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Abstract

This paper examines circumstances under which subjectivity en-
hances the effectiveness of inductive reasoning. We consider agents
facing a data generating process who are characterized by inference
rules that may be purely objective (or data-based) or may incorpo-
rate subjective considerations. Agents who invoke no subjective con-
siderations are doomed to ineffective learning. The analysis places
no computational or memory limitations on the agents—the role for
subjectivity emerges in the presence of unlimited reasoning powers.
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SUBJECTIVITY IN INDUCTIVE INFERENCE

1 Introduction

1.1 Inductive Inference

Inductive inference is the art of selecting theories based on observations.
It is at the heart of scientific and statistical research, as well as much of
everyday reasoning. The economist who engages in model selection to explain
data, the investor who seeks trends in the behavior of financial markets, and
the executive who plans her next marketing campaign all share the same
question: Given what I’ve seen, which rule (or “theory” or “model”) should
be used to predict future observations?

A first fundamental principle is that one should only consider theories
that have not been refuted by the data. But how should people choose
among the theories that best match the data?

People typically bring subjective criteria to bear in making this choice,
tending to select theories that seem a priori reasonable, intuitive, simple,
elegant, familiar, or that satisfy a variety of other considerations. Why does
such subjective reasoning persist? Would it not be better to base model
selection on objective criteria alone? Perfectly objective inference is presum-
ably impossible, of course—even the purest of classical statisticians must
exercise their judgement when deciding which variables in include in their
models—but shouldn’t we strive to be as objective as possible?

This paper addresses these questions. We explain how and why subjective
criteria are essential to effective reasoning. We conclude that inference cannot
effectively be based on likelihood arguments alone—simply observing that
one theory fits the data better than another is not sufficient to prefer the
former over the latter. Instead, one must also argue that the candidate theory
fares well in terms of consistently applied, subjective auxiliary criteria.

1.2 Examples

A pair of examples will set the stage for our argument.

Example 1: Lisa and Sally, adjusting their commuting habits to a new job,
check whether the bus runs between their home and the office in consecutive
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12-hour periods, observing the pattern

0 1 0 1 0 1,

where a 1 denotes that the bus runs. They are now asked their prediction for
the seventh and subsequent periods. Lisa sees no objective way for translating
these data into a model and hence into a forecast. Anxious to avoid subjective
considerations, she randomly chooses one of the many models consistent with
the data in each of the subsequent periods, leading to a random choice of 0 or
1. Sally similarly sees no objective way of settling on a model, but nonetheless
believes the obvious pattern consistent with these data is “f(n) = 1 iff n is
even.” Who is more likely to be disappointed the next evening, when Sally
drives to work while Lisa happens to wait at the bus stop?

The basic difficulty is that there is an overwhelming multitude of theories
consistent with the data. Lisa’s unguided choice from this sea of possibilities
is essentially an arbitrary choice, ensuring that she learns nothing from her
observations. Sally instead brings some subjective considerations to bear in
choosing a model and making a prediction. We have, of course, heightened
the contrast by choosing a setting in which Sally’s belief seems obvious, while
not even raising the question of why this belief is “right.” It is accordingly
important to note that we identify conditions and a class of subjective beliefs
with the property that any such belief leads to effective learning, no matter
what it is. The key is not that the belief be “correct,” but that it allow Sally
to escape Lisa’s foundering.

Example 2: Lloyd and Sam take a test in which they are asked to extend
the sequence

1 2 4 8 . . . .

Lloyd (like Lisa) has no way of sorting through the various theories consistent
with the data. He realizes that the function

f(n) = 2n−1 (1)

fits the data perfectly well. However, he knows that there are other such
functions, such as

g(n) = −1

3
n4 +

7

2
n3 − 73

6
n2 + 18n− 8,
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that also match the first four observations, in this case predicting that the
next observation be 7 rather than 16. In the absence of an objective way to
choose among f , g, and many other such functions, Lloyd makes an essen-
tially random choice. By contrast, Sam is comfortable in bringing auxiliary
subjective considerations to bear, and finds f more likely to be the correct
rule than is g or any other function. Thus, employing some subjective cri-
teria such as simplicity or elegance, Sam predicts that the next observation
will be 16.

Once again, the set of functions that might have generated the data, and
the set of resulting predictions for the next value, is virtually limitless, leading
to a prediction that is essentially random, unless some subjective considera-
tions are brought into play. As before, we have designed the example so that
Sam’s response seems obvious. However, the important point will again turn
out to be not that Sam happens to be right (or at least we suspect he is), but
rather that he consistently applies some appropriately-structured systematic
way of sorting theories consistent with the data.

It would be easy to extend the list of such examples, making a compelling
case for the pervasiveness of subjective reasoning.

1.3 Results

Our model of inductive inference leads to three conclusions:

• There is no reason to view subjective aspects of inductive inference
as shortcomings that push us away from a goal of being as objective
as possible. Instead, effective induction requires subjectivity. Induc-
tive inference based on objective criteria alone is bound to fail, while
incorporating subjective criteria alongside objective ones can lead to
successful learning. Indeed, effective learning requires a willingness to
sacrifice goodness-of-fit in return for enhanced subjective appeal.

• Not all subjective criteria are created equal—a subjective criterion will
necessarily be effective if and only if it does not treat theories too
asymmetrically. Within this class, however, the content of the subjec-
tive criterion is much less important. A wide variety of criteria can
lead to effective learning.
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• Induction will be effective if goodness-of-fit and subjective considera-
tions are balanced so as to produce some stability in the theories used
to predict future observations. The history of one’s reasoning thus pro-
vides a guide as to how one should juggle contending criteria in future
reasoning.

We begin in Section 3 with a simple deterministic model that conveys the
basic point. Supplementing (objective) likelihood considerations with the
consistent application of a subjective ranking of theories dominates relying on
objective criteria along. This result rests on a simple enumeration argument:
the subjective reasoner will eliminate incorrect theories until she gets to the
correct one, thereafter predicting the environment with precision. To be
effective, the subjective order must treat theories “not too asymmetrically”
in the sense that it allows such an enumeration. In contrast, an agent who
relentlessly chases goodness of fit may well never settle on the correct theory,
being ultimately doomed to predict no better than chance.

Section 4 extends the results to more realistic settings in which the world
about which the agent reasons is random rather than deterministic. Our
result that the agent cannot simply rely on goodness-of-fit comparisons is
strengthened in this environment. It is an optimal strategy for the agent to
regularly reject theories that provide superior fits in favor of less success-
ful but subjectively more appealing ones, for much the same reasons that
statisticians prefer simpler models and scientists prefer more parsimonious
theories in order to avoid the dangers of overfitting their data. To ensure this
subjective strategy is successful, however, it must be coupled with a prefer-
ence for stability. The agent will thus embrace a theory promising enhanced
explanatory power only if it is sufficiently subjectively appealing and has
provided sufficiently good fit for sufficiently long time.

Section 5 discusses extensions and qualifications of our analysis.
This paper complements a vast body of literature in statistics and ma-

chine learning that deals with statistical learning.1 In contrast to this lit-
erature, we are interested in optimal learning without assuming that there
is an underlying probability law from which the learner can sample in an
independent-and-identically-distributed manner. Instead, our main concern

1For example,, the Vapnik-Chervonenkis [16, 17] theory, recently applied to decision
theory by Al-Najjar [2], deals with the rate at which one can simultaneously learn the
probabilities of multiple events.
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is the learning of a pattern that has been selected once and for all at the be-
ginning of time. For example, while statistical learning might be concerned
with the prediction of the weather on a given day, assuming that it follows an
i.i.d. distribution, our main concern would be in determining whether global
warming is underway.2 We are thus interested in a learning problem that is
non-trivial even for deterministic processes.

2 The Model

2.1 Overview

We consider a repeated prediction problem. In each period 0, 1, . . ., an agent
is called upon to predict an observation from the set {0, 1}. The agent
receives a stage payoff of 1 for a correct prediction and 0 for an incorrect one.
The agent’s objective is to maximize the long-run average of her expected
stage payoffs.3

The observations are produced by a data generating process, which is
simply a function from histories into current observations. The agent’s pre-
diction problem would be trivial if she knew the data generating process.
We assume she does not, giving rise to a decision problem under uncertainty,
where the states of the world correspond to the possible data generating
processes.

The agent makes her prediction with the help of theories. A theory, like
the data generating process, is a function from all conceivable histories to
predictions. The agent has a history-dependent preference relation over the-
ories. In each period, she uses this preference relation to select a theory,
which we interpret as her preferred explanation for the history she has ob-
served, which she then uses to make her prediction. This paper studies the
basic problem facing the agent, which is to choose the preference relation

2There are many economic problems that are appropriately modeled as classical statis-
tical learning, while many others involve too few repetitions to make the i.i.d. sampling
a reasonable assumption. For example, one might reasonably describe candidates for
admission to a graduate school as a long sequence of i.i.d. (conditional on observable
characteristics) repetitions. By contrast, when deciding whether to get married, one has a
limited database about oneself and one’s prospective spouse. Similarly, predicting whether
a particular customer will make a purchase falls under the classical theory of statistical
learning, but predicting a stock market crash or a war likely does not.

3The assumption that agents are infinitely patient is relaxed in Section 5.3.
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over theories that will induce her to make payoff-maximizing predictions.

2.2 Formalities

Observations. At the beginning of each period n ∈ {0, 1, . . .}, the agent
observes a profile of variables xn = (x1

n, ..., x
m
n ) ∈ {0, 1}m ≡ X. The agent

then predicts the value of another variable, yn ∈ {0, 1}, to be revealed at
the end of period n. We fix a sequence {xn}n≥0 and conduct the discussion
relative to this sequence, without specifying the process that generated it.4

Indeed, one could simplify the notation by eliminating the xn from the model
altogether, but we find them helpful for interpretations.

