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Abstract

This paper analyzes contactual situations between many principals and many agents.

Agents have private information and principals take actions. Principals can contract not

only on the reports of the agents but also on the contracts offered by the other principals.

Contracts are required to be representable in a formal language. The main result of the pa-

per is a full characterization of the allocations that can be implemented as equilibria in our

contracting game.

Equilibrium contracts are shown to be incomplete, in general. That is, a contract only

restricts the action space of a principal but does not necesarrily determines a single action.

Finally, certain environments are identified where the contractibility of contracts can only

decrease social welfare.

1 Introduction

The most famous example of a common agency problem is the meet the competition clause. There

are many firms (principals) selling a good to a consumer (agent). Each firm posts a price but

can credibly promise to sell its product at the lowest price posted by its competitors. The ability

to make such a promise makes it possible to sustain any price between the monopoly and the

competitive prices. However, it is essential in this example that the posted prices are publicly

observable and can be contracted upon. If the prices were not observable and the firms had to rely

on the report of the consumer, the competitive price would be the only sustainable market price.1

Although this example is used as motivation in a large number of papers dealing with common

agency models, these papers all assume that the contracts cannot be contracted directly, only

∗Department of Economics, University College London.
1Other examples for contractible contracts are the reciprocical trade agreements, like the GATT. A

reciprocical contract specifies to set a low tariff against one country if the other country also has such

a reciprocical contract. Finally, tax treaties sometimes have this flavor — for example, out of state res-

idents who work in Pennsylvania are exempt from Pennsylvania tax as long as they live in a state that

has a reciprocal agreement that exempts out of state residents from Pennsylvania from state taxes. See

http://www.revenue.state.pa.us/revenue/cwp/view.asp?A=238&Q=244681.
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through the reports of the agents. This paper departs from the existing literature in two ways.

First, the contracts are assumed to be publicly observable and contractible. That is, a principal

can credibly make his action contingent on the contracts of the other principals, and there is no

need for the agents to communicate what kind of contracts they received from the other principals.

Second, the contracts are required to be describable in a formal language. Below, we elaborate on

both of these assumptions.

These two assumptions lead to a characterization of the allocations that can be implemented

as equilibria of our contracting game. Indeed, the main result of this paper is a Folk Theorem. We

show that the possibility of contracting on contracts enables the principals to collude and implement

various outcomes, much like in repeated games. The collusion is accomplished by writing contracts

which punish a principal if his contract is not the one which the others expected from him in

equilibrium. Since contracts are contractible, a principal is able to commit to punish a deviator

although the interaction is not repeated. We identify environments where the contractibility of

contracts can offset any efficiency gain generated by competition among the principals. Therefore,

a policy implication of our results is that contracting on contracts should be prohibited in certain

environments.

In the specific model analyzed in this paper there are several principals and several agents. The

agents have types and principals can take actions. Each principal wishes to enter into a contractual

relationship with each agent. Following the usual approach of the literature, we analyze equilibria in

communication games. In a communication game, the agents are endowed with message spaces, and

the game has three stages. At the first stage, principals offer contracts to the agents simultaneously.

A contract of a principal is a mapping from message profiles of the agents and contract profiles

of the principals to the subsets of the action space of the principal.2 During the second stage,

agents simultaneously send messages to each principal. In the final stage, principals take actions

from the subsets of their actions that were determined by both the first-stage contracts, and the

second-stage message profiles. Our goal is to characterize the set of equilibrium outcomes of these

games.

The infinite regress problem is one of the difficulties of solving these models. It can be

observed when there are two principals and the payoff of each principal depends on the action of

the other principal. This action is contracted on by the other principal and the agents, therefore,

both principals want to offer contracts to the agents which are contingent on the contracts offered

by the other principal. A typical contract of a principal will be contingent on the contract of

the other principal, which, in turn, is contingent on the contract of the other principal etc. It is

not clear how to construct a contract space which allows for this kind of hierarchical dependency.

Therefore, perhaps the most important feature of a common agency model is the set of contacts

available to the principals. Next, we describe the contract space of our model in more detail.

2The literateture on common agency models usually assumes that the contracts determine a single action for the

principal as opppsed to a subset. We show that this assumption is with the loss of generality.
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The Contract Space.–We endow each market participant with a formal language. We require

each contract offered by a principal and each message sent by an agent to be a text written in

this language, where a text is a finite string of symbols. It is well known that there are bijections

from the set of texts into the set of integers. One such a mapping is called the Godel Coding.

This implies that any contract and message uniquely corresponds to an integer. As we mentioned

earlier, a contract of a principal is a mapping from contract profiles and message profiles to subsets

of the action space of the principal. Since the contracts and the messages correspond to integers,

one can think of such a contract as a description of an arithmetic correspondence from the codes

of contracts and messages to the codes of the names of the actions of the principals. There is a

well-known set of arithmetic correspondences, called the definable correspondences, which can be

precisely described in the formal language by using finitely many characters. (We shall formally

define this set later.) Hence, one can think of the contract space as the set of definable functions

from Nn+k → 2N, where n is the number of principals and k is the number of agents. The first

n arguments of these functions are the codes of the contracts of the principals, and the last k

arguments are the codes of the messages of the agents. The range of these functions is the subsets

of the codes of the names of the actions of a principal. We identify the contracts space of a principal

with the set of definable correspondences.

The introduction of arithmetics and Godel Coding into our model deserves some explanation.

Take it as given that contracts and messages must be expressed in a formal language. Then a

contract of a principal must give precise instructions how to restrict his action space as a function

of the texts submitted by the other market participants. In order to describe the contracting

game, one must carefully define what “precise instruction” means and the set of those texts which

give these instructions. Any such definition would lead to a definition of a set of arithmetic

correspondences which can be described as finite texts. To see this, suppose that there is a text

which gives instructions how to pin down a subset of a principal’s action space as a function of the

other texts. Then, there is also a text that gives the same instructions as a function of the Godel

Codes of texts of the other market participants instead of their texts. This is because the Godel

Coding and its inverse are definable functions, that is, they can be described as texts. This implies

that this new text describes an arithmetic correspondence. In this paper we adopt the definition

of definable functions from arithmetics instead of introducing a new definition. In fact, the set

of definable functions is the largest set of arithmetic functions which can be described in a first-

order language. Therefore, our contract space is the largest given the restriction to messages and

contracts which can be expressed as texts. Implicitly, our approach makes it possible for players

to offer any finite text as a contract. We simply identify the original text with the corresponding

definable mapping.

The contracting game we consider is the following: First, the principals offer contracts si-

multaneously. These contracts are publicly observed. Second, the agents send messages to each

principal privately. Compute the Godel Code of each contract and message. Fit these codes into
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each principal’s contract to determine a unique set of actions available to every principal. Finally,

once the sets of actions of each principal have been specified, principals choose from these sets

simultaneously. Our goal is to characterize the set of equilibria of this game.

The Main Result.–We prove a folk theorem for our environment. We show that an allocation

can be implemented as an equilibrium in the contractible contracting game if and only if the

allocation is strongly incentive compatible and the payoff of each principal induced by the allocation

is larger than his minmax value. Below, we define the notion of strong incentive compatibility and

explain what the minmax value of a principal is.

A allocation in our model is a mapping from type profiles of the agents to action profiles of

the principals. Each coordinate of an allocation is a mapping from the type profiles of the agents

to the action space of a certain principal. Suppose that each principal offers a direct mechanism

implementing his coordinate of the allocation simultaneously. An allocation is said to be strongly

incentive compatible if truth-telling by the agents constitute an equilibrium in the product of these

direct mechanisms. That is, no agent can increase his payoff by misreporting his type to the

principals.3

It remains to explain what Principal q’s minmax value is. In order to do so call a contract of

a principal ordinary if it does not condition on the contracts of the other principals.4 Modify our

contracting game so that each principal has to offer an ordinary contract at the first stage. Suppose

that Principal j’s goal at the first stage is to minimize the payoff of Principal q for all j 6= q. Define

the minmax value of Principal q as his lowest equilibrium payoff in this game. This minmax value

is similar to the standard definition, except that the principals can only punish Principal q in the

contracting stage, but each player behaves strategically in the subgame generated by the contract

profile. In the subgame, they can only punish Principal q by playing an equilibrium which is the

worst for him.

The difficult part of the statement of our folk theorem is the minmax values of the principals.

Since contracts are contractible, one might imagine that the punishment inflicted on a deviating

principal can potentially depend on the actual deviation. If punishments could be contingent on the

deviator’s contract then one might suspect that a deviator can be pushed below his minmax value,

perhaps even to his maxmin value. This argument turns out to be false. Despite the contractibility

of the contracts, the punishments of the principals can only depend on the deviator’s identity but

not on his contract. In other words, when the principals punish a deviator they use ordinary

contracts. This fact is due to a result in mathematical logic stated in Proposition 2.

We emphasize that we were able to characterize the set of equilibrium allocations without any

reference to the contractibility of the contracts. Indeed, the set of strongly incentive compatible

allocations is defined in terms of the preferences of the agents and the minmax values of the
3This definition is stronger than the standard definition of incentive compatibility becase an agent can report

different types to different principals.
4That is, an ordinary contract is a mapping from the message profile of the agents to the subsets of the action

space of the principal.
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principals are defined in terms of ordinary contracts. We also show that with one additional

assumption even the minmax values can be characterized in terms of the physical environment

only, in particular, in terms of the preferences of the principals. The assumption is that there exists

an action profile used to minmax a principal which does not depend on the types of the agents.

Essentially, this means that each principal can be prevented from interacting with the agents by

the other principals. Such a type-independent punishment exists in many economic applications.

For example, if the principals are sellers and the agents are buyers, then the sellers can set prices

so low then every seller is best off if he exists the market. If the principals are employers and the

agents are workers then the employers can offer so high wages to the workers that every employer

would maximize his payoff by not competing for the workers. If this assumption is satisfied, then

our characterization is purely in terms of the physical environment.

