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Abstract 

We explore how firms grow by adding products. In contrast to much of the earlier 

work, our framework allows for separate treatment of product innovation and 

diversification. The context is Japan’s cotton spinning industry at the turn of the last 

century. Introducing innovative products beyond the firm’s previous technologically 

feasible set is a key to firm growth. It provides opportunities to capture vertically 

differentiated product markets while also facilitating growth through horizontal 

expansion within the firm’s technological frontier. This process involves a lot of 

uncertainty, so firms tend to introduce innovative products on experimental basis. In 

long-term outcomes, the right tail of the firm size distribution becomes dominated by 

firms that were able to expand by moving first into technologically challenging 

products and then later applying their newly acquired technical competence to 

horizontal expansion of their product portfolios.
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1. Introduction 

We now know an important mechanism for firms’ growth is expansion of the scope of product 

varieties they offer. Big firms rarely become that way because they had a single, blockbuster product. 

The recent research literature has used multiple frameworks to analyze this process theoretically and 

empirically. One set emphasizes supply-side innovation, where development of new, innovative 

products delivers a whole (sub)market to successful innovators (e.g., Klette and Kortum, 2004; 

Klepper and Thompson, 2006), or productivity determines firms’ range of products (Bernard, Redding, 

and Schott, 2010). Another set focuses on demand-based heterogeneity where firms expand the 

number of varieties in differentiated product markets (e.g., Bernard, Redding, and Schott, 2010; 

Khandelwal, 2010; Hottman, Redding, and Weinstein, 2016). In both cases, firm heterogeneity is 

captured by endowed primitives (productivity, demand appeal, or both) that influence firms’ size, 

scope, and growth rates. This work has typically abstracted from the specific identities of and 

interrelations among a given firm’s product offerings. Instead, product variety scope is typically 

summarized by the number of symmetrically related products the firm makes. 

However, product additions are unlikely to all be the same in reality. Adding a highly 

innovative product may affect growth differently than adding one similar to those the firm has already 

been producing. First, demand and cost effects may be different, as customers’ willingness to 

substitute and firms’ economies of scope are likely to depend on the degree of product similarity. 

Furthermore, and perhaps more importantly in the long run, bolder innovation may result in firms 

acquiring technical or marketing knowledge applicable to subsequent development of other product 

varieties. Thus, it is not just the number of product varieties a firm makes that summarizes its 

heterogeneity but also the nature and interrelation of its differentiated products, such as the vertical 

distance between new and existing varieties.2 

The process of product variety expansion and firm growth through this channel is not well 

understood. In this paper, we employ rich historical firm-level data from the Japanese cotton spinning 

industry at the turn of the last century to take a step toward opening the “black box” of what and how 

firms do to expand their product varieties and grow. The data, explained in more detail below and in 

the appendix, are uniquely suited to examine growth through product variety expansion and its effects 

                                         
2 “If  a firm previously producing air brakes of  various kinds…enters the production of  electronic equipment, it is certainly 
diversifying its productive activities…although it may reduce the varieties of  air brakes produced. … Clearly…for a study 
of  the growth of  firms the type of  diversification and the reasons for it are of  more relevance than the ‘amount’ of  
diversification.” (Penrose, 1959, p. 96) 
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on long-term firm outcomes. One key feature of the data is that we can distinguish between 

introductions of products that lie outside the firm’s current technological frontier from those inside 

the frontier, and we can directly observe the entrepreneurial actions aimed at such introductions. 

We show how innovation along the dimension of new-to-firm vertical product differentiation 

involves facing a “supply-side constraint” and a high degree of uncertainty, because it involves 

installing a new type of capital (machines) and using previously unfamiliar inputs and production 

processes. Vertically innovating firms coped with these hurdles through entrepreneurial 

experimentation (Kerr et al., 2014; Cusolito and Maloney, 2018, Ch. 4) and by recruiting top-notch 

engineering human capital. We further show how such vertical innovation (resulting from 

experimentation in which we can obtain plausibly exogenous variation) led to later horizontal product 

diversification within the firm’s technology frontier. 