A history of length n ≥ 0 is a sequence hn = ((x0, y0), ..., (xn−1, yn−1), xn).
The set of all histories of length n is denoted by Hn = (X × {0, 1})n × X.
The set of all histories is H = ∪n≥0Hn, with h denoting an element of H.

The Data Generating Process. A data generating process is a function
d : H → [0, 1], with d(hn) being the probability that yn = 1 given history
hn. We let D be the set of possible data generating processes, and hence
D ⊂ [0, 1]H . We will often be interested in problems in which the set of
possible data generating processes is a strict subset of [0, 1]H . For example,
we will initially consider the set {d ∈ [0, 1]H | d(h) ∈ {0, 1} ∀h ∈ H} ≡ D0 of
all deterministic data generating processes.

In the course of our discussion, we will consider several possibilities for
the set D. It is useful for future reference to collect the notation for these
various sets in Figure 1.

Predictions. The agent uses theories to make her predictions. A theory
is a function t : H → [0, 1], and hence is simply a candidate data generat-
ing function. Which theory the agent uses depends on the history she has
observed. This history may tell her that some theories are obviously inap-
plicable, while suggesting that others are relatively likely to generate correct
predictions.

4None of our results depends on the characteristics of this data generating process
or on realizations of the data having particular properties. In a more general model,
some of these variables might be determined by the agent, who might decide to perform
experiments and test various theories. Our focus in this paper is on learning without
experimentation.
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D Set of data generating processes
(
⊂ [0, 1]H

)
.

D0 Set of deterministic data generating processes (i.e., with outputs {0, 1}).
DT

0 Set of Turing machines with inputs H and outputs {0, 1}.
DH

0 Set of Turing machines in DT
0 that halt for all h ∈ H.

DB
0 Set of Turing machines in DT

0 with bounded halting time.
Dε Set of data generating processes with outputs {ε, 1− ε}.

Figure 1: Data Generating Processes. In each case, “Set of Turing ma-
chines....” should be read “set of data generating process that can be imple-
mented by a Turing machine....”

The basic characteristic of an agent is a collection of relations {%h ⊂ D×
D; h ∈ H} ≡ % that captures the link between histories and theories. Hav-
ing reached period n and observed history hn, the agent uses %hn to select
a theory thn from the set D.5 The agent then uses the theory thn to predict
the period-n value yn given history hn. If thn(hn) > 0.5, the agent predicts
yn = 1. She predicts yn = 0 if thn(hn) < 0.5, and predicts 0 and 1 with equal
probability if thn(hn) = 0.5.

We assume that, for every h, %h is complete and transitive, and that it
has maximal elements. We define

B%h = {t ∈ D | t %h t
′ ∀t′ ∈ D}

to be the set of “best” theories in the eyes of the agent (characterized by %h)
faced with history h.

Our interest thus centers on the relation %h. Which specifications of %h

will allow the agent to earn high payoffs?

Payoffs. Given a history hn, data generating process d and theory thn , the
probability the next (period-n) prediction is correct is

π(d, thn , hn) = d(hn)thn(hn) + (1− d(hn)) (1− thn(h)) .

5Sections 5.1 and 5.2 examine the implications of allowing the agent’s set of possible
theories to differ from the set D of possible data generating processes. Assuming that the
agent chooses theories from the set D gives rise to a relatively favorable environment for
prediction, by ruling out cases in which the agent cannot conceive of some possible data
generating hypotheses (e.g., chooses from a subset of D), and ruling out cases in which
she considers theories that are necessarily incorrect (e.g., chooses from a superset of D).
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Intuitively, given a data generating process d and a set of theory-selection
relations %, we would like to take the long-term payoff to the agent to be
the limit of the average expected value of these payoffs, or

lim
T→∞

E

{
1

T

T−1∑
n=0

π(d, thn , hn)

}
, (2)

where the expectation E captures the randomness over the histories generated
by d and the randomness in selecting theories under %. However, this limit
need not exist. Let Λ : [0, 1]∞ → [0, 1] be a Banach limit defined on the set of
infinite sequence of numbers in [0, 1]. Then we let the agent’s payoff Π(d,%),
when facing data generating process d and using relation %= {%h}h∈H to
choose theories, be given by the Banach limit of the resulting sequence of
expected values from (2). The key property of Banach limits we need is that

lim inf
T→∞

E

{
1

T

T−1∑
n=0

π(d, thn , hn)

}
≤ Π(d,%) ≤ lim sup

T→∞
E

{
1

T

T−1∑
n=0

π(d, thn , hn)

}
,

and any payoff criterion with this property would suffice for our results.

2.3 The Likelihood Relation

We described Lisa and Lloyd in our introductory examples as being anxious
to use only objective information. This objective information is captured by
the likelihood relation. The likelihood relation chooses theories that fit the
data best. Formally, define the likelihood of theory t given history hn,

L(t, hn) = Πn−1
j=0 [t(hj)yj + (1− t(hj))(1− yj)].

Then the likelihood relation %L ranks theories after any history h by their
likelihood:

∀h ∈ H, t %L
h t
′ ⇐⇒ L(t, h) ≥ L(t′, h).

The likelihood relation thus calls for agents to base their inferences on their
data, and on no other criterion.

In the simplest case, when only deterministic theories are considered, %L
h

boils down to two equivalence classes. All theories that perfectly fit the data
are equivalent, having L(t, h) = 1, and they are all preferred to all theories
that have been refuted by the data, where the latter are also equivalent to
each other and satisfy L(t, h) = 0.
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3 Deterministic Data Processes:

Subjectivity in Inductive Inference

This section uses an elementary deterministic model to show how subjective
criteria can be useful in inductive inference. The key restriction in the model
is contained in the following assumption, which puts some structure on the
data generating processes. Its first two parts require the set of data generat-
ing processes be simple enough to be learned, and the final part requires it
be rich enough to describe any possible finite sequence of observations. The
latter is intended to rule out trivial cases in which a finite set of observa-
tions suffices to single out a unique theory, i.e., cases where the problem of
induction does not arise.

Assumption 1
[1.1] D ⊂ D0, the set of deterministic data generating processes.
[1.2] D is countable.
[1.3] For every history h ∈ H there exists d ∈ D such that L(d, h) = 1.

Given Assumption 1.1, the remaining requirements are satisfied if D is
the set DH

0 of all Turing machines generating functions d ∈ D0 (i.e., DH
0 is

the set of Turing machines that accept elements of the set H as inputs, halt,
and produce outputs from the set {0, 1}). The countability restriction will
be discussed and relaxed in Section 5.1 below.

3.1 Applying the Likelihood Relation

We now consider the performance of an agent who consistently applies the
likelihood relation %L

h as a guide to making predictions, but applies no other
criteria.

The agent’s choice of theory when using a relation %h and following his-
tory h is unambiguous if B%h is a singleton, but this may often fail to be
the case. What does the agent do if there are a number of theories in B%h?
We assume that the agent treats the various best theories symmetrically, in
the sense that she makes a choice that wherever possible exhibits no bias for
theories that predict 0 versus theories that predict 1 in the next observation.

To make this assumption precise, notice that the set DH
0 of all Turing

machines generating functions d ∈ D0 has the property that for any history
of observations h, and for every data generating process d in DH

0 consistent
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with h, there is another data generating process in DH
0 that is also consistent

with h but whose subsequent datum will be precisely the opposite of d,
generating a 0 whenever d produces a 1 and vice versa. As a result, the sets{
t ∈ B%Lh

| t(h) = 0
}

and
{
t ∈ B%Lh

| t(h) = 1
}

will not only be non-empty

but will be symmetric in their treatment of the next observation. The obvious
implementation of our unbiased-choice provision is then:

Assumption 2 The agent chooses a theory from B%h according to a measure
µB%h

on B%h satisfying

µB%h

({
t ∈ B%h | t(h) < 0.5

})
= µB%h

({
t ∈ B%h | t(h) > 0.5

})
whenever {

t ∈ B%h | t(h) < 0.5
}
,
{
t ∈ B%h | t(h) > 0.5

}
6= ∅.

We then have:

Proposition 1 Let Assumptions 1 and 2 hold. Then Π(d,%L) = 1
2
.

The proof, contained in Section 6, is built on the following observations.
There are always many theories consistent with whatever data the agent has
observed. In particular, after every history, the set of unfalsified theories
available to the agent contains theories that predict a 0 as well as theories
that predict a 1, and leave the agent with no means of choosing between the
two sets of theories. The agent’s choice is thus random, ensuring a long-run
payoff of 1/2. Without some means of eliminating theories, the agent can
thus never predict better than chance. Unfortunately, the data alone provide
no possibilities for such elimination.

3.2 The Subjective Relation

We now consider an agent who, like Sally and Sam in our examples, brings
subjective criteria to bear in choosing between theories. To define such a
theory-selection procedure, we begin with an order 3S⊂ D×D that is defined
a priori, independently of history (and hence is “subjective,” in contrast to
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%h which is a function of h ∈ H).6 We require 3S to be complete and
transitive. In addition, we say that 3S is a discriminating subjective order
if

#
{
t′ ∈ D | t′ 3S t

}
<∞ ∀t ∈ D. (3)

Condition (3) has two important implications. Most obviously, it ensures
that the subjective order’s indifference classes are not too large. The prob-
lem with the likelihood relation is that it leaves the agent with too many
indifferences, in the sense that the agent will be stuck choosing among too
many theories that fit the data. The subjective order will help select between
such indifferent theories, but will be effective only if it does a good enough
job of breaking indifferences. In the absence of condition (3), for example,
the definition of a subjective order would be consistent with the trivial order
3S= D×D, according to which no theory is ranked ahead of another, giving
the agent absolutely no help in choosing between theories. More generally,
(3) rules out cases in which the subjective order is permissive enough to al-
low for infinitely many strategies to be grouped in a single indifference class.
However, (3) does much more than simply limit indifference classes, as we
make clear in Section 3.3.

