and ε such that, ∀δ > δ, ∀k ∈ κ(θ−i), player i’s average discounted

payoff over the t periods in state k is no larger than vk
i −2ε, and that it is sufficiently

larger when t = n than when t = T , as explained below. This is possible since v

satisfies individual rationality strictly.

53



We shall write C, R, E, P for a communication, regular, penitence and punishment

phase without further argument when there is no risk of confusion.

Transitions

Given any message θ, define

- whenever θ ∈ Θ, ∀θ ∈ Θ, ∆I(θ, θ) := {i ∈ N |θi 6= θi};

- whenever θ ∈ Θ, θ ∈ D, ∆D(θ) := {i ∈ N |(i, θ′i) ∈ Ωθ for some θ′i ∈ Θi};

- whenever θ /∈ Θ, ∆U(θ) := {i ∈ N |θi /∈ Θi}.

Given a unilateral deviation from a sequence a(θ, ε), or from a mixed action µ(θ, ε),

let ∆A denote the index of the player who deviated.7 Finally, given a set ∆ ⊂ N , let

−∆ := N \ ∆.

From a communication phase

The transition depends on the message θ during C, the phase Φ ∈ {R, P, E, C}

immediately preceding C, and the play during Φ. Roughly speaking, if there is no

unilateral deviation during Φ, and if θ ∈ Θ, a regular or a penitence phase follows,

while if θ /∈ Θ, either a punishment or a communication phase follows. If there

is a unilateral deviation during Φ by player i, then if θ−i ∈ Θ−i, a punishment

phase follows. More precisely, if there is a unilateral deviation from Φ = E, R, with

∆A = {i}, then the next phase is

7Recall that there is a public randomization device, so that we always assume that players use a pure
action profile, as a function of the realization of the public randomization device, so that the mixed action
profile obtains in expectations.
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1. if θ−i ∈ Θ−i, κ(θ−i) 6= ∅: Pi(θ−i, T );

2. otherwise, it is C.

On the other hand, if there is no unilateral deviation from Φ, or if Φ = P, C, and

1. Φ equals R(θ, ε) or E(θ, ε), the next phase is:

(a) if θ ∈ Θ, κ(θ) 6= ∅: R(θ, ε−∆I(θ,θ),−ε∆I (θ,θ));

(b) if θ ∈ Θ, θ ∈ D: E(θ, ε−∆D(θ),−ε∆D(θ));

(c) if ∆U(θ) = {i}, κ(θ−i) 6= ∅: Pi(θ−i, n);

(d) otherwise, C;

2. Φ equals Pi(θ−i, t), t = n, T , the next phase is:

(a) if θ ∈ Θ, κ(θ) 6= ∅: R(θ, ε̃(θ, θ)), where ε̃i(θ, θ) ∈ [−ε, ε] is chosen so that,

given θ and s
θ−i

−i , using s
ai

i is optimal in the punishment phase for player

i; and further, if θ−i = θ−i, player i’s continuation payoff in the repeated

game, evaluated at the beginning of the punishment phase, is equal to, for

all k ∈ κ(θ),

(1 − δt)(vk
i − 2ε) + δt(vk

i − ε);

and for j 6= i, ε̃j(θ, θ) is chosen so that, given θ, s
θ−j

−j and s
ai

i , s
θj

j is optimal

for player j in the punishment phase. Further ε̃j(θ, θ) ∈ [ε/4, 3ε/4] if θj = θj

and ε̃j(θ, θ) ∈ [−3ε/4,−ε/4] otherwise;

(b) if θ ∈ Θ, θ ∈ D: E(θ, 0−∆D(θ),−ε∆D(θ));

(c) otherwise, C.

3. Φ equals C, or Ci and θ is the report during Φ, the next phase is:
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(a) if θ ∈ Θ, κ(θ) 6= ∅: R(θ, ε̂(θ, θ)), where, if Φ = C, or j 6= i,

ε̂j(θ, θ) =






0 : θj = θj,

−ε/4 + ρnU : θj = (U, nU),

−ε : otherwise,

and if Φ = Ci,

ε̂i(θ, θ) =






−ε + ρnU : θi = (U, nU),

−ε : otherwise,

for some ρ > 0 to be defined;

(b) if θ ∈ Θ, θ ∈ D: E(θ, 0−∆D(θ),−ε∆D(θ));

(c) if ∆U(θ) = {i}, κ(θ−i) 6= ∅: Pi(θ−i, n);

(d) otherwise, C.

From any other phase

Any other phase is followed by a communication phase. If there is a unilateral de-

viation from a phase Φ = R, E, with ∆A = {i}, it is a communication phase Ci;

otherwise, it is a communication phase C.