This first-vertical-then-horizontal sequencing shapes firms’ paths of product variety expansion 

and growth. We characterize the specific mechanisms through which firms applied the knowledge 

they gained through vertical innovation to spur their horizontal expansions and overall growth. Given 

the relationship and sequencing between vertical and horizontal product expansion, it is perhaps 

unsurprising that we also find that firms that did not vertically innovate did not do much horizontal 

product diversification either. Those firms’ much more modest growth was limited to intensive-

margin expansion in sales of their existing products. 

Some aspects of our findings align with past studies, but others provide novel insights into the 

relationship between product variety expansion and firm growth. First, as predicted by the oft-used 

Klette and Kortum (2004) model, more new product introductions are associated with higher average 

firm growth. Beyond this, however, our results highlight the importance of accounting for the identity 

of a newly developed product and its impact on subsequent product variety expansion. Vertically 

differentiated innovations are special. They have spillovers into horizontal expansions that do not 

operate in the reverse. We also show that vertical innovation tends to happen not incrementally, where 

firms move from more to less familiar products (for example as envisaged by Stokey, 1988), but rather 

through leapfrogging that is followed by “bridging” the firm’s existing and newly innovated products 

(in the style of Callander, 2011). 

Second, similar to the analyses in which product/firm appeal plays a critical role in determining 

a range of product varieties (Bernard, Redding, and Schott, 2010; Hottman, Redding, and Weinstein, 

2016), we find that high-growth firms have more product flexibility and improve the quality of their 

products to better respond to demand changes. While those studies typically treat product/firm appeal 
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as a primitive, our analysis suggests that appeal in part arises endogenously through experimenting 

with innovative products. Understanding the relationship between product variety expansion and firm 

growth requires incorporating the dynamic aspects of product variety expansion. 

Third, our findings render support for the notion of complementarity between flexibility of 

the production system and the number of product varieties (Roberts, 2004). Firms that did not 

experiment with technologically challenging innovative products were confined to a narrow product 

variety range and infrequent product changeovers. Experimenting firms, on the other hand, changed 

their product portfolios frequently and expanded their overall scope. Our findings indicate product 

upgrading experimentation generated such complementarity. 

Finally, in our data, only a limited number of firms attempt to push out the technology frontier 

and extend the set of the industry’s feasible offerings. These firms exhibit “awareness” in the sense of 

Karni and Vierø (2013) that sets them apart. In the appendix, we use our data to describe the selection 

process through which firms that push out the technology frontier through product innovation 

discover and harness new growth opportunities. 

We organize our analysis as follows. In the next section we briefly describe our data and 

historical context (with more details provided in the appendix). Section 3 documents basic trends in 

industry and firm growth through product varieties expansion. These include the tight relationship 

between growth in average industry firm size and product variety; that much of this variety growth 

come from existing firms rather than entry, and that—crucially—product variety growth in all 

directions was tied to firms’ experimental attempts to climb the quality ladder, but not their efforts at 

horizontal product expansions. Sections 4 and 5 examine in more detail the connections among 

product upgrade experimentation (that is, trying to climb the quality ladder), its antecedents, and firm 

growth. Section 6 probes the specific mechanisms through which product upgrade experimentation 

led to growth, finding that its effects on firms’ production flexibility and market-perceived quality as 

being particularly important. In Section 7 we conduct several robustness checks and tests of alternative 

hypotheses. Section 8 concludes. 

 
2. Data and historical context 

2.1 Product variety data 

Our main data come from monthly bulletins (Geppo, 1893-1914) published by Japan’s Cotton 

Spinners Association (hereafter, “Boren” for short, using its Japanese acronym). These report, for 

every Japanese cotton spinning firm, the quantities of each product the firm made that month. (See 
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Photo 1 in appendix A.1 for a photocopy of an original of one such report.) The data start in May 

1893 and extend through December 1914. The industry exhibited phenomenal growth during this 

period (see, e.g., Braguinsky et al., 2015; Figure A1 in appendix A.2 depicts the dynamics of industry-

wide output and the number of firms in our sample) and caught up with the worldwide technological 

frontier by expanding into high-end products. 

We match this product variety data with a firm-level database that contains monthly measures 

of inputs (spindles in operation, factory operators, raw cotton) in physical units, firm-specific output 

prices (for select counts), wage rates, and the existence and size of industry-wide output cuts imposed 

by the association in periods of slow demand. We aggregate monthly-frequency data to semi-annual 

level to correspond to the frequency of observations on important supply constraint-related 

characteristics, such as each firm’s machine capacity (number of installed spindles), employment of 

educated engineers, and board composition available at semi-annual frequency from shareholders 

reports and other sources. More details are in appendix A.1. 