We also show that there are allocations which can only be implemented by contract profiles

which do not pin down single actions of the principals in the last stage of the game. An equilibrium

contract typically specifies only a subset of the action space of the principal and not a single action.

The reason is that there is a trade-off between committing to a small set of actions and having

flexibility at the last stage of the game. On the one hand, more commitment can increase ex ante

efficiency. On the other hand, more flexibility can deter certain deviations. Indeed, a deviation

might be more attractive if the deviator knows exactly what actions his opponents will take at the

last stage of the game. In this sense, equilibrium contracts are often incomplete. This observation

might provide a new insight for why contracts are often incomplete in the real world.

There is another sense in which restricting attention to complete contracts is with the loss of

generality. We show that there are allocations which can be supported as an equilibrium if contracts

are required to be complete, but cannot be supported if contracts are allowed to be incomplete.

This is because a principal might profitably deviate by offering an incomplete contract, but there

might be no such a deviation in the form of a complete contract.

An Example.– To illustrate how our approach works, consider the following example. There

are two firms (1 and 2) and a single consumer. Each firm can produce a good at no cost. The

goods are close substitutes but not identical. The consumer has two equally likely types, A and B.

If his type was A, he values firm 1’s good at 8 and firm 2’s good at 5. If his type was B, he values

firm 2’s good at 9 and firm 1’s good at 6. His marginal value for the second good is zero. The

action space of each firm is setting a price from the set {1, ..., 10}. Firms want to maximize profit
and the agent wants to maximize his value for the good he purchases minus the price. If firms were

to set prices simultaneously without being able to contract on contracts, the market price would

be one. The joint profit of the firms would be maximized if the consumer buys the good from firm

1 at price 8 if his type is A and he buys from firm 2 at price 9 if his type is B. Below, we show

that this allocation is an equilibrium outcome in our contracting game.

Let [ϕ] denote the Godel code of the text ϕ and refer to [ϕ] as the ’encoding’ of ϕ. Consider
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the following two contract of Firm 1:

cn21 ([c2] , [m]) =


8 if [c2] = n2, and [m] = [A]

10 if [c2] = n2, and [m] 6= [A]
1 otherwise.

,

where c2 denotes the contract of Firm 2 and m denotes the message of the consumer sent to Firm

1. This contract says that if the Godel code of Firm 2’s contract is n2 and the consumer reports

type A, then the price of Firm 1 is 8. If the Godel code of Firm 2’s contract is n2 but the consumer

does not report type A then the price is 10. Otherwise, the price is one. Similarly, define Firm 2’s

contract as follows:

cn12 ([c1] , [m]) =


9 if [c1] = n1, and [m] = [B]

10 if [c1] = n1, and [m] 6= [B]
1 otherwise.

Notice that if [cn21 ] = n1 and [c
n1
2 ] = n2 then these contracts are cross-referential. If the firms

offer these contracts then the consumer maximizes his payoff if he reports his true type to each

firm and buys the product from Firm 1 if his type is A and from Firm 2 otherwise. Hence, these

contracts implement the desired allocation. In addition, the firms have no incentive to offer a

different contract because any deviation would result a price of one set by the other firm. In what

follows, we construct such a pair of cross-referential contracts.

Before we proceed, we introduce two pieces of notations. First, the function hxi is the inverse
operation to the Godel coding. That is, < n > is the text whose Godel code is n. Second, if φ is

a text, then φ(n1,n2) is the same text as φ except that if φ contained the free variables x or y then

the value of the free variable x is set to be n1 and the value of the free variable y is set to be n2.

Now, consider the following two texts:

cx,y1 ([c2] , [m]) =


8 if [c2] =< y(x,y) > , and [m] = [A]

10 if [c2] =< y(x,y) > , and [m] 6= [A]
0 otherwise.

cx,y2 ([c1] , [m]) =


9 if [c1] =

£
< x(x,y) >

¤
, and [m] = [B]

10 if [c1] =
£
< x(x,y) >

¤
, and [m] 6= [B]

0 otherwise.

These texts are not contracts, because they contain free variables. However, if these free variables

are evaluated at integers, they do become contracts. Let γ1 and γ2 denote the Godel codes of

these two texts respectively. Then

c
γ1,γ2
1 ([c2] , [m]) =


8 if [c2] =

h
< γ

(γ1,γ2)
2 >

i
, and [m] = [A]

10 if [c2] =
h
< γ

(γ1,γ2)
2 >

i
, and [m] 6= [A]

0 otherwise.
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and

c
γ1,γ2
2 ([c1] , [m]) =


9 if [c1] =

h
< γ

(γ1,γ2)
1 >

i
, and [m] = [B]

10 if [c1] =
h
< γ

(γ1,γ2)
1 >

i
, and [m] 6= [B]

0 otherwise.

The key observation is that
h
< γ

(γ1,γ2)
1 >

i
=
£
c
γ1,γ2
1

¤
and

h
< γ

(γ1,γ2)
2 >

i
=
£
c
γ1,γ2
2

¤
. Therefore,

the contract cγ1,γ21 requires firm 1 to set a price of 8 if the contract of firm 2 is cγ1,γ22 and the type

of the consumer is A. It requires firm 1 to set a price of 10 if the contract of firm 2 is cγ1,γ22 but

the consumer’s type is B. Finally, it requires setting a price of 1 whenever the contract of firm 2

is not cγ1,γ22 . The contract cγ1,γ22 specifies similar instructions as a function of the contract of firm

1. Obviously, these contracts are cross-referential, and they implement the desired allocation.

Literature Review

As we discussed above, unlike this paper, the rest of the literature assumes that the contracts are

neither observable nor contractible. Therefore, the principals can make their contracts contingent

on the contracts of the other principals only through the reports of the agents. In order for the

agents to communicate their contracts to the principals, their message spaces must be at least

as large as the space of contracts. Since the contracts are mappings from the message spaces, it

is not straightforward to construct such a message space. The goal of the literature is usually to

establish that a desired message space exists and to understand how sensitive the set of equilibrium

allocations is to the message spaces. One of the shortcomings of the literature is the lack of

characterization of these allocations. Perhaps the main contribution of our paper to the literature

is the full characterization of the equilibrium allocations.

Epstein and Peters (1999) show that in common agency models there exists a universal message

space that is rich enough for the agents to communicate their private information as well as the

contracts offered by the principals. They show a kind of revelation principle for these games. That

is, any equilibrium in a communication game with a large enough message space can be imple-

mented as an equilibrium in the game where the agents’ message spaces are the universal message

spaces. Since contracts are contractible in our model, the agents do not need to communicate the

contracts they received.

Peters (2001) and Martimore and Stole (2002) show that a version of the Taxation Principle

holds for common agency games. That is, any equilibrium in any communication game can be

implemented as an equilibrium in a game where the principals offer menus of ordinary contracts.

An ordinary contract is one which maps reports of types to outcomes. The agent then selects items

from the menu of each principal.

Calzolari and Pavan (2006) and Yamashita (2007) develop revelation mechanisms with message

spaces that are simpler than the universal message space of Epstein and Peters (1999). These

message spaces are only rich enough to allow the agents to report a deviation of a principal and

the allocations the agents can induce given the deviations. The significance of these results is that

the simplified message spaces might make it possible to analyze the set of equilibrium outcomes.

7



The results mentioned above lead to characterizations of the implementable allocations only

in special cases. A notable exception is Yamshita (2007) who proves a Folk Theorem in his envi-

ronment if there are at least three agents. The author assumes that agents observe not only their

own contracts but the contracts offered to the other agents too. Yamashita’s Folk Theorem works

as follows. The equilibrium mechanism of a principal asks the agents to report their types and to

vote for a strongly incentive compatible allocation. The mechanism implements an allocation if

it received the majority of the votes. Notice that if each agent votes for the same allocation, the

vote of a single agent becomes irrelevant. Hence, for each strongly incentive compatible allocation,

there is an equilibrium where each agent reports his type truthfully and votes for the allocation. If

a principal deviates and offer a mechanism different from the one described above, the agents vote

for an allocation which is worst for the deviator. Another feature of Yamshita’s Folk Theorem is

that the principals can be pushed down to their maxmin values instead of their minmax values.

This is due to the assumption that each principal is forced to offer a contract which pins down a

single action as a function of the messages of the agents. In particular, a principal is not allowed

to take an action without participating in the contracting game. As we mentioned earlier, this

assumption is with the loss of generality. We use the basic idea in Yamashita (2007) to prove that

if there are at least three agents, the set of allocations implementable by contractible contracts is

the same as the set of allocations implementable by ordinary contracts.

Our paper is also related to the literature on commitment devices. This literature considers

situations where each player can arbitrarily restrict his action space as a function of the restric-

tions of the other players before playing a normal form game. Tennenholz (2006) models the

commitment device space with a set of programs. A program receives the programs of the other

players and outputs an action. Thennenholz (2006) proves a pure-strategy folk theorem for games

with incomplete information. Kalai et. al. (2008) also consider commitment devices in two-player

complete information games and prove a full folk theorem. The authors show how to implement

correlated outcomes by independent randomizations by the players. Peters and Szentes (2008)

analyze Bayesian games with commitment devices and prove a pure-strategy folk theorem. They

use the same formalism as in this paper. In particular, the space of commitment devices is the set

of definable functions.

2 The Model

2.1 The Physical Environment

Assume that each of n principals must choose from a finite set of feasible actions. The actions

available to principal j are Aj and A denotes ×n
j=1Aj . There are k agents. The finite type space

of agent i is T i, and T denotes ×k
i=1T

i. The joint distribution of types is common knowledge.

The payoff to principal j is given by uj : T × A → R. The payoff to agent i is vi : T × A → R.
Principals and agents all maximize expected utility.
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2.2 The Language and the Gödel Coding

We consider a formal language, which is sufficiently rich to allow its user to state propositions in

arithmetic. Furthermore, the set of statements in this language is closed under the finite appli-

cations of the Boolean operations: q, ∨, and ∧. This implies that one can express, for example,
Fermat’s Last Theorem:

∀n, x, y, z {[(n ≥ 3) ∨ (x 6= 0) ∨ (y 6= 0) ∨ (z 6= 0)]→ (xn + yn 6= zn)]} .