One natural way to ensure that (3) holds is to enumerate D and set
ti �S ti+1 for every i ≥ 1. Our condition is less demanding, and allows
for non-singleton equivalence classes of the order ∼S, but not for infinite
ones. Nonetheless, under the assumption that D is countable, discriminating
subjective orders are closely related to enumerations of D. Specifically, for
every discriminating order 3S there exists an enumeration D = {t1, t2, ...}
such that ti 3S ti+1, with strict preference �S occurring for infinitely many
i’s. Alternatively, 3S is a discriminating subjective order if and only if it can
be represented by a function C : D → N such that7

t 3S t′ ⇐⇒ C(t) ≤ C(t′) (4)

6In an effort to keep things straight, we use % to denote a relation by which the agent
chooses theories, and 3 to denote a subjective order over theories. We similarly associate
the label “relation” with the former and “order” with the latter (though they have the
same properties, i.e., each is complete and transitive).

7While there are obviously many different enumerations ofD, and hence many functions
C with their induced orders 3S , they cannot be too different in the following sense. Let C1

and C2 be two such functions. Then, for every k there exists l = l(k) such that C1(t) > l
implies C2(t) > k. That is, a theory that has a sufficiently high index according to C1 will
also have a high index according to C2.
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and
|C−1(k)| <∞ ∀k ∈ N.

Given a subjective order 3S, we define the associated subjective relation
%LS for choosing theories as follows:

∀h ∈ H, t %LS
h t′ ⇐⇒

{
{t �Lh t′}

or {t ∼Lh t′ and t 3S t′} .

The relation %LS thus uses the subjective order 3S to choose among those
theories with the highest likelihood. The likelihood and subjective relations
%L and %LS agree in that they only choose theories with maximal likeli-
hoods, with the likelihood relation being indifferent over such theories and
the subjective relation providing the criterion for making this choice.

A discriminating subjective order may still frequently render the agent
indifferent over many theories. The following result does not depend upon
how these indifferences are broken, and hence requires no counterpart of
Assumption 2.

Proposition 2 Let Assumption 1 hold. For every discriminating subjective
order 3S and every d ∈ D, Π(d,%LS) = 1. Hence, for a discriminating
subjective order 3S, the induced subjective relation %LS strictly dominates
the likelihood relation %L.

The agent begins the prediction process with no data, and accordingly
chooses from the first indifference class in her subjective order. This indif-
ference class may not be a singleton, and she may shift among the theories
in the class as data accumulate, even if none are falsified. However, the only
event that will push her outside this indifference class is for each of its el-
ements to be falsified by the data. Moreover, this first indifference class is
finite. If it contains the actual data generating process, the agent will never
be pushed out of this class, and will eventually be limited to a collection of
theories that are observationally equivalent to the data generating process,
ensuring correct predictions. Alternatively, if this indifference class contains
neither the actual data generating process nor any observationally equiva-
lent process, the agent will eventually be pushed into her second indifference
class. Here, we can repeat the same reasoning, continuing until the agent
settles on a theory that makes correct predictions.

12



3.3 Which Subjective Relations Work?

3.3.1 Exploitation and Exploration

What makes the subjective relation work, and what stymies the likelihood
relation? The subjective relation allows effective prediction because it em-
bodies the principles of “exploitation and exploration.” The agent exploits
theories that have worked by sticking with them, while effectively exploring
new theories when necessary. The persistent appeal to the agents’ subjective
order, whatever the order might be, ensures that a theory that fits the data
is not abandoned, while the enumeration provided by the order ensures that
the agent will “try out” all theories (as long as a perfect fit has not been
found). The likelihood relation’s lack of the first characteristic dooms its
adherents to randomness.

3.3.2 Two Examples

The assumption that the subjective order is discriminating plays a role in
ensuring both exploration and exploitation. We illustrate with two examples.

Example 3: Consider a subjective order that ranks any theory predicting
an initial 0 in a single indifference class that comes ahead of all others, and
then enumerates the remaining theories and (strictly) ranks them accord-
ingly. Suppose the actual data generating process produces a 0 in the first
period. Then the agent will never be pushed beyond her first indifference
class. In addition, the subjective relation provides no guidance as to how the
agent should choose from this topmost indifference class, leaving the agent
in the same random-choice predicament as does the likelihood relation. In
this case, the subjective order does not ensure adequate exploitation. The
most obvious purpose of (3), noted just after its introduction, is to preclude
such cases.

Example 4: Suppose the subjective order is based on a lexicographic ac-
counting of 1s. Theory t is ranked ahead of t′ if t predicts a 1 in the first
period and t′ a 0. If they make the same first-period prediction, then t is
ranked ahead of t′ if t predicts a 1 in the second period and t′ a 0. If they
make the same predictions in the first two periods, then t is ranked ahead of
t′ if t predicts a 1 in the third period and t′ a 0, and so on. No two theories
are indifferent under this order, so that exploiting a theory corresponding
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to the actual data generating process, once one has reached it, is assured.
Suppose, however, the data generating process produces a perpetual string
of 0s. The theory corresponding to this outcome ranks below every other
possible theory. The agent will never reach this theory, and indeed will pre-
dict a 1 in every period, earning a payoff of 0 that makes random choice
look inspired. In this case, it is exploration that is lacking. The second
key aspect of (3) is to preclude such possibilities. For every possible theory,
there are only finitely many preferred theories under 3S, ensuring that ex-
ploration guided by 3S will eventually hit upon the data generating process
(or something observationally equivalent), at which point this theory will be
effectively exploited.

3.3.3 An Inertial Likelihood Relation

Suppose we build more effective exploitation into the likelihood relation by
assuming that agents do not abandon a theory until receiving evidence of its
falsity. In particular, the proof of Proposition 1 shows that an agent guided
by the likelihood relation falters because every period there is a multitude
of theories with perfect likelihood scores, including the truth and a host of
imposters. The agent’s arbitrary choice from this set implies that even if
she hits upon the truth, she soon abandons it in favor of another seemingly
equivalent theory. Will it not suffice to assume that the agent sticks to
something that has worked in the past?

The phenomenon of inertia, or a preference for a status quo, is familiar
from casual observations as well as from psychological studies. Kuhn [9]
argued that scientists tend to cling to old theories rather than adopt those
theories that fit the data best. More recently, we see traces of inertia in
the status-quo preference used in behavioral economics. Indeed, we might
think of inertia as another subjective consideration used to supplement the
likelihood relation.

To see if inertia suffices for effective learning, we define the inertial rela-
tion as that selecting the theory chosen in the previous period if the latter
maximizes the likelihood function, and otherwise choosing as does the likeli-
hood relation. Formally, define %LI as follows for all n > 1,

∀h ∈ H, t %LI
h t′ ⇐⇒


{L(t, h) > L(t′, h)}

or
or

{L(t, h) = L(t′, h) and t = tn−1}
{L(t, h) = L(t′, h) and t, t′ 6= tn−1}

,
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with t ∼LIh0
t′ for all t, t′, so that in the absence of any evidence, all theories

are equally likely.
The following example shows that inertia alone does not suffice to ensure

effective learning.

Example 5: Let (for this example only) D consist of the following set of
deterministic theories:{

y ∈ {0, 1}N | ∃n ≥ 0, y(k) = 0 ∀k ≥ n
}
.

The possible data generating processes are thus all those that generate only
0 from some point on. For example, the theories may be describing the
availability of a random resource, which is known to be depletable, but whose
date of ultimate exhaustion is uncertain.

For every hn, let the selection rule over the infinite set B%LIhn
be given by

µB
%LI
hn

(
tn+k

)
=

1

2k+1
k = 0, . . . , (5)

where, for all histories and all k,

tn+k(hn+k) = 1; tn+k(hl) = 0 ∀l 6= n+ k. (6)

Hence, given any history hn, the agent attaches positive probability only to
continuations that feature a single observation of 1 (and otherwise all 0’s),
with probability 1/2k+1 attached to the theory that generates its observation
of a 1 in precisely k periods.

Under this selection rule, theories predicting a 0 on the next step are
equally likely as theories predicting a 1, in accordance with (2). Suppose the
data generating process is such that yn = 0 for all n. Consider %LI

hn
for a

history hn consisting of n 0s. Then given (5)–(6), %LI will choose a theory
whose first 1 appears according to a geometric distribution with parameter
0.5. The expected number of periods for which this theory will match the
observations is

∞∑
i=0

i

2i+1
= 1.
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It is then a straightforward calculation that Π(y0,%LI) = 1/2.8

The difficulty in this example is that the selection rule over the various
sets B%LIhn

routinely ignores the correct theory. Exploitation is assured, but

exploration is not. Proposition (3) shows that inertia can be valuable, in
effect serving as a safeguard against the excessive fickleness of random choice,
if we also take steps to ensure effective exploration.

Assumption 3 There exists a strictly positive measure λ on the countable
set D such that for any h ∈ H, µB%h

equals λ conditioned on B%h.

Proposition 3 Under Assumptions 1 and 3, for all d ∈ D, Π(d,%LI
h ) = 1.

Behind this result lies the observation that, under Assumption 3, the theory
selection process is guaranteed to select the correct theory, d, at least once.
Once d has been chosen, inertia ensures that it will not be abandoned, and
hence the optimal payoff is obtained.

3.3.4 Bayesian

If the set of conceivable data generating processes is countable (cf. Assump-
tion 1) and the agent has a Bayesian prior over this set, then the relation
“has at least as high a prior as” can be viewed as a subjective order—it is
a weak order that is monotonically decreasing along an enumeration of the
theories, with finite equivalence classes. In other words, a Bayesian prior
defines a subjective order. Conversely, one may use a subjective relation to
define a Bayesian prior: theories ranked higher under the subjective order
are considered more likely.