Initial phase

The game starts with a communication phase, at the end of which transitions occur

as if the previous phase had been C, with θ = θ, and ε ∈ [−ε, ε] is such that the

payoff (inclusive of the initial communication phase) is equal to v.
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Verification of optimality

Consider first the incentives of player i to deviate during a regular phase. If he does

so, a punishment phase Pi will start after the communication phase. Player i expects

the type profile by θ−i reported after the deviation and before the punishment phase

to be correct; since his payoff at the beginning of the punishment phase is then

(1 − δT )(vk
i − 2ε) + δT (vk

i − ε),

he has no incentive to deviate in this case, as whether or not his own report was

correct, his payoff from following the equilibrium strategies is higher.8

Consider next a punishment phase Pi. The definition of ε̃i guarantees that s
ai

i is

optimal for player i. Similarly, the definition of ε̃j ensures that player j 6= i has no

incentive to deviate. This is true whether the punishment phase lasts n or T periods.

Consider next a possible deviation during the penitence phase. While the average

payoff from the penitence phase is low, observe that it lasts only n periods (and,

given the equilibrium strategies, the ensuing communication phase will be followed

by a regular phase if the player refrains from deviating, independently of the history

up to the contemplated deviation), while the punishment phase that the deviation

would trigger lasts T periods. We pick T and n so as to ensure that no such deviation

is profitable.

Consider finally a possible deviation during a communication phase. Start with a

communication phase C.

8Note that the situation where the reported type profile by −i is incorrect is not relevant for verifying
that player i does not deviate during the regular phase. This is because, at the time of the deviation, he
expects the other player to report correctly their type during the communication phase.
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1. Assume first that the history in the communication phase is consistent with (pos-

sibly, among others) some type profile θ ∈ Θ (i.e., the history in the communication

phase is an initial segment of (m1(θ1), . . . , mN(θN ))), and θi is indeed player i’s type.

If the true state is θ, then by reporting U , a punishment phase Pi of length n will

be entered, the expected payoff of which ensures that it is better not to do so. If the

true state is not θ, then according to the equilibrium strategies, some player j 6= i

will report U in this communication phase. If player i reports U , a communication

phase C will be entered, at the end of which a regular phase will be started, for which

εi < 0 (pick ρ such that −ε/4 + ρc < 0); by sticking to the report of θi, either a

communication phase C will start (in case θj and θj′ differ from the true state for

two players j, j′), in which case, in the ensuing regular phase, player i’s εi is zero, or

a punishment phase of length n will start, at the end of which, in the ensuing regular

phase, player i’s εi is at least ε/4; of course, i’s payoff during the n periods can be

very low, but we can deter such deviations by picking ρ sufficiently small (but not

too small, see below).

2. Assume next that the history in the communication phase is consistent with some

type profile θ ∈ Θ, but θi is not player i’s type. Thus, the equilibrium strategy calls

for player i to report U (if there is at least one period; otherwise, there is nothing to

show). Suppose first that the other players’ type profile is indeed θ−i. By reporting

U , player i triggers a punishment phase Pi of length n, but by failing to do so, it

triggers the play of a regular phase for which the play does not correspond to the true

type profile. We can pick n small enough to guarantee that, since the payoff during

such a regular phase is less that vi − ε, player i prefers not to deviate. Suppose

next that there exists exactly one other player j for which θj is not the true type. By

58



reporting U , a second communication phase starts, but player i is guaranteed at least

a εi ≥ −ε/4 in the regular phase at the end of it; if player i persists in reporting the

incorrect type, a punishment phase Pj of length n follows, at the end of which player

i’s ε is strictly less than −ε/4; finally, if there are two or more other players for which

θj is incorrect, and if player i reports U , he also guarantees that, in the regular phase

that will follow the second communication phase, εi ≥ −ε/4; if he reports differently,

in the regular phase that will follow the second communication phase, εi = −ε.

3. Assume finally that the history in the communication phase is not consistent with

some type profile θ ∈ Θ, i.e. some player reports U already. The same arguments

as before apply almost verbatim, since in the previous arguments, if θj was not the

true type for one or more players, those players j were about to report U anyway.

Note that postponing a report of U by one or more periods within a communication

phase is suboptimal, since the argument εi from the relevant ensuing regular phase

is increasing in the number of times player i choose U . (This is where we need that

ρ be not too small, more precisely, it must be at least (1 − δ)M).

These arguments are readily adapted to the case in which the communication phase

is Ci. Consider first the case in which the previous phase was E or R (i.e., player i

deviated in actions). Suppose first that the other players’ type profile θ−i is consis-

tent with the history in the communication phase. Since the equilibrium calls for a

punishment phase to follow, the specification of ε̃j, ε̃i ensures that no player gains

from deviating: i.e., player i benefits from playing U as often as possible, and other

players gain by reporting their type truthfully. Suppose now that the history in the

communication phase is not consistent with some type profile θi ∈ Θi, then some

player −i will play U and a new communication phase C will follow. Also in this case
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player i benefits from playing U since εi = −ε + ρnU in the regular phase that will

follow the new communication C .
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