In addition, one can also express statements in the language that involve any finite number of free

variables. For example,“x is a prime number” is a statement in the language. The symbol x is

a free variable in the statement. Another example for a predicate that has one free variable is

“x < 4.” One can substitute any integer into x and then the predicate is either true or false. This

particular one is true if x = 1, 2, 3 and false otherwise.

Let L be the set of all formulas of the formal language. Each of its element is a finite string

of symbols. It is well known that one can construct a one-to-one function L → N. Let [ϕ] be the
value of this function at ϕ ∈ L, and call it the Gödel Code of the text ϕ.

Definition 1 The function f : Nk → 2N is said to be definable if there exists a first-order predicate

φ in k + 1 free variables such that b ∈ f (a1, ..., ak) if and only if φ (a1, ..., ak, b) is true.

To understand the definition better, consider the following correspondence: f (n) = {n, n+ 1}
for all n ∈ N. In order to show that this correspondence is definable we have to construct the

predicate required by the previous definition. Let

φ (x, y) ≡ (y = x) ∨ (y = x+ 1) .

Notice that for any pair of integers, a and b, φ (a, b) is true if and only if b is either a or a + 1.

Therefore, the predicate φ indeed defines f .

2.3 The contracting game

The set of feasible contracts is the set of definable mappings from Nn × Nk → 2N. The first n

arguments are the Godel codes of the contracts of all the principals. The next k arguments are

the codes of the messages sent by the various agents. We denote the contract space of Principal j

by Cj , and C = ×n
j=1Cj . The timing of the game is as follows. Principals simultaneously submit

contracts (c1, . . . , cn) ∈ C. These contracts are publicly observable. Then, agents send messages

to the principals. Let mi
j denote the message sent by Agent i to Principal j. Finally, principals

take actions simultaneously from the subsets of their action spaces determined by the contracts

and messages. That is, Principal j can take action aj only if

[aj ] ∈ cj
¡
[c1] , ..., [cn] ,

£
m1
j

¤
, ...,

£
mk
j

¤¢
.
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To make the notation a bit more transparent, we will abuse notation and use actions of the

principals instead of their codes and write cj : Nn × Nk → 2Aj while still thinking of cj as a

definable function.

We restrict attention to pure-strategy perfect Bayesian equilibria (PBE). That is, principals and

the agents are required to play a weak perfect Bayesian equilibrium in every subgame generated by

any contract profile (c1, ..., cn).5 The main result of this paper does not depend on the equilibrium

concept as long as the players play some equilibrium in the subgames generated by the first-stage

contracts. In particular, the set of sequential equilibria would be characterized by essentially the

same constraints.

The restriction to pure strategies is purely for convenience. Allowing mixed strategies has no

substantive consequences on our analysis but makes the notations more cumbersome. We shall

discuss how to extend our results to mixed-strategy equilibria. We also point out that the existence

of an equilibrium is only guaranteed if mixed strategies are allowed.

A deterministic allocation is a mapping from the type profile of the agents to the action profiles

of the principals. Our strategy is to first analyze equilibria in games where contracts are observ-

able but not contractible. These are the communication games analyzed in the common agency

literature. We call these games ordinary contracting games. The analysis of these games leads to

a full characterization of the contractible contracting games. However, these games are interesting

for their own sakes. In the meet the competition example as well as in the example of the intro-

duction, the ability to contract on contracts can lead to inefficient allocations. This is because the

firms can collude through their contracts and behave as a monopoly. The policy implication of this

observation is that prohibiting contracting on contracts might lead to more efficient allocations.

In order to make such a claim, one has to characterize the equilibria of the ordinary contracting

games.

3 Ordinary Contracting Games

The set of ordinary contracts is the set of definable mappings from Nk → 2N. The domain of these

functions are the Godel codes of the messages sent by the agents. Let Dj denote the contract

space of Principal j, and let D = ×n
j=1Dj.The timing of the ordinary contracting game is as

follows. Principals simultaneously select contracts (d1, . . . , dn) ∈ D. These contracts are publicly

observable. Then, agents send messages to the principals,
©
m1, ...,mk

ª ∈ Nnk. Finally, principals
take actions simultaneously, such that, Principal j can take action aj ∈ Aj if

[aj ] ∈ dj
¡£
m1
j

¤
, ...,

£
mk
j

¤¢
.

5 In order to guarentee that these subgames exist, one should describe the game such that the types of the agents

are determined only after the contracts are offered by the principals. This way of modeling the game has no strategic

implications but makes our terminology precise.
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Again, for simplicity we use actions of the principals instead of their codes and write dj : Nk → 2Aj

while still thinking of dj as a definable function. We restrict attention to pure-strategy PBE of

this game.

We characterize the equilibria in these games by describing the best-response constraints of

the principals and the agents. Notice that when an agent decides what messages to send to the

principals, he knows his type and already observed the contract profile of the principals. Hence, the

messages of the agents are functions of these two objects. Let βi : T i×D→ Ln denote the strategy
of Agent i, and let βij denote the jth coordinate of β

i, that is, the message sent to Principal j by

Agents i. Let βj denote the messages received by Principal j, that is,
³
β1j , ..., β

k
j

´
. Principal j’s

action at the last stage of the game can depend on both the first-stage contract profile and the

messages sent to him by the agents. Let αj : Lk×D→ Aj denote the strategy of the principals at

the last stage. Since Principal j’s action must be consistent with his contract, αj (mj , d) ∈ dj (mj)

must hold for allmj ∈ Lk, and for all d = (dj , d−j) ∈ D. As usual, α−j denotes the action profile of

principals other than Principal j, and β−i denotes the message profile of agents other than Agent

i.

The first constraint guarantees that each principal takes an action at the last stage which

maximizes his payoff. For all j, d ∈ D :

αj (mj , d) ∈ arg max
aj∈dj(m)

Et [uj (t, aj , α−j) : d,mj , β, α−j ] (1)

for all mj ∈ Lk and d ∈ D. The expectations are formed according to Bayes Rule if the message

profile sent by the agents,mj , is consistent with their equilibrium behavior. However, PBE imposes

no restriction on the belief of Principal j if mj is off the equilibrium path.6

The second constraint ensures that each agent maximizes his payoff by his message in every

subgame generated by a contract profile. For all i, ti ∈ T i, and d ∈ D,

βi
¡
ti, d

¢ ∈ arg max
mi∈Ln

Et−i
£
vi
¡
t, α

¡¡
mi, β−i

¢
, d
¢¢
: d, ti

¤
. (2)

The last constraint guarantees that no principal wants to deviate from his equilibrium contract

in the first stage of the game. Let (d∗1, ..., d∗n) = d∗ denote the equilibrium contract profile. Then,

for all j:

d∗j ∈ arg max
dj∈Dj

Et

¡
uj (t, α (β)) : dj , d

∗
−j
¢
. (3)

We claim the following

Proposition 1 The strategy profile (d∗, β, α) constitutes a PBE in the Ordinary Contracting Game

if and only if (1), (2), and (3) are satisfies.

6A stronger equilibrium refinement concept imposes restrictions on the beliefs according to which the expectations

are formed in (1), but has no other impact on our characterization result.
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It turns out to be useful to define the set of those allocations that can be implemented in

a subgame generated by some ordinary contract profile. To this end, let σd denote the set of

those (α, β) pairs for which both (1) and (2) are satisfied. Then the set of allocations that can be

implements in some subgame is defined as follows:

A = ©g : T → A : ∃d ∈ D, ∃ (α, β) ∈ σd s.t. g (t) = α (β (t, d) , d)
ª
.

Next, we characterize the set A in terms of the preferences of the agents.

Definition 2 Let gj : T → Aj for all j = 1, ..., n. Then the allocation g = (g1, ..., gn) is strongly

incentive compatible if for all i ∈ {1, ..., k}, ti ∈ T i, and
¡
ti1, ...t

i
n

¢ ∈ ¡T i
¢n
:

Et−i
£
vi
¡
t,
¡
g
¡
ti, t−i

¢¢¢
: ti
¤ ≥ Et−i

£
vi
¡
t,
¡
g1
¡
ti1, t

−i¢ , ..., gn ¡ti1, t−i¢¢¢ : ti¤ .
This definition is the streightforward extention of the standard notion of incentive compoatibil-

ity to a multi-principal setting. Indeed, this definition would coincide with the standard definition

of incentive compatibility if one would require the inequality to hold only for those type vectors,¡
ti1, ...t

i
n

¢ ∈ ¡T i
¢n
, where ti1 = ti2 = ... = tin. Such a constraint would require that no agent can

benefit from mimicking another one of his type. In our multi-principal model, however, we have

to take more complex deviations into account. This is because the messages of the agents are

private, and therefore, an agent can report different types to different principals. Of course, the set

of strongly incentive compatible allocations are also incentive compatible. The following example

shows that the converse is not true.

Examle 1. Suppose that n = 2, k = 1, and A1 = A2 = {a1, a2}. The agent has two equally
likely type, T = {1, 2}. The payoffs to the agent are described by the following matrix:

a1 a2

a1 0 1

a2 1 0

.

The allocation g, where g (i) = (ai, ai) for i = 1, 2, is obviosuly incentive compatible but not

strongly incentive compatible.

Lemma 1 The allocation g : T → A is strongly incentive compatible if and only if g ∈ A.

Proof. Suppose first that g is strongly incentive compatible. Fix an arbitrary element of T , say

td =
¡
t1d, ..., t

k
d

¢
, and consider the following contract of Principal j:

dj

³£
mi
j

¤k
i=1

´
=
©
gj
¡
t1, ..., tk

¢ª
where ti = mi

j if m
i
j ∈ T i and tid otherwise.

Notice that this contract pins down a single action for Principal j as a function of the message

profile of the agents. Hence, the principals do not make any strategic choice in the subgame

generated by (d1, ..., dn). Since g is incentive compatible, truthtelling by the agents constitutes an

12



equilibrium in the subgame. (That is, mj
i

¡
ti, d

¢
= ti for all i, ti and j is an equilibrium.) This

equilibrium obviously implements g.