There are a continuum of priors that are consistent with a given subjective
order. These priors are all equivalent in our model, because we suggest that
the agent choose a most-likely theory to generate the next prediction. By
contrast, the Bayesian approach constructs an expected prediction, using all
possible theories.

8We can write the agent’s payoff, at either the beginning of the learning pro-
cess or upon having had a theory falsified and choosing a new one, as V =
limT→∞

∑T−1
i=1 (pi(i− 1) + V ), where pi is the probability that the first 1 under the newly

chosen theory occurs in the ith period. This gives V = limT→∞
∑T−1

i=0

(
1
2i (i− 1) + V

)
and hence V = 1

2 .
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Observe that the Bayesian approach is cognitively rather demanding, be-
cause it requires a quantification of the relative likelihood of all theories, and
therefore also a priori awareness of all theories, whereas the selection of a
single theory for prediction does not require the formulation of alternative
theories that will be used once that theory fails. However, in terms of limit
of the payoff, the selection of a single theory suffices for effective learning.9

4 Random Data Generating Processes:

Likelihood Tradeoffs

The assumption that the data generating process is deterministic (i.e., that
d(h) ∈ {0, 1} for all h) is unrealistic. Worse still, it beclouds the interesting
trade-off between likelihood and subjective considerations in the choice of
theories. So far, the choice of theories was made among the theories that fit
the data perfectly, and thus subjective idiosyncracies involved no cost. But
when random data generating processes are introduced, subjective consider-
ations are no longer a free good, but impose a price in terms of likelihood.
Should the agent be willing to give up a better fit for a subjectively more
appealing theory, and if so, to what extent?

4.1 Uniform Errors

To get some insight into this problem, we begin with a minimal modification
of our benchmark model. Define, for ε ∈ (0, 1/2),

Dε = {d ∈ [0, 1]H | d(h) ∈ {ε, 1− ε} ∀h ∈ H}.

Thus, Dε can be thought of as the deterministic data generating processes,
D0, with an error probability of ε added to the output.

The likelihood function, for a theory t ∈ Dε and a history h ∈ Hn, is

L(t, hn) = Πn−1
j=0 (t(hj)yj + (1− t(hj))(1− yj)).

In the presence of randomness, the likelihood function will inevitably con-
verge to zero for any theory: its largest possible value in period n is (1− ε)n,

9If we are interested in discounted payoffs, then it is relevant to note that the Bayesian
approach will never obtain perfect prediction, because it will always entertain beliefs that
are wrong.
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log(1− ε) = θ(1) Maximum possible limiting value.
(1− ε) log(1− ε) + ε log ε = θ(1− ε) Value achieved by the data generating process.

1
2

log(1− ε) + 1
2

log ε = θ
(

1
2

)
Value achieved by random choice.

Figure 2: Key values of the limiting average-log-likelihood function (7).

since the best any theory can do is attach probability 1− ε in each period to
the outcome that happened to be realized in that period. This convergence
makes the likelihood an awkward standard for comparing theories. It is more
convenient to consider the average of the logarithm of the likelihood function,

l (t, hn) =
1

n
log(L(t, hn))

=
1

n

n−1∑
j=0

log [t(hj)yj + (1− t(hj))(1− yj)] , (7)

which does not converge to zero. We hereafter use “likelihood” to denote the
average log likelihood, given by (7).

Let us say that a theory is “correct” in period t if it predicts a 1 with
probability 1 − ε and a 1 occurs, or if it predicts a 0 with probability 1 − ε
and a 0 occurs. It is helpful to define the function

θ(p) = p log(1− ε) + (1− p) log ε.

Then θ(p) is the (average log) likelihood of a theory that has been correct
proportion p of the time.

A theory that is correct in every period would give likelihood θ(1). This
is the highest possible likelihood. The theory that corresponds to the data
generating process gives a limiting likelihood of θ(1 − ε), and an agent who
always uses the data generating process to predict would achieve payoff 1−
ε.10 Predicting randomly would give likelihood θ

(
1
2

)
and payoff 1

2
. Figure 2

summarizes these observations.
The counterpart of Assumption 1 is now:

Assumption 4
[4.1] D ⊂ Dε.
[4.2] D is countable.
[4.3] For every history h ∈ H there exists d ∈ D such that l(d, h) = θ(1).

10For large n, the likelihood will be approximately(1− ε)(1−ε)nεεn and the average log
likelihood l(d, h) will converge to θ(1− ε).
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Assumption 4.3 indicates that for any finite stream of data, there is a
theory that would have been correct in every period. Ex post, one can
rationalize anything.

4.2 Tolerance in Learning

The agent could once again adopt a relation over theories that first restricts
attention to likelihood-maximizing theories, such as the likelihood relation
%L of Section 2.3 or the subjective relation %LS of Section 3.2. In the random
environment, this ensures that the agent will eventually exclude the data
generating process as a possible theory. In each period, the realization may
differ from the true theory’s prediction with probability ε. Hence, the true
theory will eventually almost surely have a likelihood value lower than θ(1),
whereas there will always be other theories with a likelihood value of θ(1).
That is, insisting on maximum-likelihood theories will lead to constant theory
hopping.

This suggests that the agent’s learning might be more effective if it in-
corporates some tolerance for inaccuracy. For any γ ∈ [0, 1], we say that a
theory t is a “γ-best fit” to the data after history h if

l (t, h) ≥ θ(γ).

The counterpart of the likelihood relation is then

∀h ∈ H, t %L,γ
h t′ ⇐⇒ Lγ(t, h) ≥ Lγ(t′, h)

where
Lγ(t, h) = min{L(t, h), θ(γ)}.

When working with D0, the likelihood relation %L separated theories into
two classes, those that predicted perfectly and those that did not. The key
characteristic of the relation %L,γ

h is that it allows us to group the theories
achieving a likelihood of at least θ(γ) into a single equivalence class.

What would be a good value of γ? One suspects that we should set
γ < 1 − ε, since any value γ > 1 − ε will eventually surely exclude the true
data generating process. However, simply relaxing the likelihood threshold
to γ < 1 − ε does not suffice if one insists on using the likelihood criterion
alone to choose theories. The true theory (if such exists) will not be ruled
out, but there is no guarantee that it be selected. An argument analogous to
that establishing Proposition 1 immediately provides the (omitted) proof of:

19



Proposition 4 Let Assumptions 2 and 4 hold. Then Π(d,%L,γ) = 1
2
.

Intuitively, whatever the value of γ, the agent has a wealth of theories with
likelihoods exceeding θ(γ) from which to choose. In the absence of another
selection criterion, the agent is doomed to random prediction.

Once the agent is willing to pay the price of less than maximum likelihood,
she can afford to use an additional subjective criterion in a meaningful way.
Define

∀h ∈ H, t %LS,γ
h t′ ⇐⇒

{
{t �L,γh t′}

or {t ∼L,γh t′ and t 3S t′} .

The agent thus chooses the subjective order to choose among the γ-best fits.
Under the subjective relation, setting γ > 1 − ε again implies that the

agent will discard the data generating process as a possible theory and subse-
quently hop between imposters. The implications of this switching between
strategies are now not completely obvious. The agent uses here subjective
criteria to choose among the γ-best-fit theories. While the correct theory is
not among them, it is not clear how well their predictions are correlated with
the true data generating process. The following assumption ensures that the
top-rated theories in the subjective order are rich enough to contain theories
that predict 0 and theories that predict 1.

Assumption 5 For a subjective order %LS,γ with γ > 1 − ε and suffi-

ciently large n,
{
t ∈ B%LS,γh

| t(h) = 1− ε
}

and
{
t ∈ B%LS,γh

| t(hn) = ε
}

are

nonempty.

It is not obvious that the subjective relation should have this property.
If, for example, we observe the pattern 00000, it may not be that one of
the theories ranked highest by the subjective order will predict 1. However,
when n is large, the actual data generating process has surely been discarded
by the order %LS,γ

h and any theory amassing a likelihood above γ is surely
a fluke. As a result, it is not clear what a priori information, if any, should
be brought to bear, in which case Assumption 5 may be reasonable. The
(omitted) proof of the following is then immediate:

Proposition 5 Let Assumptions 2, 4.1–4.2 and 5 hold. Let γ > 1−ε. Then
Π(d,%LS,γ) = 1

2
.
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The key point is that setting γ > 1 − ε forces the agent to abandon
any theory that sufficiently often predicts as does the true theory, in the
process placing constraints on the payoff of which the agent can be assured.
Assumption 5 makes these constraints precise, dooming the agent to random
choice.

4.3 Stability in Learning

One virtue of a subjective order in a deterministic environment is that it
prevents the agent from abandoning perfectly good theories. Setting γ < 1−ε
ensures that the data generating process will at least eventually be among
the γ-best fits considered by the agent. This alone, however, does not ensure
effective learning. Selecting the subjectively best of the γ-best fit leaves open
the possibility that the agent may switch back and forth between theories,
where, at each period, one of the theories provides a γ-best fit, but fails to
predict correctly. This is possible if the subjective order selects theories that
tend to be wrong precisely when they are used for prediction, but “catch
up” in terms of the likelihood during periods in which they are not used for
prediction. To see that this learner’s nightmare might come true, consider
the following.

Example 6 Fix γ < (1 − ε) and let d be the data generating process. To
simplify the presentation, but without losing any generality, assume that d
predicts 1 in each period (with probability 1− ε).

We construct k theories, denoted by t1, . . . , tk, which will be ranked at
the top of the subjective order: t1 �S t2 �S . . . �S tk and tk �S t′ for all
t′ /∈ {t1, ..., tk}.