Suppose now that g ∈ A. This means that there exists a d ∈ D, and strategies of the principals

and the agents, α and β, such that (α, β) ∈ σd and g (t) = α (β (t, d) , d) for all t. In order to prove

that the allocation g is strongly incentive compatible, we have to show that for all i ∈ {1, ..., k},
ti ∈ T i and

¡
ti1, ..., t

i
n

¢ ∈ ¡T i
¢n
:

Et−i
£
vi
¡
t,
¡
g
¡
ti, t−i

¢¢¢
: ti
¤ ≥ Et−i

£
vi
¡
t,
¡
g1
¡
ti1, t

−i¢ , ..., gn ¡ti1, t−i¢¢¢ : ti¤ .
The left-hand side of this inequality is the expected equilibrium payoff of Agent i conditional on ti

in the subgame generated by d. The right-hand side is the expected payoff of Agent i conditional on

ti if he deviates and sends message mi
j

¡
tij , d

¢
to Principal j instead of mi

j

¡
ti, d

¢
. Since (α, β) ∈ σd

these deviations cannot be profitable and hence, the previous displayed inequality holds.

3.1 Examples for Ordinary Contracting Games

For simplicity, we identify the message of an agent with its Godel code in all the examples below.

That is, instead of saying that an agent sends a message whose Godel code is q, we say that the

agent sends the message q. (This does not cause confusion because the encoding is a bijection.)

Next, we show, by examples, that one cannot assume that the equilibrium contracts specify a

single action for a principal as a function of the agents’ messages. The contract dj is said to be

complete if |dj (q) | = 1 for all q, that is, dj is a function from Nk to Aj . Restricting the contracts

to be complete is with the loss of generality for two reasons. Example 2 shows that there are

allocations which cannot be supported with complete contracts, but can be supported otherwise.

Example 3 shows that there are allocations which can only be supported if contracts are required

to be complete.

Example 2. Suppose that n = 2 and k = 1. Assume that the agent’s type space is degenerate,

A1 = A2 = {a, b}, and the payoffs of the principals are defined by the following matrix:

a b

a 2, 2, 0 0, 3, 3

b 1, 0, 0 1, 0, 1

,

where the first and second numbers in each cell describes the payoffs to Principal 1 and Principal

2, and the third number is the payoff to the agent.

Notice that the agent’s payoff is zero whenever Principal 2 takes action a and positive otherwise.

Therefore, whenever he can send a message which triggers action b by Principal 2, he will do so.

In addition, given that Principal 2 takes action b, the agent prefers Principal 1 to take action a

over action b. Consider the allocation (a, a). Principal 2 would like to deviate and take action b.

Such a deviation can be punished by Principal 1 by taking action b. We show that the outcome

(a, a) can be implemented as an equilibrium but cannot be implemented with complete contracts.

13



Define the equilibrium contracts of the principals as follows: d1 (q) = A1 for all q, and d2 (q) = a

for all q. Since these contracts are constants in the messages of the agents, the strategy of the

agent is irrelevant. Principal 1’s strategy is the following. If he observes that Principal 2 offered

a contract which allows taking action b for some reports of the agent, he takes action b, otherwise

he takes action a. Obviously, none of the principals can increase his payoff by offering a different

contract.

Next, we argue that (a, a) cannot be supported by complete contracts. Suppose that (d1, d2)

supports (a, a) and d1 is complete. Then, there exist an q ∈ N such that d1 (q) = a. Then Principal

2 can profitably deviate by offer a contract which specifies action b independently of the agent’s

report. This is because the agent report an q ∈ N to Principal 1 such that d1 (q) = a and the

outcome will be (a, b). This outcome maximizes the agent’s payoff and provides Principal 2 with

a payoff higher than the outcome (a, a) would.

Example 3. Suppose n = 2 and k = 1. Assume that the agent’s type space is degenerate,

A1 = A2 = {H,T}, and the payoffs of the principals are defined by the following matrix:

H T

H 1, -1, -1 -1, 1, 1

T -1, 1, 1 1, -1, -1

,

where the first and second numbers in each cell describes the payoffs of Principal 1 and Principal

2, and the third number is the payoff to the agent. In this example, the two principals are playing

the Matching Pennies Game, and the agent’s payoff is identical to that of Principal 2.

We first show that if each principal is restricted to offer a complete contract then the payoff

profile (−1, 1, 1) can be supported as an equilibrium payoff profile. To see this consider the following
contract of Principal 2: d2 (1) = {H} and d2 (q) = {T} if q 6= 1. Suppose that the complete contract
of Principal 1 is d1. Notice that d1 (1) is either H or L. If d1 (1) = {H} then the agent can send
messages 1 and 2 to Principals 1 and 2 respectively which generates a payoff profile (−1, 1, 1).
Similarly, if d1 (1) = L, the agent can send the message 1 to both principals which again generates

a payoff profile of (−1, 1, 1). Therefore, no matter what the complete contract of Principal 1 is,
the agent can always induce the payoff profile (−1, 1, 1).
Suppose now that the principals are not restricted to offer complete contracts. Then there does

not exist a pure strategy equilibrium in our game, because Principal 1 can always offer a contract

d, such that d (q) = {H,L}. In addition, if we allow mixed strategies, the only equilibrium payoff

profile was (1/2, 1/2, 1/2).

Next we show that one cannot assume that the message space of an agent is his type space.

To be more specific, the next example shows that the cardinality of the range of the equilibrium

contracts must must be larger than the cardinality of the type space of the agent in order to

implement certain allocations.
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Example 3. Suppose that n = 2 and k = 1 and the type space of the agent is degenerate.

The principals are playing the Prisoner’s Dilemma. That is, A1 = A2 = {C,D}, and the payoffs
are defined by the following matrix

C D

C 2, 2, 3 0, 3, 1

D 3, 0, 1 1, 1, 2

.

Again, the first two numbers are the payoffs to the principals and the third one is the payoff to the

agent. Notice that the agent prefers the principals to cooperate to everything else, but prefers them

to defect to (C,D) and (D,C). The agent has no private information in this example. Hence, if

the action profile (C,C) could be implemented such that the message space of the agent is his type

space then (C,C) would be supported as an equilibrium outcome by contracts which do not depend

on the report of the agent. We show that this is impossible although (C,C) is implementable.

Suppose that d1 and d2 implement (C,C) and di (q1) = di (q2) for all q1, q2 ∈ N and i ∈ {1, 2}.
If d1 (q) = {C} for all q, Principal 2 can profitably deviate by offering a contract that specifies {D}.
Hence, d1 (q) = d2 (q) = {C,D} for all q, which implies that the Principals play the Prisoner’s
Dilemma in the last stage of the game, and therefore, {C,C} cannot be implemented.
Now, we show that we can implement {C,C} with the help of the agent. Consider the following

contract

di (q) =

(
C if q = 1,

D if q 6= 1.
The strategy of the agent is defined such that he triggers (C,C) whenever he can. In particular, on

the equilibrium path, the agent reports 1 to each principal. The agent has no incentive to deviate

because his payoff if maximized. If one of the principal deviates, and offers a contract such that

the agent cannot induce the action C, the agent reports 2 to the other principal and the outcome

would be {D,D}.

4 Contractible Contracting Games

This section is devoted to the characterization of the equilibria in the contractible contracting

game. We prove a Folk Theorem and show that an allocation is implementable if and only if it

is strongly incentive compatible and the payoff of each principal is larger than his minmax value,

to be defined later. To see that the allocation must be strongly incentive compatible, we first

argue that any contract profile generates an ordinary contract profile. To this end, suppose that

(c∗1, ..., c∗n) is an equilibrium contract profile. For each j, define d∗j ∈ Dj , such that d∗j (l1, ..., lk) =

c∗j ([c
∗
1] , ..., [c

∗
n] , l1, ..., lk) for all (l1, ..., lk) ∈ Nk. Notice that d∗ = (d∗1, ..., d∗n) is an ordinary contract

profile and the subgame generated by c∗ in the contractible contracting game is the same as the

subgame generated by d∗ in the ordinary contracting game. Since players are required to play an

equilibrium in the subgame generated by the first-stage contract profile, we can conclude that any
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allocation that can be implemented as a PBE in the contractible contracting game must belong to

A. Therefore, by Lemma 1, the allocation must be strongly incentive compatible.
The difficult part of the theorem is to pin down the minmax values of the principals. The

minmax value of Principal j is the lowest possible value what he can get in the ordinary contracting

game if the goal of the other principals at the first stage of the game is to minimize his payoff. We

shall prove that the minmax value of Principal j (∈ {1, ..., n}) , uj , is defined as follows:

uj = min
d−j∈D−j

max
dj∈Dj

min
(α,β)∈σ(dj,d−j)

Et (uj (t, α (β)) : (dj , d−j)) . (4)

The meaning of this expression can be explained as follows. All the principals other than Principal

j offer ordinary contracts at the first stage of the game in order to minimize the payoff of Principal

j. Principal j also offers an ordinary contract which is a best response to the contracts of the

others. These contracts generate a subgame in which there can be multiple equilibria. In this

subgame, the principals and agents play an equilibrium which is the worst one for Principal j.

The fact that Principal j can only be punished by playing the worst equilibrium in the subgame

is obvious because PBE requires the players to play an equilibrium in any subgame generated by

a contract profile. The nontrivial part of our main result is the definition of uj . As we explained

at the beginning of this section, the equilibrium contracts and a first-stage deviation of Principal

j determines an ordinary contract profile. The formula in (4) essentially says that the ordinary

contract profile of the principals other than Principal j does not depend on the deviation of

Principal j, and hence, Principal j can best-responde to it. Since contracts are contractible, the

ordinary contract profile of the principals other than Principal j can depend on the deviation of

Principal j. Therefore, one might conjecture that the principals might be able to push Principal

j’s value below uj . For example, if Principal j would be restricted to offer ordinary contracts then

the others could always offer contracts which are contingent on the ordinary contract of Principal

j. Being able to offer these contingent contracts, is similar to being able to move after observing

Principal j’s contract, and hence, his lowest value would be

max
dj∈D

min
d−j∈D−j

min
(α,β)∈σ(dj,d−j)

Et (uj (t, α (β)) : (dj , d−j)) .

Of course, Principal j is not restricted to offer ordinary contracts, and his contract can be contingent

on the contracts offered by the other principals, which are contingent on his contract etc. In fact,

because of this infinite regress problem, it is not even clear that the lowest value of Principal j is

well-defined.

Nevertheless, we show that this value is well-defined and, interestingly, the most severe pun-

ishment inflicted on Principal j can be assumed to be invariant to his deviation. To be more

specific, Proposition 2 shows that no matter what the contract profile of the principals is, there

always exists an ordinary contract profile d−j ∈ D−j , such that for all dj ∈ Dj , there is a way

for Principal j to write a contract so that the generated ordinary contract profile is (dj , d−j). But
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then it is without the loss of generality to assume that the principals use the ordinary contract

profile d−j to punish Principal j.

We are ready to state our main result formally.

Theorem 1 An allocation g : T → A is implementable as an equilibrium in the contractible

contracting game if and only if (i) g ∈ A, and (ii) for all j ∈ {1, ..., n}

Etuj (t, g (t)) ≥ uj.

We break the proof of the theorem into two parts. The if part is based on the same arguments

as the ones used in the example of the introduction. We shall construct cross-referential contracts

which support the desired allocation. Essentially, the contract of Principal j (for all j) specifies

target codes, one for each of the other principals. If the Godel code of the contract of Principal

q is the same as his target code for all q, then Principal j cooperates. If Principal q deviates, and

the code of his contract is different from his target code, the contract of Principal j prescribes

an ordinary contract which is used to minmax Principal q. The set of equilibrium contracts are

cross-referential because the Godel code of Principal j’s contract, which we have just described, is

exactly the same as his target codes specified in the contracts of all the other principals.

Recall two pieces of notations from the introduction. First, if l ∈ N then < l > denotes the

text whose Gödel code is l. That is, [< l >] = l. Second, for any text ϕ, let ϕ(l1,...,ln) denote

the text where if the letter xq stands for a free variable in ϕ then xq is substituted for lq in ϕ for

q = 1, ..., n. For example, if ϕ is “x1 < x2”, l1 = 1, and l2 = 2 then ϕ(l1,l2) is 1 < 2.7

Consider now the following text in n free variable: < xq >(x1,...,xn), where q ≤ n. Since the

Godel coding is a bijection < lq > is a text for each lq ∈ N. Since ϕ(l1,...,ln) is defined for all ϕ
and (l1, ..., ln) ∈ Nn, < lq >(l1,...,ln) is a text for all (l1, ..., ln) ∈ Nn. It is a well-known result in
Mathematical Logic that if f (l1, ..., ln) =

£
< lq >

(l1,...,ln)
¤
, then f is a definable function.

Proof of the “if” part of Therorem 1. Since the allocation g is in A there exists an ordinary
contract profile d∗ = (d∗1, ..., d∗n), a strategy profile of the agents, β

∗ =
³
β1∗, ..., βk∗

´
, a third-stage

strategy profile of the principals, α∗ = (α∗1, ..., α∗n), such that g (t) = α∗ (β∗ (t, d∗) , d∗) and both

(1) and (2) are satisfied, that is, (α∗, β∗) ∈ σd
∗
. In addition, let dqj denote the contract of Principal

j which he uses to minmax Principal q. That is, the contract profile dq−q solves

min
d−q∈D−q

max
dq∈Dq

min
(α,β)∈σ(dq,d−q)

Et (uq (t, α (β)) : (dq, d−q)) . (5)

Consider the following text of Principal j, cx1,...,xnj , in n free variables:

cx1,...,xnj

³
([cl])

n
l=1 ,

¡£
mi
j

¤¢k
i=1

´
=

7Of course, it is possible that the text ϕ does not contain some of the letters {x1, ..., xn}. In that case, there is
no substitution for the missing letters in ϕ(l1,...,ln). For example, if ϕ is “x2 > 2”, then ϕ(3,4) is “4 > 2”, because

x1 does not appear in ϕ.
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 d∗j
³¡£

mi
j

¤¢k
i=1

´
if |©l : £< xl >

(x1,...,xm)
¤ 6= [cl] ª | 6= 1,

dqj

³¡£
mi
j

¤¢k
i=1

´
if
©
l :
£
< xl >

(x1,...,xn)
¤ 6= [cl] ª = {q} , (6)

for all
£
mi
j

¤k
i=1
∈ Nk. This expression (6) is not a contract, but rather a contract with free variables.

However, cx1,...,xnj would become a contract if the free variables x1, ..., xn are replaced by integers.

Each of these contracts with free variables has a Godel code, so let γj =
£
cx1,...,xnj

¤
. The functions©

c
γ1,...,γn
i

ª
i
have no free variables, so they constitute a set of contracts. Notice that

c
γ1,...,γn
j

³
([cl])

n
l=1 ,

¡£
mi
j

¤¢k
i=1

´
(7)

=

 d∗j
³¡£

mi
j

¤¢k
i=1

´
if |©l : £< γl >

(γ1,...,γm)
¤ 6= [cl] ª | 6= 1,

dqj

³¡£
mi
j

¤¢k
i=1

´
if
©
l :
£
< γk >

(γ1,...,γm)
¤ 6= [cl] ª = {q} . (8)

The contract cγ1,...,γnj is definable because d∗j , d
q
j and f (l1, ..., ln) =

£
< lq >

(l1,...,ln)
¤
are all defin-

able. Observe what happens when Principal q offers contract cγ1,...,γnq for all q = 1, ..., n. Principal

j needs to check whether the Godel code of < γl >
(γ1,...,γm) is equal to the Godel code of cγ1,...,γnl .

The integer γl is the Godel code of the contract with free variable c
x1,...,xn
l . Principal j’s contract

says to take this contract with free variable, fix the free variables at γ1, ..., γn (which gives the

contract cγ1,...,γnl ), then evaluate its Godel code. This is what is to be compared with the Godel

code of the contract offered by Principal l. Of course, if Principal l offers cγ1,...,γnl these are the

same. In fact, if Principal l offers cγ1,...,γnl for all l ∈ {1, ..., n}, then Principal j ends up with
the ordinary contract d∗j according to the first line of (7). Therefore, if Principal j offers contract

c
γ1,...,γn
j for all j then the resulting subgame is generated by the ordinary contract profile d∗. Define

the strategies of the agents and the principals as β∗ (t, d∗) and α∗ (d∗) . These strategies obviously

support the allocation g. It remains to specify the strategies of the players off the equilibrium path

and show that no player can profitably deviate.

Next we define the second-stage strategies of the agents and the third-stage strategies of the

principals off the equilibrium path. (It is enough to define these strategies in subgames which are

resulted from a deviation of a single principal.) Suppose that Principal q offers a contract cq instead

of cγ1,...,γnq . Let dq denote cq
³
[cq] ,

¡£
c
γ1,...,γn
j

¤¢
j 6=q

´
. As a result of this deviation, according to the

second line of (7), Principal j will end up with the ordinary contract dqj for all j 6= q. Therefore, the

subgame resulting from the deviation of Principal q is generated by the ordinary contract profile

d =
¡
dq, d

q
−q
¢
. Define the strategies of the agents and the principals, α (d) and β (d), so that the

expected payoff if Principal q is minimized. That is, (α (d) , β (d)) solves

min
(α,β)∈σd

Et (uq (t, α (β)) : d) . (9)

Finally, we argue that neither the principals nor the agents have incentives to deviate from

the equilibrium strategies. First, if Principal j offers contract cγ1,...,γnj for all j then no player

can profitably deviate in the subgame is generated by the ordinary contract profile d∗ because

(α∗, β∗) ∈ σd
∗
. In fact, we have defined the strategies of the players, α (d) and β (d), in any
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relevant subgame generated by an ordinary contract profile, d, such that (α, β) ∈ σd. Therefore,

we only have to show that no principal can profitably deviate at the first stage of the game. Recall

that if Principal q offers the contract cq instead of c
γ1,...,γn
q , then his payoff is (9). Hence, the

maximum payoff he can achieve by deviating from his equilibrium contract is

max
dq∈Dq

min
(α,β)∈σ(dq,d

q
−q)

Et

¡
uq (t, α (β)) :

¡
dq, d

q
−q
¢¢
.

By (5), the previous expression can be rewritten as

min
d−q∈D−q

max
dq∈Dq

min
(α,β)∈σ(dq,d−q)

Et (uq (t, α (β)) : (dq, d−q)) = uq.

This implies that Principal q can achieve at most uq by deviating at the first-stage. Therefore, by

(ii) of the hypothesis of the theorem, no deviation is profitable.

Next, we turn our attention to the more difficult “only if” part of the proof. Let Gd denote the

subgame generated by the ordinary contract profile d ∈ D.

Definition 3 The subgames Gd and Gd0 (d, d
0 ∈ D) are said to be equivalent, Gd ∼ Gd0 , if the set

of equilibrium outcomes are the same in the two subgames.8

The next proposition states that for all c−j ∈ C−j there exists a d−j ∈ D−j such that for all

dj ∈ Dj , Principal j can write a contract so that the subgame generated by the contract profile is

equivalent to G(dj ,d−j). That is, no matter what the equilibrium contracts are, there always exists

an ordinary contract profile d−j , such that Principal j can induce a subgame G(dj ,d−j) for all dj
by an appropriate deviation. This implies that it is without loss of generality to assume that the

contractual punishment for any deviation by Principal j is simply d−j . That is, the punishment

does not depend on the deviation itself, only on the identity of the deviator.

To state this result formally, for all c = (c1, ..., cn) ∈ C let d (c) ∈ D denote the ordinary

contract profile generated by c. That is, dj (c) = cj ([c1] , ..., [cn]) for all j ∈ {1, ..., n}.