For concreteness, we describe the theories by an algorithm. For n = 0,
ti (h0) = 1 for all i ≤ k. For n > 0, given history hn, every ti (i ≤ k)
computes the predictions of all tj (j ≤ k, j = i included) for all sub-histories
hm of hn (for all m < n). By induction, this is a computable task. Next,
each ti computes l(tj, hn) for all j ≤ k. If none of them has a likelihood
l(tj, hn) ≥ γ, ti predicts 1. Otherwise, ti finds the best (under �S) of the
theories in {t1, ..., tk} with l(tj, hn) ≥ γ. If it is itself, it predicts 0; otherwise,
it predicts 1.

Observe that each theory {t1, ..., tk} basically performs the same algo-
rithm, which simulates the calculations of all previous periods, and halts by
induction. The difference between the predictions of the different theories in
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{t1, ..., tk} arises only out of the very last step of the algorithm, in case some
of them obtain a likelihood value above the threshold.

Observe also that in each period, at least k− 1 of the theories (t1, . . . , tk)
will produce a prediction matching that of d, and—if and only if some reach
the appropriate likelihood threshold—one of these theories will dissent. Let
εn be the proportion of realized 0’s up to time n. The collective number of
correct predictions among the k theories (t1, . . . , tk) in history hn will thus
be at least

[(1− εn)(k − 1)]n,

where εn gets arbitrarily close to ε with arbitrarily large probability as n gets
large. Hence, a lower bound on the number of correct predictions, among
the k theories (t1, . . . , tk) over periods 0, . . . , n− 1 is given by

[(1− ε− δ)(k − 1)]n

for some δ > 0. We can choose n∗ sufficiently large that

δ <
(1− ε)− γ

2

and then k sufficiently large that, for all n > n∗,[
(1− ε− (1− ε)− γ

2
)(k − 1)

]
n > kγn, (8)

or
k − 1

k

(
1− ε+ γ

2

)
> γ.

(Since 1 − ε > γ, such a k exists.) From (8), we see that the theories
(t1, . . . , tk) must have collectively amassed at least kγn correct predictions
for any n > n∗, ensuring that at least one of them must have at least γn
correct predictions, and hence a likelihood of at least θ(γ). As a result, one
of these theories will be used for prediction in every period n > n∗, and by
definition predicts that outcome which appears with probability ε under the
data generating process d. Hence, the agent’s payoff converges to ε.

It may appear as if the theories (t1, . . . , tk) in Example 4 are hopelessly
special, tied closely to the structure of the true data generating process, and
hence that the example is simply a curiosity. While we make no claims for
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the realism of the example, it is important to note that the subjective order
may rank a multitude of collections (t1, . . . , tk) at the top, each allowing an
outcome of the type we have just described for a particular specification of
the data generating processes. For any fixed data generating process d, the
likelihoods of those theories ranked highly by the subjective order that do
not correspond to d will fall until they are irrelevant. The calculations of the
example will then become relevant. While still delicate, the phenomenon in
the example is thus not as special as it may first appear. If we are to achieve
a general result, we must have some additional structure.

The key to addressing this difficulty is to rely on theories that have been
consistently successful at explaining the data, rather than theories that boast
a great likelihood only at the present moment. Formally, let there be given
γ ≤ 1− ε and k ≥ 1. For a theory t and history h ∈ Hn, n ≥ k, define

Γγ,k(t) =
n∑
j=k

δj,

where

δj =

{
1 if l (t, hj) ≥ θ(γ)
0 if l(t, hj) < θ(γ)

(where hj is the j-th prefix of h). Next, define the relations %LS,γk
h for h ∈ H

as follows:

t %LS,γk
h t′ ⇐⇒

{
[Γγ,k(t) > Γγ,k(t

′)]
or [Γγ,k(t) = Γγ,k(t

′) and t 3S t′].

Thus, a maximizer of %LS,γk
h has to be a theory that has obtained an

average log-likelihood of at least θ(γ) as often as possible over the past con-
secutive (n− k + 1) periods. If there are several theories that obtained this
likelihood threshold for the entire period, the maximizer has to be one that
is ranked topmost by the subjective order. If no theory has done as well as
θ(γ) for (n − k + 1) periods (perhaps because k > n)), %LS,γk

h selects the
subjectively-best-ranked among those that have achieved at least θ(γ) for at
least (n− k) periods out of the past (n− k + 1) periods, and so forth.

Clearly, the choice of the parameters γ and k allows a wide range of

relations
(
%LS,γk
h

)
. What should be the values of γ and k and how are they
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determined?11 In particular, different values of ε will call for different values
of γ and k.

4.4 Optimal Tolerance

Suppose first that γ and k are selected a priori, either as a deliberate choice
on the part of the agent or as the result of an evolutionary process that favors
effective values of the tolerance for accuracy γ and the taste for stability k, at
the expense of ineffective values. How much inaccuracy should the reasoner
be willing to tolerate? The critical value 1− ε builds sufficient tolerance for
inaccuracy into the agent’s choices as to ensure effective learning:

Proposition 6 Under Assumption 4, for every discriminating subjective or-
der 3S and for every d ∈ D, Π(d,%LS,γk)→ (1− ε) as γ ↗ 1−ε and k →∞.

We thus find that, in the presence of randomness, augmenting the subjec-
tive order with a preference for stability again enhances the agent’s payoff.
The argument is quite similar to that of Proposition 2. There are only finitely
many theories ranked ahead of the true data generating process d under the
discriminating subjective relation. Setting γ < 1− ε ensures that likelihood
considerations do not exclude d, while pushing γ quite close to 1− ε ensures
that theories whose predictions are quite close to those of d but nonetheless
different are eventually excluded. Finally, as k becomes large, the chances
that one of the theories ranked ahead of d by the subjective order can have
predicted as well as d over any string of k periods becomes negligible. This
ensures that the agent will eventually use a theory other than d to make
predictions only in extraordinarily rare circumstances, giving the result.

We view this result as intuitive. We tend to trust experts who have always
provided good explanations more than experts who have sometimes provided
good explanations. Even if two experts, or theories, reach the same level of
goodness of fit at present, a better history may well be a reason to prefer one
over the other.

Observe that one cannot do away with the subjective order and rely on
stability alone. In the absence of the subjective order, for every history hn
there exists a theory tn such that l(tn, hj) = θ(1) for every j ≤ n. Such a
theory would maximize the likelihood function for each prefix of the history

11Notice that it makes no sense to insist on stability if one sets γ > 1− ε, since we know
that no theory can long sustain a likelihood above 1− ε.
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hn, and would therefore be chosen for prediction. Thus the preference for
stability alone does not provide a safeguard against overfitting the data by
choosing a theory post-hoc.

4.5 Endogenously Determined Tolerance

Proposition 6 suggests that for effective decision making, the optimal toler-
ance level γ must be large, but not too large. Can we expect the agent to
hit upon the optimal level a priori? Instead, the agent need not do so. The
agent’s decisions provide the information required to ascertain an effective
value of the tolerance level γ.

Proposition 7 Let Assumption 4 hold. For every discriminating subjective
order 3S there exists a relation %S∗, independent of ε, such that

(i) for every d ∈ D, we have Π(d,%S∗) = 1− ε
and

(ii) for every t, t′ ∈ D, for large enough n, if Γγ,k(t) = Γγ,k(t
′), then

t %S∗ t′ ⇐⇒ t 3S t′.

The idea behind this result is that an agent who sets a level of γ too high
will soon find herself switching frequently between theories. This switching
can serve as a signal to the agent that she needs to reduce γ. The relation %S∗

essentially adjusts γ in response to such signals until finding the boundary
at which higher values of γ lead to volatile theory choices. The relation
then exploits this boundary level of γ much as would an agent who sets the
boundary value a priori and implements %LS,γk.

The agent who implements %S∗ engages not only in learning but also in
meta-learning. This agent selects theories that provide a γ-best fit and that
fare well under the subjective order, but at the same time, she observes her
own learning process and learns from this process itself. Specifically, the
agent looks at the choices she would have made for various levels of γ and
asks, “What can I learn from the fact that for some levels of γ my learning
process would have continued indefinitely, whereas for others I would have
settled on a specific theory?” The fact that a certain level of γ does not let
the agent converge on a given theory is taken to be an indication that this
level is too high.
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The parameter γ may be viewed as the agent’s aspiration level for the
degree of accuracy of the theory (in the sense of Simon [13]). We can imagine
the agent setting a large value of γ in the hope of finding a theory that is
quite close to the maximal likelihood one. However, if she finds that the
search for such a theory does not result in a stable choice, and that she keeps
bouncing around among theories no matter how large n is, then the agent
may reduce her aspiration level γ. When γ is low enough, the agent will find
a theory that has a higher degree of inaccuracy, but that can be chosen over
and over again. This search for the optimal γ can be viewed as the search
for the optimal aspiration level.

4.6 More General Error Specifications

The arguments behind Propositions 6 and 7 make it clear that nothing
depends on the fixed error rate ε. Let D∗ be the set of data generating
processes with the property that, for every outcome h, there exists a pair
(ρ, ρ ∈ [0, 1/2)× (1/2, 1], such that

lim
T→∞

1

T+(h(n))

T−1∑
n=1

d+(hn) = ρ

lim
T→∞

1

T−(h(n))

T−1∑
n=1

d−(hn) = ρ,

where d+(hn) equals d(hn) if the latter exceeds 1/2 and is zero otherwise,
d−(hn) is analogous for values of d(hn) less than 1/2, T+(h(n)) is the number
of times theory d has produced a prediction exceeding 1/2 on the history hn,
and T−((n)) is analogous for predictions less than 1/2. We are thus assuming
that the average error rate in the data generating process, when predicting
either 1 or 0, converges (though not necessarily to the same limits). If this
is not the case, there is no hope for the agent to identify the appropriate
error rates for effective learning. Then arguments analogous to those giving
Proposition 7 allow us to establish that for every subjective order 3S, there
exists a strategy %S∗ such that the agent’s limiting payoff in periods in which
a 1 is predicted approaches ρ and the agent’s limiting payoff in periods in in
which a 0 is predicted approaches ρ.
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4.7 Smooth Trade-Offs

Our central result is that effective learning couples concerns about a theory’s
likelihood with an auxiliary subjective criterion. Studies of model selection in
statistics and in machine learning often similarly suggest a trade-off between
likelihood and simplicity. Simplicity takes the place of our subjective order
in these criteria, while our lexicographic criterion is typically replaced by a
smooth objective function. For example, the Akaike Information Criterion
(Akaike [1]) is given by

log(L(t))− 2k,

where L(t) is the likelihood function of theory t and k is the number of pa-
rameters used in model t. Related to Kolmogorov’s complexity measure (Kol-
mogorov [7, 8], Chaitin [3], Solomonoff [15]), the Minimal Message Length
criterion (Rissanen [10], Wallace and Boulton [19]) suggests

log(L(t))−MDL(t),

where the MDL(t) is the minimum description length of the theory t. (See
also Wallace [18] and Wallace and Dowe [20].)

The general form of these measures is

logL(t)− αC(t), (9)

where C(t) is a “complexity function” (i.e., a function satisfying the prop-
erties prescribed by (4)) and α a constant determining the relative weights
placed on the likelihood and on the complexity of the theory. Gilboa and
Schmeidler [4] offer an axiomatization of this criterion. In their model the
reasoner has an order over theories given data, akin to %h in our case. Certain
axioms on the way theories are ranked by this relation for different histories
h imply an additive trade-off between the log-likelihood and a parameter of
the theory that may be interpreted as its measure of complexity.

We cannot apply (9), designed to evaluate theories given a fixed set of
data, directly to our setting. As we have noted, the likelihood L(t) inevitably
declines to zero and hence its log decreases without bound as observations
accumulate. This ensures that complexity considerations or any other sub-
jective considerations would eventually play no role in the analysis. We
accordingly examine

l(t, h)− αC(t), (10)
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ensuring that likelihood and complexity considerations remain on a common
footing.12

We can draw a connection between smooth measures such as (10) and
our lexicographic criterion. Fix a complexity function C(t) and parameter
α, and let %α be the resulting order over theories induced by (10). How does
%α compare to %LS, where the latter is based on the subjective order over
theories induced by the complexity function C(t)?

To simplify the discussion, let us restrict attention to a set of data generat-
ing processes DC

ε ⊂ Dε with the property that for any d, d′ ∈ DC
ε , the average

log likelihood ratio l(d′, hn) converges with probability one, when the data
generating process is d. If we did not do this, %α could fall prey to instability
of the type presented in Example 6, and would have to be supplemented by
the type of stability criterion presented in Section 4.3 to be effective. Doing
so would be straightforward, but would clutter the argument.

Proposition 8 Let D ⊂ DC
ε be countable. Then

lim
α→0

Π(d,%α) = 1− ε.

For a fixed α, the criterion L(t) − αC(t) restricts attention to a finite
subset of DC

ε as possible maximizers of L(t) − αC(t), since a theory that is
too complex can never amass a likelihood value large enough to exceed the
value L(t) − αC(t) attained by the simplest theory. Among this finite set,
no theory can consistently achieve a likelihood above 1− ε. If α is too large,
this finite set will exclude the data generating process itself, and all of the
eligible theories may well fall short of likelihood 1 − ε. Smaller values of
α will not exclude the data generating process a priori, but may still lead
to the selection of a simpler theory and an attendant likelihood loss. As α
gets arbitrarily small, we can be assured that the data generating process is
encompassed in the set of eligible theories and that very little likelihood is
sacrificed in the interests of simplicity, leading to a payoff approaching 1− ε.

Notice, however, that Π(d,%0) = Π(d,%L), and hence Π(d,%0) equals
1/2 (given Assumptions 2 and 4.3). In addition, we cannot say a priori how
small α must be in order to ensure that Π(d,%α) is close to 1− ε. We thus
need to make α arbitrarily close to zero, without actually equalling zero.

12In so doing, we move close to criteria such as the Schwarz Information Criterion (also
known as the Bayesian Information Criterion (Schwarz [12])), which retains the additive
trade-off but uses a complexity measure that depends on the number of observations.
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This is just what our lexicographic criterion does. We can accordingly view
the lexicographic criterion as the limiting case of the smooth criteria that
have been offered in the literature.

5 Discussion

This section explores several aspects of our model and results. To keep the
discussion simple, we present formal results in Sections 5.1–5.3 for the case
of a deterministic data generating process.

5.1 Countability

We have assumed the set of data generating processes D is countable. The
countability of D may seem quite restrictive. Indeed, most statistical models
allow continuous parameters, and thereby seemingly refer to uncountable
families of processes. However, our inclination is to be persuaded by Church’s
thesis—if the agent can make a particular set of predictions, then there must
be a Turing machine generating these predictions (Hopcraft and Ullman [6,
Chapter 7]), and hence the set of conceivable data generating processes can
reasonably be taken to be countable.13

But this limitation on the agent’s cognitive abilities need not be shared
by the set of possible data generating processes. To make this distinction,
let D be the set of possible data generating processes, and T the set of
theories of which the agent can conceive. We may then have a set D that is
an (uncountable) superset of T . How will the agent fare then? Worse still,
what if the data generating process is malevolent, using a (noncomputable)
strategy that predicts the agent’s (computable) predictions in order to then

13Alternatively, one may arrive at countability via a more lenient model, in which a
Turing machine (or, equivalently, a PASCAL program) can also perform algebraic opera-
tions on arbitrary real-valued variables, where the actual computations of these operations
are performed by an “oracle” that is not part of the machine’s computation. A stricter
interpretation of computability, which does not resort to “oracles,”would restrict attention
to statistical models in which all parameters are computable numbers. A number x ∈ R is
computable if there exists a Turing machine M that, given the description of any rational
ε > 0, performs a computation that halts, and writes a number M(ε) ∈ Q such that
|M(ε) − x| < ε. All rational numbers are computable, but so is any irrational number
that can be described by a well-defined algorithm, including algebraic irrational numbers
(such as

√
2), e, and π.
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generate unpredicted observations? To investigate this possibility, we retain
the assumption that T ⊂ D0 is countable, but allow D ⊂ D0 to be a superset
of T .

The standard way for the agent to protect himself against a malevolent
data generating process is to randomize. Specifically, for a discriminating
subjective order 3S and for ε > 0, let the relation %LS,ε be defined by
augmenting %LS with a “safety net.” If the average payoff at history hn is
lower than 0.5− ε/ log n, then %LS,ε

hn
= T × T . Otherwise, %LS,ε

hn
=%LS

hn
.

Proposition 9 Let T ⊂ D0 be countable. Let Assumption 2 hold and let T
satisfy Assumptions 1.1 and 1.3 (while allowing D ⊂ D0 to be a superset of
T ). Then %LS,ε weakly dominates %L for every discriminating subjective re-
lation 3S, with %LS,ε performing strictly better for data generating processes
d ∈ T .

We can think of the relation %LS,ε as mimicking the relation %LS as
long as “all goes well.” All will go well, and the use of the discriminating
subjective order 3S will then ensure a payoff approaching unity, whenever
the data generating process is drawn from T . This will also be the case for
many data generating processes drawn from outside the set T . The signal
that things are not going well is an average payoff that dips below 1/2. In
this event, the agent resorts to randomizing equally over predicting 0 and
predicting 1. This ensures a payoff of 1/2, which is at least as large as that
garnered by the likelihood relation. The agent thus effectively learns when
learning is possible, and otherwise does not do worse than if no subjective
considerations entered the prediction process.

5.2 Computability

We have justified the assumption that the set of conceivable theories is count-
able by appealing to computability arguments, in the form of an assumption
that the agent can only implement predictions generated by a Turing ma-
chine. Continuing in this spirit, we now take computability issues more
seriously. Let us first restrict the data generating process to the set DH

0 of
deterministic data generating processes implementable by Turing machines
that halt after every input h ∈ H.

In contrast, we now allow the agent to consider the set DT
0 of all Turing

machines, even those that do not always halt. It is a relatively easy task for
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the agent to enumerate all Turing machines, but it is not an easy task to
check which of them do indeed define a data generating process.14 A model
that respects the agents’ computability constraints must then allow the set
T to include pseudo-theories : all machines that can be written in a certain
language (and therefore appear to define a data generating process), even if
they may not halt for all histories. Clearly, this additional freedom cannot
help the agent: if, at a given history h, the agent chooses a machine that
does not halt for that history, she will never be able to make a prediction
(in which case we take her payoff to be 0). However, “helping” the agent by
assuming that T ⊂ DH

0 would be unreasonable, as it would be tantamount to
magically endowing the agent with the ability to solve the celebrated halting
problem.15

We also restrict the agent to relations % that are computable, in the sense
that for every h ∈ H, the choice made by the relation %h from the set B%h ⊂
DT

0 could itself be implemented by a Turing machine that inevitably halts.
This restriction is a binding constraint for some data generating processes:

Proposition 10 For every computable relation %⊂ DT
0 ×DT

0 , there exists a
data generating process d ∈ DH

0 such that Π(d,%) ≤ 0.5.

Proposition 10 imposes a bound on what can be guaranteed by a com-
putable strategy, in the sense that any such strategy must fare no better
than chance against some data generating processes. The proof consists of
observing that if the agent’s strategy is computable, then one may always
construct a malevolent strategy d that mimics the agent’s computation and
chooses an observation that refutes it.