Proposition 2 Let c = (c∗1, ..., c∗n) ∈ C. Then, for all j there exists a d−j ∈ D−j, such that for

all dj ∈ Dj there exists a cj ∈ Cj such that G(dj ,d−j) ∼ Gd(cj ,c∗−j)
.

Proof. See the Appendix.

This proposition is key to the “only if” part of the theorem. Since the proof of the proposition

is lengthy and technical it is relegated to the Appendix. Here, we sketch the proof for the case

where there are two principals and there are no agents. Since there are no agents, and therefore

the restrictions on the action spaces cannot depend on the messages, a contract of a principal is

just a definable mapping from the codes of the contracts to the subsets of the codes of the action

8Whether or not two subgames are equivalent depends on the particular equilibrium concept. However, it will

become clear from the way this difinition is used that our results do not depend on the refinement concept.
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space of the principal. Similarly, and ordinary contract is a subset of the codes of the action space

of a principal. For all d1 ∈ D1, define

S (d1) = {d2 : ∃c1 c1 ([c1] , [c∗2]) = d1, c
∗
2 ([c1] , [c

∗
2]) = d2} .

That is, S (d1) is the set of those d2s for which Principal 1 is able to offer a contract such that the

generated subgame is G(d1,d2). The statement of the proposition is equivalent to ∩d2∈D2S (d2) 6=
{∅}. Suppose by contradiction that ∩d2∈D2S (d2) = {∅}. This implies that for all d2 ∈ D2 there

exists a d1 such that d2 /∈ S (d1). Therefore, one can construct a function, f :D2 → D1, such that

d2 /∈ S (f (d2)). Since D1 and D2 are finite sets, the funcion f is definable.9 Consider now the

following contract in one free variable:

cx1 ([c2]) = f
³
c∗2
³h
< x >(x)

i´´
.

Let γ denote the Godel code of this contract. Then cγ1 ([c2]) = f (c∗2 ([c
γ
1 ])). Notice that, by the

definition of the function f , c∗2 ([c
γ
1 ]) /∈ S (f (c∗2 ([c

γ
1 ]))). Substituting the previous equality into

f (c∗2 ([c
γ
1 ])) we get

c∗2 ([c
γ
1 ]) /∈ S (cγ1 ([c])) . (10)

On the other hand, by the definition of S, c2 ([c1]) ∈ S (c1 ([c2])) for all c1,c2 . Therefore,

c∗2 ([c
γ
1 ]) ∈ S (cγ1 ([c

∗
2])) . (11)

Of course, (10) and (11) cannot be true simultaneously, and hence, ∩d2∈D2S (d2) 6= {∅}.
We point out that the difficulty of generalizing this argument for the case when there are agents

is that the ordinary contract space of Principal j, Dj , is not finite. Therefore, the function f is not

necessarily definable. The proof in the Appendix takes advantage of the fact that although these

spaces are infinite, the range of any ordinary contract is finite.

Proof of the “only if” part of Theorem 1. We have already established in the text before

the statement of the theorem that g ∈ A. We only have to show that the payoff of Principal j in
every equilibrium is at least uj for all j ∈ {1, ..., n}. Suppose that (c∗1, ..., c∗n) ∈ C is an equilibrium

contract profile. According to Proposition 2 there exists a d0−j ∈ D−j such that Principal j can

generate a subgame which is equivalent to G(dj ,d0−j)
for all dj ∈ Dj . Let β

∗ and α∗ denote the

second-stage equilibrium strategies of the agents and the third-stage equilibrium strategies of the

principals, respectively. Then Principal j’s equilibrium payoff is weakly larger than

max
dj∈Dj

Et

¡
uj (t, α

∗ (β∗)) :
¡
dj , d

0
−j
¢¢ ≥ max

dj∈Dj

min
(α,β)∈σ(dj,d−j)

Et

¡
uj (t, α (β)) :

¡
dj , d

0
−j
¢¢

≥ min
d−j∈D−i

max
dj∈Dj

min
(α,β)∈σ(dj,d−j)

Et (uj (t, α (β)) : (dj , d−j)) = uj .

9The sets D1 and D2 are finite because there are no agents. Therefore an ordinary contract is a restriction on

the actions space. There are only finitely many such restrictions because the action space of each principal is finite.
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Whether an allocation is strognly incentive compatible only depends on the preferences of the

agents. Hence part (i) of the statement of Theorem 1 is a property of an allocation which depends

only on the physical environment. However, the minmax values of the principals are defined in

terms of equilibria in subgames of the ordinary contracting game. It is desirable to characterize

even these minmax values in terms of the physical environment. Next, we show that one additional

assumption leads to such a characterization.

Assumption 1. For all j there exist aj ∈ Aj , a
j
−j ∈ A−j , and Uj : T → R such that

(i) uj (t, aj , a−j) ≥ Uj (t) for all a−j ∈ A−j , and

(ii) uj
³
t, aj , a

j
−j
´
≤ Uj (t) for all aj ∈ Aj .

This assumption is satisfied in many important economic applications. The action aj can

often be thought as a default action of Principal j which allows him not to participate in the

interaction with the agents. If the principals are sellers and the agents are buyers then aj means

that Principal j does not sell his products. If the principals are employers and the agents are

workers then this action corresponds to the choice of not employing any woker. The action profile

aj−j can be interpreted as an action profile of the principals (other than Principal j) which excludes

Principal j from participation. In the buyer-seller example, this can be accomplished by setting

prices so low that Principal j cannot make a positive profit by selling his products. Similarly,

in the employer-worker example, the principals can set wages higher than the productivity of the

workers.

Theorem 2 Suppose that Assumption 1 is satisfied. Then the allocation g : T → A is imple-

mentable as an equilibrium in the contractible contracting game if and only if (i) g ∈ A, and (ii)
Etuj (t, g (t)) ≥ EtUj (t) for all j ∈ {1, ..., n}.

Proof. By Theorem 1, we only have to show that EtUj (t) = uj for all j. Consider first the

following ordinary contract of Principal q (q 6= j):

edq (l1, ..., lk) = ©ajqª for all (l1, ..., lk) ∈ N.
Suppose that Principal q offers dq for all q (6= j). Then Principal q (6= j) ends up taking action ajq

no matter what the messages of the agents and the contract of Principal j. Therefore, by part (ii)

of Assumption 1, the expected payoff of Principal j is at most Uj (t) in every subgame G(dj ,ed−j).
Hence, EtUj (t) ≥ uj .

Now, consider the following contract of Principal j:

edj (l1, ..., lk) = {aj} for all (l1, ..., lk) ∈ N.
Suppose that Principal j offers dj . Then Principal j ends up taking action ajj no matter what

the messages of the agents and the contracts of the other Principals are. Therefore, by part (i)

of Assumption 1, the expected payoff of Principal j is at least Uj (t) in every subgame G(edj ,d−j).
Hence, EtUj (t) ≤ uj .
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Next, we show that if information is complete, our Theorem 1 also leads to a characterization of

the equilibria in terms of the physical environment without any reference to ordinary contracting

games.

Theorem 3 Suppose that |Ti| = 1 for all i. Then the allocation (a∗1, ..., a∗n) = a∗ ∈ A is imple-

mentable as subgame perfect Nash equilibrium if and only if

uj (a
∗) ≥ min

a−i
max
ai

uj (ai, a−i) = u∗j . (12)

A notable feature of this corollary is that whether an allocation is implementable does not

depend on the number and on the preferences of the agents.

Proof. Since information is complete, every allocation is strongly incentive compatible. By The-

orem 1, we only have to show that uj = u∗j . Notice that Principal j can offer the contract dj , such

that dj (q1, ..., qk) = {Aj} for all q1, ..., qk ∈ N. This means that no matter what the messages of the
agents, Principal j can take any of his action in the subgame generated by the contracts. Therefore,

Principal j can best-respond to the action profile of the other principals and can achieve a value

of at least u∗j . This shows that uj ≤ u∗j . In order to prove that uj ≥ u∗j , let a
j
−j =

¡
ajq
¢
q 6=j ∈ A−j

be a solution to mina−j maxaj uj (aj , a−j). Define Principal q’s contract, dq, as dq (l1, ..., lk) = ajq

for all l1, ..., lk ∈ N. That is, no matter what the messages of the agents are, the principals other
than j will take action aj−j . Of course, Principal j can achieve at most u

∗
j , hence, uj ≥ u∗j .

5 Applications and Examples

5.1 Welfare and Policy Implications

Next, we identify environments where the competition among the principals leads to a Pareto

efficient allocations if contracts are not contractible. However, if contracts are contractible, any

efficiency gain generated by the competition can disappear due to the collusion among the prin-

cipals. Therefore, a policy implication of our results is that contracting on contracts should be

prohibited in these environments.

Suppose that k = 1 and Ai = X × P where X is a finite set and P is finite subset of R. If
Principal j takes action aj = (xj , pj) then the payoff to the agent is

v (t, a) = max

½
0, max

i∈{1,...,n}
V (t, xi)− pi

¾
.

The interpretation of this expression is that the agent has the option to opt out and receive

his reservation value, normalized to be zero. Otherwise, the agent’s payoff is determined by the

action taken by a principal which is best for him. This assumption is made so that the single-

principal model is comperable with the multi-principal one. This implies that the agent can only

enter in an exclusive relationship with a principal. In order to resolve ties, we assume that if

V (t, xj)− pj = V (t, xq)− pq and j < q then the agent strictly prefers (xj , pj) to (xq, pq).
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The payoff to Principal j is defined as follows:

uj (t, a) =

(
u (xj) + pj if j = min argmaxq∈{1,...,n} [V (t, xq)− pq] and V (t, xj)− pj ≥ 0,

0 otherwise.

This means that a principal can only achieve a strictly positive payoff if his action maximizes the

payoff of the agent. In addition, his name must be the smallest one among those who maximize

the agent’s payoff.

This model is the discrete version of the standard principal-agent model with adverse selection

where the principal’s payoff does not depend on types. This model has several interpretations.