The malevolent strategy d used to prove Proposition 10 is quite far from
most statistical models. In particular, it is counterintuitive to imagine the
world simulating the agent’s reasoning, not to mention refuting the resulting

14One could simulate the computation of any given machine given input h, but there is
no way to distinguish between computations that take a long time and computations that
never end.

15Formally speaking, the objects of choice for the agent are not theories but descriptions
thereof. A rigorous treatment of this problem would call for the definition of a formal
language and of a means of describing programs in that language. Some descriptions give
rise to well-defined theories (i.e., that halt for every history), whereas others would not.
In such a model, every theory would have infinitely many equivalent descriptions. Thus,
the function that maps descriptions to theories is not defined for all descriptions and is
not one-to-one.

31



belief period after period. Will a more neutral model of the data generating
process allow a possibility result? One way to obtain a more realistic set of
data generating processes is to limit their computations. Specifically, let DB

0

be the set of data generating processes that are implementable by Turing
machines that halt within a bounded number of steps. That is, for d ∈ DB

0

there exists a Turing machine M(d) and an integer K(d) such that, for every
history hn and attendant prediction yn, the computation of M(d) on hn halts
within K(d) steps, producing yn.

The agent is restricted to have a (discriminating) subjective order that is
represented by a computable function C : DT

0 → N, so that

C(t) ≤ C(t′) ⇐⇒ t 3S t′.

Thus, because C is computable, the agent can compute 3S.
The following result adapts subjective-based rankings to the computable

set-up.

Proposition 11 For every computable subjective order 3S⊂ DT
0 ×DT

0 , there
exists a computable relation % with each %h⊂ DT

0 ×DT
0 such that

(11.1) Π(d,%) = 1 for every d ∈ DB
0 ;

(11.2) for every d, d′ ∈ DB
0 there exists N such that, for every n ≥ N and

every h ∈ Hn for which L(d, h) = L(d′, h) ,

d �Sh d′ ⇒ d �h d′.

Proposition 11 ensures the existence of a computable strategy yielding
optimal payoffs, as well as its asymptotic agreement with the (strict part of)
the given subjective ordering 3S over DT

0 .16 The relation % cannot follow
%LS precisely, but it does so for long enough histories. In other words, it is
possible that for a short history the relation % will not reflect the subjective
ranking 3S, but in the long run, any two theories that are equally accurate
but not equally simple will be ranked according to 3S.

Observe that most deterministic statistical models encountered in the
social sciences are in DB

0 . The deterministic version of models such as linear

16In a context focusing on computability, it would be natural to think of d 3S d′ if
the Kolmogorov complexity of d is lower than that of d′, i.e., if d has a shorter minimal
description length than d′. This still leaves some freedom in defining 3S . For instance, one
may choose a description in a given programming language, such as PASCAL, as opposed
to Turing machines, and one may take the description of constant values into account in
the measurement of the description length, or decide to ignore them, and so on.
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regression, non-linear regression, as well as many models in machine learning,
can be described by an algorithmic rule whose computation time does not
depend on the input. A notable exception are time series in economics, where
the model describes the dependence of yn on {yi}i<n, and thus the length of
the computation increases with the length of history, n.

5.3 Impatience

Suppose that the agent has a discounted payoff criterion,

Πδ(d,%) = E

{
(1− δ)

∞∑
n=0

δnπ(d, t̂n, hn)

}
. (11)

We assume the data generating process is chosen according to a probability
measure λ on D.

It is advantageous to use the subjective order provided that the agent is
sufficiently patient. In particular, the (omitted) proof of the following is a
straightforward modification of the arguments used to prove Propositions 1
and 2:

Proposition 12 Let Assumptions 1 and 2 hold, let payoffs be given by (11),
and let 3S be a discriminating subjective order.

[12.1] For every d ∈ D, there is a discount factor δ∗ such that for all
δ ≥ δ∗,

Πδ(d,%LS) > P δ(d,%L).

[12.2] If the data generating process is chosen according to density λ on
D, then there is δ∗ such that for all δ > δ∗,∫

D

Πδ(d,%LS)dλ >

∫
D

Πδ(d,%L)dλ.

5.4 Simplicity

There are many sources of subjective biases that distinguish among theories.
We are especially intrigued by the possibility that a preference for simplicity
may play a role in subjective evaluations. A preference for simplicity is
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among the most universal criteria for theory selection—people tend to prefer
simpler explanations and simpler theories to more complex ones.17

The notion of simplicity raises several fundamental questions: What does
it mean to say that “theory t is simpler than theory t′?” To what extent
can such an ordering be viewed as objective? Where does the ordering come
from in the first place? These questions have been the subject of an immense
literature (e.g., Sober [14]). Importantly, ever since Goodman [5] presented
the “grue-bleen” paradox, it has been evident that the notion of simplicity
is language-dependent and that it eludes obvious definition. Indeed, Kol-
mogorov’s operationalization of the notion of simplicity (Kolmogorov [7],
Chaitin [3]) clarifies that using different languages as primitives can lead to
different simplicity orderings (though there are some limitations on the di-
vergence of different orderings if the relevant languages can be translated
to each other (see Solomonoff [15])). We hope that the framework provided
in this paper may be used to investigate the role of simplicity in inductive
inference.

6 Appendix: Proofs

Proof of Proposition 1 Assumption 1.3 ensures that, for every history
hn there are theories t ∈ D consistent with hn, that is, theories satisfying
L(t, hn) = 1. Consider the set of such theories,

B%Lh
= { d |L(d, h) = 1 }.

For any finite continuation of hn there is a theory t ∈ B%Lh
that is consis-

tent with this continuation. In particular, this is true for the history hn+1

generated from hn and yn = 0 (coupled with xn+1) as well as for the history
h′n+1 generated from hn and yn = 1 (coupled with xn+1). Assumption 2 then
ensures that the order %L is equally likely to select a theory predicting yn = 0
as it is to select a theory yn = 1. Thus, the probability of making a correct
prediction is 1/2, and hence π(d, hn, tn) = 0.5, regardless of the true process
d. This establishes

Π(d,%L
h ) = 0.5.

17This preference for simplicity has been championed on normative grounds (most fa-
mously by William of Occam (see Russell [11])) and has long been offered as a descriptive
model of human reasoning (e.g., Wittgenstein [21]).
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Proof of Proposition 2 Fix d ∈ D. Since 3S is discriminating, there are
finitely many theories in S(d) ≡

{
t ∈ D | t 3S d

}
, i.e., that are ranked ahead

of or indifferent to d by the subjective order 3S. Choose some t ∈ S(d) and
suppose that t and d are not observationally equivalent, meaning that they
do not generate identical outcomes ((x0, y0), ..., (xn, yn), ...). Then at some
period n theory t will be refuted, i.e., the data generating process will produce
a history hn = ((x0, y0), ..., (xn−1, yn−1), xn) for which L(t, hn) = 0 and hence
d �LSh t. Applying this argument to the finitely many theories in S(d), there
must exist a finite time n′ by which either theory d is chosen by %LS

hn′ or some

element t ∈ S(d) is chosen by %LS
hn′ that is observationally equivalent to d.

Thereafter, π(d, tn, hn) = 1 holds. This yields Π(d,%LS) = 1. We conclude
that, for every relation %S derived from a discriminating subjective order
3S, and for every data generating process d, the limit payoff under %LS is 1,
while it is only 0.5 under %L. Hence, %LS strictly dominates %L.

Proof of Proposition 3. Consider an agent characterized by %LI and a
data generating process d. If Π(d,%LI) < 1, it must be that infinitely often,
π(d, tj, hj) = 0. Hence, the agent infinitely often chooses a new theory but
never chooses d. By Assumption 3, the probability that the agent chooses
a new theory n times without choosing d is at most (1 − λ(d))n. Since
limn→∞(1−λ(d))n = 0, the probability that Π(d,%LI) < 1 is zero, and hence
the expected value of Π(d,%LI) is unity.

Proof of Proposition 6. Fix a data generating process d. Assume that
γ satisfies θ(γ) = θ(1 − ε) − δ for δ > 0. For any η > 0, there exists k such
that, with probability 1− η at least, for all n ≥ k,

l(d, hn) > [(1− ε) log(1− ε) + ε log ε]− δ = θ(1− ε)− δ = θ(γ).

Thus, from period k on, it is likely that the correct theory d is among the
γ-maximizers of l(·, hn). If d is the maximizer of %LS,γk used for prediction,
a payoff of (1− ε) is guaranteed. We wish to show that, if another theory is
used for prediction, it cannot be much worse than d itself.

Let us condition on the probability 1 − η event that for every n > k,
l(d, hn) > θ(γ). If a theory t 6= d is used for prediction at period n ≥ k, then
it must be the case that (i) t is a γ-best fit for all periods j = k, ..., n; and
(ii) t 3S d. Hence, for each period n > k, there are only a finite number
of theories satisfying conditions (i) and (ii), of which the highest-ranked
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by the subjective order will be chosen. Moreover, the set of such theories
is decreasing in n (since a theory whose likelihood ratio drops below γ is
subsequently disqualified). Eventually, a period n′ will be reached such that
some theory t (possibly d) satisfying (i) and (ii) will be used in all subsequent
periods. Let n > n′, and let α be the proportion of times, up to n, that t
made the correct prediction. Then, since t is a γ-best fit at n, we have

l(t, h) = α log(1− ε) + (1− α) log ε

= α [log(1− ε)− log ε] + log ε

= α log
1− ε
ε

+ log ε

≥ θ(γ)

= θ(1− ε)− δ
= (1− ε) log(1− ε) + ε log ε− δ
= (1− ε) [log(1− ε)− log ε] + log ε− δ

= (1− ε) log
1− ε
ε

+ log ε− δ.