First, one can think of the agent as a buyer and the principals as sellers. The type of the agent

is his valuation, xj is the quality (or quantity) of the product of Principal j, and pj is the price.

Second, the agent is a potential employee and the principals are employers. The pair, (xj , pj) , is

a labor contract, where pj is the wage and xj specifies other characteristics of the job such as the

number of vacation days, health insurance benefits etc. The type of a worker describes his taste

for the various characteristics of the job. Of course, there are many other interpretations too.

Before we proceed we make a few technical assumptions.

Assumption 2. (i) For all t ∈ T , there exists pc (t) ∈ P such that

(xc (t) ,pc (t)) = arg max
(x,p)∈X×P
u(x)+p≥0
V (t,x)−p≥0

V (t, x)− p,

and (ii) for all x ∈ X : u (x) + minP < 0 < u (x) + maxP .

Part (i) says that there are transfers which implement the Pareto efficient allocation without

violating the participation constraint of the players and the agent’s payoff is maximized subject

to the principals’ participation constraints. Part (ii) says that the transfer can be small (large)

enough so that the payoff of a principal is negative (positive) no matter what action he takes. We

point out that we need these assumptions only because we consider a discrete model, and both

of these assumptions are satisfied in the standard continuous version of our environment. Finally,

notice that (xm,pm) as well as xc (t) are generically unique.

Suppose first that n = 1, that is, the principal has monopoly power. The characterization of the

principal’s payoff maximizing contract is based on the Revelation Principle. Let x, p : T → (X,P )

max
x, p

Et [u (x (t)) + p (t)]

s.t. V (t,x (t))− p (t) ≥ V (t,x (t0))− p (t0) for all t, t0 ∈ T .

and V (t,x (t))− p (t) ≥ 0.

The first constraint is the incentive compatibility constraint and the second one is the participation

constraint of the agent. By part (ii) of Assumption 2, the value of this problem is positive. Let

(xm,pm) denote the solution to this problem.
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The Pareto Optimal outcome is the solution to the following problem:

max
x

Eu (x (t)) + V (t,x (t))

Let xc denote the solution.

Proposition 3 Suppose that Assumption 2 is satisfied. If n > 1, each equilibrium implements xc
in the ordinary contracting game. In the contractible contracting game, there exists an equilibrium

which implements xm.

Proof. Suppose by contradiction that contracts are not contractible and there exists an equilibrium

and t ∈ T , such that xc (t) is not implemented if the agent’s type is t. Since the agent prefers to

contract with the principal with the smallest name, all but Principal 1 receives a payoff of zero

even conditional on the type of the agent. We show that Principal 2 can increase his payoff by

deviation at the contracting stage. Consider the following contract: d (l) = (xc (t) ,pc (t)) for all l.

By part (i) of Assumption 2, the agent with type t, and perhaps with other types too, will interact

with Principal 2, and hence, Principal 2 can achieve a positive payoff. In addition, this payoff is

strictly positive generically.

Suppose now that contracts are contractible. In order to verify that (xm,pm) is an equilibrium

outcome, we verify parts (i) and (ii) of the statement of Theorem 1. To see that (xm,pm) ∈ A,
consider the following ordinary contract:

dm (l) =

(
(xm (t) ,pm (t)) if < l >= t ∈ T,

{(xm (t) ,maxP ) : t ∈ T} if < l >/∈ T.

Consider the subgame where each principal offers the contract dm. Since (xm (t) ,pm (t)) was

incentive compatible, the agent with type t reporting [t] is an equilibrium strategy. Obviously, this

strategy implements (xm (t) ,pm (t)) in the subgame, and hence, (xm,pm) ∈ A. Notice that in
this subgame each principal receives a non-negative payoff. Hence, in order to verify part (ii) of

Theorem 1, it is enough to show that the minmax value of each principal is at most zero. To this

end, consider the following contract:

d (l) =

(
(x,minP ) if < l >= x ∈ X,

X if < l >/∈ X.

Suppose that all principals but Principal j offers this contract. Then the agent can generate any

element from X and pay the smallest transfer. Therefore, by part (ii) of Assumption 2, the highest

payoff Principal j can achieve is zero.

5.2 Comparison Between Ordinary and Contractible Contracts

The next proposition states that the ability to contract on contracts expands the set of imple-

mentable allocations.
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Proposition 4 The set of allocations in the contractible contracting game is larger than in the

ordinary contracting game.

Proof. Suppose that (d∗, β∗, α∗) implements an allocation in the ordinary contracting game. We

construct equilibrium strategies in the contractible contracting game which implements the same

allocation. Define the contract for Principal j, c∗j ∈ Cj , as follows: c∗j
³
([cq])

n
q=1 ,

¡£
mi
j

¤¢k
i=1

´
=

d∗j
³¡£

mi
j

¤¢k
i=1

´
for all c ∈ C and m ∈ Lk. In a subgame generated by the contract profile c,

define the second-stage strategies of the agents as α∗ (d (c) , .), and the third stage strategies of the

principals as β∗ (d (c) , .).

We have to show that the players have no incentives to deviate. First, recall that the subgame

generated by c in the contractible contracting game is the same as the subgame generated by d (c)

in the ordinary contracting game. Since β∗ and α∗ were equilibrium strategies in the ordinary

contracting game, all players play a Weak Perfect Bayesian Equilibrium in every subgame. We

only have to show that principals have no incentive to deviate at the contracting stage. Suppose

that Principal j offers the contract cj instead of c∗j . This deviation results a subgame generated by¡
cj
¡
[cj ] ,

£
c∗−j
¤¢
, d∗−j

¢
. Notice that Principal j could generate the same subgame in the ordinary

contracting game by offering cj
¡
[cj ] ,

£
c∗−j
¤¢
. Since this deviation was not profitable in the ordinary

contracting game, offering cj is not profitable in the contractible contracting game.

The next example shows that the set of allocations implementable by contractible contracting

game can be strictly larger than the set of allocations implementable by ordinary contracts.

Example 5. Suppose that n = 2 and k = 1. Let A1 = {a1, a2} and A2 = {b1, b2}. The type
space of the agent is degenerate. Payoffs are as follows:

b1 b2

a1 2, 1, 0 1, 3, 1

a2 0, 0, 2 0, 0, 3

.

Again, the first and second numbers in each cell are the payoffs to the principals and the third

one is the payoff to the agent. We show that the outcome (a1, b1) cannot be implemented as an

equilibrium of the ordinary contracting game, but can be implemented by contractible contracts.

Suppose that the equilibrium contract profile (d∗1, d∗2) implements (a1, b1). Notice that, given

a1, Principal 2 prefers action b2 to action b1. We show that Principal can profitably deviate by

offering the contract d02 such that d02 (q) = {b2} for all q. If there is a q such that d∗1 (q) = {a2}, the
agent will send such a message, and therefore (d∗1, d∗2) cannot implement (a1, b1). We can conclude

that a1 ∈ d∗1 (q) for all q. Since a1 strictly dominates a2, Principal 1 always takes action a1. Hence,

if Principal 2 offers d02 the outcome will be {a1, b2} which is strictly preferred by Principal 2 to
(a1, b1).

Next, we show that the outcome (a1, b1) can be implemented by contractible contracts. In

order to do so we have to verify that both (i) and (ii) of the statement of Theorem 1 hold. First,

the allocation (a1, b1) ∈ A, because it is an equilibrium in the subgame generated by (d1, d2) where
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d1 (q) = {a1} and d2 (q) = {b1} for all q. Second, we argue that uj ≤ uj (a1, b1) for j = 1, 2.

The action profile (a1, b1) maximizes Principal 1’s payoff, and hence, u1 ≤ u1 (a1, b1). Now, define

Principal 1’s contract, d21, such that as d
2
1 (q) = {a2} for all q. This contract generates a payoff

of zero to Principal 2, no matter what the rest of the strategies are. Since zero is the smallest

possible payoff to Principal 2 we conclude that u2 = 0 < u2 (a1, b1) = 1.

The next proposition identifies some environments where the allocations of the contractible

contracting game and that of the ordinary contracting game are the same.

Proposition 5 Suppose that k ≥ 3. Then the set of allocations in the contractible contracting

game is the same as in the ordinary contracting game.

Notice that Proposition 5 and Theorem 1 imply a kind of Folk Theorem for ordinary contracting

games. This result is similar to the main theorem in Yamashita (2007). The main difference is

that principals can be pushed down to their maxmin values in Yamashita (2007) instead of to

their minmax value as in this paper. This is due to Yamashita’s restriction to complete contracts.

That is, Yamashita forces the principals to participate in the contracting game and specify a single

action as a function of the agents’ messages. This restriction makes it easier for the other principals

to punish. We point out that the proof of this proposition is an adaptation of Yamashita’s idea to

our setting.

Proof. By Proposition 4, we only have to show that any equilibrium outcome in the contractible

contracting game can also be implemented by ordinary contracts. Suppose that (c∗1, ..., c
∗
n) ∈ C

is an equilibrium contract profile and (β∗, α∗) are the corresponding equilibrium strategies of the

agents and the principals at the second and third stages of the game. Recall that d (c∗) denotes

the ordinary contract profile generated by c∗, that is, dj (c∗) = c∗j ([c
∗
1] , ..., [c

∗
n]). According to

the proof of the “if only” part of Theorem 1, it is without loss of generality to assume that if

Principal q deviates at the contracting stage and offers cq, the resulting subgame is generated by

the contract profile
¡
dq
¡
cq, c

∗
−q
¢
, d−qq

¢
. In addition, the strategies of the agents and the principals

in the subgames depend only on these ordinary contracts, but not on the actual deviation.

Next, we construct equilibrium strategies in the ordinary contracting game which implement

the same allocation as (c∗, β∗, α∗). The idea of the equilibrium construction is the following.

Each agent sends a pair of messages to each principal. The first message is used to report a

deviating principal, and the second one corresponds to the message of the agent in the contractible

contracting game. If the majority of the agents report to Principal j that Principal q deviated

then Principal j punishes Principal q by djq. Each agent reports deviations truthfully because

missreporting a deviation by a single agent has no impact. If agents do not report any deviation

then the second messages have the same consequences as in the subgame generated by d (c∗).

Formally, let
¡
lij ,m

i
j

¢ ¡∈ L2 = L¢ denote the pair of messages of Agent i to Principal j. Define the
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ordinary contract of Principal j as follows:

dj

³£¡
lij,m

i
j

¢¤k
i=1

´
=

 dqj

³£
mi
j

¤k
i=1

´
if
¯̄̄n
i : lji = q

o¯̄̄
> k/2,

dj (c
∗)
³£
mi
j

¤k
i=1

´
otherwise.

(13)

The intuition behind this contract is the following. If the majority of the agents report that

Principal q deviated then the messages of the agents are evaluated according to dqj , which is the

contract used by Principal j to punish Principal q in the contractible contracting game. If no

deviation is reported by the majority of the agents then the messages of the agents are evaluated

according to dj (c∗). Define the agents’ strategies as follows. If Principal j offers dj for all j then

Agent i sends the message
¡
0, β∗ij

¡
ti, c∗

¢¢
to Principal j. If Principal j offers dj for all j 6= q,

and Principal q offers dq, then Agent i send the message
¡
q, β∗ij

¡¡
ti, dq, d

q
−q
¢¢¢

to Principal j,

and
¡
β∗iq

¡
ti,
¡
dq, d

q
−q
¢¢¢

to Principal q. The third-stage strategies of the principals are defined as

follows. If Principal q offers dq for all q and
¯̄̄n
i : lji = q

o¯̄̄
< k/2 for all q then Principal j takes

action αj

³£
mi
j

¤k
i=1

, c∗
´
. (According to the second line of (13), this action is consistent with the

contracts.) If Principal q offers the contract dq 6= dq but the other principals do not deviate and¯̄̄n
i : lji = q

o¯̄̄
> k/2 then Principal j takes action αj

³£
mi
j

¤k
i=1

,
¡
cq, c

∗−q
¢´
, where dq

¡
cq, c

∗−q
¢
= dq.

(According to the first line of (13), this action is consistent with the contracts.) The strategies in

the rest of the subgames can arbitrarily defined. Notice that these strategies indeed implement the

same allocation as (c∗, β∗, α∗).

It remained to show that players cannot increase their payoffs by deviating. First, each agent

reports truthfully a deviation by each principal. This is because, given the strategy of the other

agents, any deviation from this strategy would have no effect on the payoffs. Second, we defined

the rest of the strategies in the relevant subgames so that they correspond to the equilibrium

strategies in the contractible contracting game. Therefore, if there was a profitable deviation in

a subgame, then there would be a profitable deviation from (β∗, α∗). Finally, principals cannot

achieve a higher payoff by offering a different contract, because any such a deviation would be

punished the same way as a deviation in the contractible contracting game.

5.3 Incompleteness of Contracts

The following example shows that equilibrium contracts cannot be assumed to be complete even

if contracts are contractible.

Example 6. Suppose that n = 2 and k = 1. The action space of Principal 1 is {x, y}, and
the action space of Principal 2 is {a1, a2, s}. The type space of the agent is {1, 2} and each type is
equally likely. The payoff of Principal 1 is constant zero. The following tables represent the payoffs

to Principal 2 and to the agent, respectively:

t = 1 a1 a2 s

x 1, 1.1 −3, 0.1 0,−1
y 0, 1 −3, 0 1,−1

,

t = 2 a1 a2 s

x −3, 0 1, 1.1 0,−1
y −3, 0.1 0, 1 1,−1
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First, we show that the constant allocation (x, s) can be implemented with incomplete contracts.

Then we show that the same allocation cannot be implemented with complete contracts.

In order to show that the outcome (x, s) is an equilibrium outcome, we have to verify the two

conditions of Theorem 1. The constant action profile (x, s) belongs to A because it is the unique

outcome in the subgame generated by (d1, d2), where d1 (n) = {x} and d2 (n) = {s} for all n. It
remains to show that the minmax value of Principal 2, defined by (4), is weakly smaller than zero.

In order to do so, consider the following contract of Principal 1: d1 (n) = {x, y} for all n ∈ N. We
show that for all d2 ∈ D2, there is an equilibrium in the subgame G(d1,d2) such that the payoff of

Principal 2 is at most zero. We have to analyze four different cases depending on the range of d2.

Case 1. There exist n1 and n2 such that d2 (n1) = {a1} and d2 (n2) = {a2}. Define the agent’s
strategy as follows: m2

1 (1) = n1, m2
1 (2) = n2, and m1

1 ≡ 1. Principal 1’s strategy is to take action
y. These strategies constitute an equilibrium in the subgame G(d1,d2) and result a payoff of 0 to

Principal 2.

Case 2. There exists an n1 such that d2 (n1) = {a1} but there does not exist n2 such that
d2 (n2) = {a2}. Define the agent’s strategy such that m2

1 ≡ n1 and m1
1 ≡ 1. Principal 2’s strategy

is defined as follows. If s ∈ d2
¡
m2
1

¢
then he takes action s, otherwise he takes action a1. Principal

1 always takes action x. These strategies constitute an equilibrium in the subgame G(d1,d2) and

result an expected payoff of minus two to Principal 2.

Case 3. There exists an n2 such that d2 (n2) = {a2} but there does not exist n1 such that
d2 (n1) = {a1}. Define the agent’s strategy such that m2

1 ≡ n2 and m1
1 ≡ 1. Principal 2’s strategy

is defined as follows. If s ∈ d2
¡
m2
1

¢
then he takes s, otherwise he takes action a2. Principal 1

always takes action x. Again, these strategies constitute an equilibrium in the subgame G(d1,d2)
and result an expected payoff of minus two to Principal 2.

Case 4. Suppose that there does not exist ni such that d2 (ni) = {ai} for i = 1, 2. Define the
agent’s strategy such that then m2

1 ≡ n if there exists an n such that d2 (n) = {a1, a2}. Otherwise,
m2
1 ≡ 1. In addition, m1

1 ≡ 1. Principal 2’s strategy is defined as follows. If s ∈ d2
¡
m2
1

¢
then he

takes s, otherwise he takes action a2. Principal 1 always takes action x. These strategies constitute

an equilibrium in the subgame G(d1,d2) and the payoff of Principal 2 is at most zero.

Now we show that (x, s) cannot be implemented with complete contracts. Suppose by contra-

diction that there is an equilibrium implementing (x, s), and Principal 1’s contract is complete.

Let d21 denote the ordinary contract used by Principal 1 to punish deviations of Principal 2. (The

existence of such an ordinary contract is guaranteed by Proposition 2.) The contract d21 is com-

plete because Principal 1’s equilibrium contract is complete. We have to consider two cases. Case

1: There exists an n such that d21 (n) = {x}. Then, consider the following ordinary contract of
Principal 2 : d2 (1) = {a1} and d2 (n) = {a2} if n 6= 1. According to Proposition 2, Principal 2 can
induce a subgame equivalent to G(d21,d2). Then the agent can generate the action profile (x, a1) if

t = 1 and the action profile (x, a2) if t = 2. (He can do so, for example, by sending message n to

Principal 1 and is n and m2
1 (1) = 1 and m

2
1 (2) = 2 to Principal 2. Notice that these action profiles
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the unique maximizers of the agent’s payoff, hence he will generate this outcome in G(d21,d2)
. But

this outcome provides Principal 2 with a payoff of one which is strictly larger then his payoff from

(x, s), and hence, the deviation generating G(d21,d2) is profitable. Case 2: Suppose that d1 (n) for

all n. Then Principal 2 can deviate and generate G(d21,d2) where d2 (n) = s for all n. The outcome

of this subgame is (y, s), which generates a payoff of one to Principal 2. Hence, Principal 2 can

again profitably deviate.

6 Appendix: The Proof of Proposition 2

For all j, di ∈ Di, and m = (mj ,m−j) define

Hdi
j (m) =

©
di
¡
m0
j ,m−j

¢
: m0

j ∈ N
ª
.

Notice that Hdi
j (m) ⊂ 2Ai . Now, consider Hi : Di → 2Ai ×Qk

j=1 2
2Ai defined as

Hi (di) =
n³

di (m) ,H
di
1 (m) , ...,H

di
k (m)

´
: m ∈ Nk

o
.

Lemma 2 Suppose that d, d0 ∈ D and Hi (di) = H (d0i) for all i = 1, ..., n. Then Gd ∼ Gd0 .

Let us assume by contradiction that

∩di∈DiS (di) = {∅} .

Then there exists a function, F : H−i (D−i)→ Hi (Di), such that,

d−i /∈ S (di) (14)

if F (H−i (d−i)) = Hi (di). Now, define a function g : Hi (Di) → Di, such that Hi (g (Hi (di))) =

Hi (Di). Furthermore, define the function f : D−i → Di, such that f (d−i) = g (F (H−i (d−i))).
Notice that the domains of both F and g are finite, and hence, f is a definable function. In

addition,

d−i /∈ S (f (d−i)) , (15)

by (14) and the definitions of F and g. Finally, we are ready to prove the proposition. Define the

following contract for Principal i in one free variable:

cxi ([ci] , [c−i] ,m) = f
³
c−i

³h
< x >(x)

i
, [c−i] ,m

´´
,

for all m ∈ Nk. Let γ denote the Godel code of this contract. Then

cγi ([ci] , [c−i] ,m) = f (c−i ([c
γ
i ] , [c−i] ,m)) . (16)

First, notice that

c−i ([c
γ
i ] , [c−i]) ∈ S (cγi ([c

γ
i ] , c−i)) (17)
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by the definition of the set S. On the other hand, by (15),

c−i ([c
γ
i ] , [c−i]) /∈ S (f (c−i ([c

γ
i ] , [c−i] ,m))) .

This can be rewritten by (16) as

c−i ([c
γ
i ] , [c−i]) /∈ S (cγi ([ci] , [c−i])) .

But this contradicts to (17), and hence, ∩di∈Di
S (di) 6= {∅}.
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