This gives

α log
1− ε
ε

+ log ε ≥ (1− ε) log
1− ε
ε

+ log ε− δ

or

[α− (1− ε)] log
1− ε
ε
≥ −δ

that is,

α ≥ (1− ε)− δ

log 1−ε
ε

.

Intuitively, the payoff obtained by predicting according to t cannot be much
lower than (1 − ε). Taking into account the probability of convergence by
time k we get

Π(d,%LS,γk) ≥ (1− η)

[
(1− ε)− δ

log 1−ε
ε

]
,

which converges to (1 − η)(1 − ε) as δ ↘ 0. Finally, increasing k results in
decreasing η to any desired degree, and the result follows.
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Proof of Proposition 7. The basic idea is have the agent simulate the
choices of theories that would have corresponded to %LS,γk for different values
of γ and of k. For values of γ larger than 1− ε, the agent will find that the
maximizers of %LS,γk keep changing, indicating that γ is too high. For values
of γ that are lower than 1 − ε, the agent will find theories that get selected
asymptotically, an indication that γ might be too low. By refining the search
for γ, while simultaneously gathering more observations, the reasoner will
approach 1− ε and make predictions according to the correct theory.

We make these ideas precise in the form of a reasoning algorithm that is
simple, but makes no claims to efficiency. At stage n the reasoner considers
as possibilities for γ all values in

Γn =
{ r

2n
| r = 0, 1, ..., 2n

}
.

Given n, define k = xn/2y. For each γ ∈ Γn, and for each m = k, ..., n,
the reasoner finds all the maximizers of %LS,γk

hm
(to make this an algorithm,

we need to assume that an oracle can perform this task). Denote the set of
maximizers for each γ by M(m, k, γ). This is a finite set, due to the agent’s
preference for simplicity. Then, for each γ, define

M∗(n, γ) = ∩k≤m≤nM(m, k, γ).

Thus, M∗(n, γ) contains precisely those theories that have been among the
“γ-best” theories for the past n/2 periods.

If M∗(n, γ) = ∅ for all γ ∈ Γn, define %S∗
hn

= D × D. In this case all
theories are equivalent in terms of %S∗

hn
, and the reasoner’s choice will be

arbitrary.
If, however, M∗(n, γ) 6= ∅ for some γ ∈ Γn, let γn be the maximal such

value in Γn, and define

t %S∗
hn t

′ ⇐⇒


t ∈ M∗(n, γn) and t′ /∈M∗(n, γn)

or t, t′ ∈ M∗(n, γn) and t 3S t′

or t, t′ /∈ M∗(n, γn).

That is, the 3S-most-prefered theories in M∗(n, γn) are considered to be the
“best” theories and one of them will be used for prediction.

To see that the definition of %S∗ satisfies the desired properties, observe
that, by the proof of Proposition 6, if γ > 1 − ε, M∗(n, γ) = ∅ for large n.
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For γ < 1− ε, d ∈M∗(n, γ) for large n. As n→∞, the minimal γ for which
M∗(n, γ) 6= ∅ converges to 1− ε, and d is among the maximizers of %S∗. We
then repeat the argument of Proposition 6, by which any theory t 6= d such
that t ∈M∗(n, γ) obtains a payoff that converges to (1− ε) as γ ↗ 1− ε.

Proof of Proposition 8. Fix a complexity function C(t), a value α > 0,
and a data generating process d∗. Let d̂ ∈ arg mind∈DCε C(d). Then no theory

d for which θ(1)− αC(d) < θ(ε)− αC(d̂) will ever be chosen by the relation
%α, no matter what the history. The agent’s choice of theory in each period
will thus be drawn from the finite set DC

ε (α) ≡ {d ∈ DC
ε : θ(1) − αC(d) <

θ(ε)− αC(d̂)}.
For sufficiently small α, the data generating process d∗ is contained in

DC
ε (α). In addition, with probability 1, the limit limn→∞ l(d, hn) exists for

all d ∈ DC
ε (α). Since this set is finite, with probability 1, the agent’s choice

of theory becomes constant across periods, being the maximizer over DC
ε (α)

of
lim
n→∞

l(d, hn)− αC(d).

But since d∗ ∈ DC
ε (α) for small α, the agent’s payoff is bounded below by

lim
n→∞

l(d, hn)− αC(d) = θ(1− ε)− αC(d∗).

Taking α to zero then gives the result.

Proof of Proposition 9. The relation T × T guarantees a random choice
(by Assumption 1.3), and hence this relation ensures an expected payoff of
0.5 at each period in which it is played. Thus, if %LS,ε = T × T for a
long enough period, the average payoff converges to 0.5 with probability 1.
Moreover, it does so at a rate proportional to n−1/2. It follows that, with
probability 1, the sustained application of relation T ×T leads to a period n
at which the average payoff surpasses the threshold 0.5 − ε/ log n, at which
point %LS,ε switches to %LS.

Suppose d ∈ T . Since %LS,ε=%LS infinitely often, %LS,ε will eventually
select d or a theory equivalent to d. Predictions will subsequently be perfect,
ensuring that %LS,ε will not revert to T × T and that Π(d,%LS,ε) = 1.

If d /∈ T , the lowest the average payoff at history hn can drop without
ensuring %LS,ε= T ×T is 0.5−ε/ log n−1/n (obtained by coupling a history
of length n − 1 in which the payoff is precisely 0.5 − ε/ log(n − 1) with one
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more incorrect observation). Hence Π(d,%LS,ε) ≥ 0.5. Combining the two,
we thus find that Π(d,%LS,ε) ≥ Π(d,%L) for all d ∈ D, with strict equality
for every d ∈ T .

Proof of Proposition 10. Let % be computable. Then there is a Turing
machine τ that implements % by, for any history h, computing a maximizer
of % from the set DH . Let d simulate the machine τ , for any history h,
finding the maximizer th that the agent will use for prediction, and then
generating prediction 1 if th(h) ≤ 0.5 and 0 if th (h) > 0.5. A deterministic t
will result in a payoff of 0. The maximal payoff for the agent at each period
is 0.5, obtained by the random prediction th (h) = 0.5.

Proof of Proposition 11. The basic idea is to construct the relation %
by combining the underlying subjective order 3S with the time complexity
of the machine.

Let DT
0 = {t1, t2, ...} be the class of all Turing machines, including those

that always halt and those that do not halt for certain inputs h ∈ H. There
is no difficulty in writing a machine that generates DT

0 , or, equivalently, that
can accept i ≥ 1 as an input and, after a finite number of steps, provide the
description of ti.

Assume we are given a history h and we wish to select a theory that
has high likelihood and that halts for h. When considering a machine t, we
thus need to determine whether it fits the data, namely whether L(t, hn) = 1
(taking L(t, hn) = 0 if the machine fails to halt for any prefix of hn), and
we need to compute its prediction for yn, or t(hn), taking into account the
possibility that it may not halt when making this prediction. That is, we
need to know the result of n + 1 computations of ti (one to verify that the
theory fits the observation generated in each of the preceding n periods, and
one to generate the current prediction), each of which may not halt.

Let C : D → N be a computable complexity function for the underlying
subjective order 3S, so that

C(t) ≤ C(t′) ⇐⇒ t 3S t′.

Define c : D × H → N ∪ {∞} to be the length of computation, that is,
c(t, h) ∈ {1, 2, ...,∞} is the number of steps that t takes to compute where
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h is its input. Next define a function C∗ : D ×H → R+ ∪ {∞} by

C∗(t, h) = C(t) +
1

n2

n∑
j=0

c(t, hj)

where t ∈ D, h ∈ Hn and hj is the j-th prefix of h. Using this function, we
define our candidate relation over theories:

t′ %h t ⇐⇒
{

L(t′, h) > L(t, h)
or [L(t′, h) = L(t, h) and C∗(t′, h) ≤ C∗(t, h)]

.

We argue that it is a computable task to find a maximizer of %h from
among those machines that halt on history h, and that this maximizer will
have likelihood one. First observe that for every h there exists a machine t
such that L(t, hn) = 1 and C∗(t, hn) <∞. To see this, it suffices to consider
a machine t that generates history hn irrespective of the data. For any
history longer than n, the machine can generate 0. This takes a computation
time c(t, h) = O(n). By construction, t ∈ DB

0 . Since this machine appears
somewhere in the enumeration corresponding to 3S, we have C(t) <∞ and
hence C∗(t, h) <∞.

Given C∗(t, h), there are finitely many machines t′ with C(t′) ≤ C∗(t, h),
and therefore only finitely many machines that can beat t according to %.
Each of these has to be simulated only a bounded number of steps, C∗(t, h),
to see if, indeed, it gives L(t′, hn) = 1 and a lower value for C∗(t′, h).

Note that for all d ∈ DB
0 , c(t, hn) ≤ K(d) and

1

n2

n∑
j=0

c(t, hj) ≤
1

n2
nK(d)→ 0

hence,
C∗(t, h)→ C(t).

Now consider d, d′ ∈ DB
0 with d �S d′ and hence C(d) ≤ C(d′). Then for all

sufficiently large n, C∗(d, hn) < C∗(d′, hn), and hence L(d, hn) = L(d′, hn)⇒
d �h d′. This establishes (11.2).

We now turn to (11.1), namely that Π(%, d) = 1 for every d ∈ DB
0 . For

t′ %h d to hold, we must have L(t′, h) = 1 and C(t′) ≤ C(d). An argument
analogous to that of the proof of Proposition 2 ensures that at some point,
d or a theory equivalent to it is found, and from that point on only such
theories (predicting d(h) for every h) can be maximizers of %. Hence the
agent makes perfect predictions and obtains Π(%, d) = 1.
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