Spun cotton yarn is differentiated by thickness, measured by “count,” which gives the length 

of a type of thread in yards that would weigh one pound. Thus, higher counts correspond to finer 

yarn. Higher count yarn is more comfortable to the touch and as such is of higher quality. Yarn is also 

differentiated by the direction in which it is twisted during the spinning process (S-twist vs. Z-twist). 

Some yarns are produced by twisting two single-yarn threads together using separate equipment called 

doubling frames. These yarns were translated into Japanese at the time as “doubled yarn.”3 Both single 

and doubled yarn can be processed further through a process called gassing, which involves passing 

yarn quickly through gas burners to burn away fluff and make the product glossy. The result is called 

“gassed yarn.” The demand for various types of cotton yarn comes from weavers, and the degree of 

substitution across yarn varieties in producing a particular garment or textile is generally quite low. 

Our product-by-firm data reports count, twist (if single yarn), and doubling or gassing (if done). 

We use the degree of technical difficulty in producing a product as our conceptual and 

empirical measure of vertical product differentiation. This implies finer (thinner) and more processed 

threads are higher up the product ladder. They generally require more versatile and/or specialized 

capital stock (machines designed for thinner counts, doubling and gassing frames, etc.), higher-quality 

raw cotton as input, as well as superior technology. This classification is consistent with overall 

                                         
3 In the English term it is “twisted yarn” (see, e.g., Woodhouse, 1921). We will use the Japanese “doubled yarn” terminology, 
in part because it is important for our purposes to distinguish also single yarns by the direction of  twist as above. There is 
no distinction between Z- and S-twist in case of  doubling because the second twist is always applied in the direction 
opposite to the first twist. 
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technological trajectories in the Japanese cotton spinning industry. As Tables A3-A4 in appendix A.2 

show, at the beginning of our sample (10 years after industry inception), lower-count yarns—counts 

20 and below—were almost entirely domestically produced. Users of higher-count yarns still largely 

relied on imports from Britain because of Japanese cotton spinning firms’ lack of technical proficiency. 

When expanding their product varieties, Japanese firms thus faced a problem whether to add a lower-

count cotton yarn that was easy to produce but faced limited demand, or a higher-count cotton yarn 

that was difficult to produce but potentially faced a much less crowded market. 

The thickest count recorded in the data during our sample is 2.5 (S-twist), and the finest is 100 

(gassed). The latter doesn’t first appear until made by a single firm in January 1903. Product scope 

evolved as the industry did. At the beginning of the sample, industry firms made only about 30 

products. This grew to over 100 by the end.4 The total number of different products that show up at 

least once in the data from 1893-1914 is 201. To create a set that can be consistently applied 

throughout the sample period, we aggregated these into 35 different product varieties––10 varieties 

(different counts or count ranges) each of S-twist and Z-twist single yarns, 10 varieties of doubled 

yarn, and five varieties of gassed yarn. Our references to a “product variety” below regard one of these 

35 varieties unless otherwise stated. 

For the purposes of this study, we often dichotomize varieties into the low end and high end 

of the product space, with counts 20 and below low-end varieties. Counts above 20 are high-end 

products. Among our 35 total varieties, 16 are high-end according to this classification and 19 low-

end. We chose this threshold because counts above the mid-20s were generally impossible to produce 

without specialized machines and inputs designed for those varieties.5 Thus, while demand constraints 

may not have been that important for high-end products (competition was mostly from imports, and 

Japanese textile makers would have been willing to substitute to domestic sources at similar FOB 

prices), supply-side (machine and technology) constraints were very real. The demand limitations faced 

by low-end products, on the other hand, are highlighted by the differential treatment they received 

                                         
4 In the process, some previously disaggregated data on very thick counts start being reported in a more aggregated way 
(e.g., counts 10 and below are lumped together after a certain point in time), while the data on finer counts remain reported 
in a more disaggregated fashion. 
5 As is nearly inevitable with classifications, there is some “gray zone.” In this particular case, some classifications adopted 
in Japan at the time classified single mechanically spun yarn into coarse yarn (counts below 20 as well as 20-22 count yarn), 
medium yarn (counts 23-44), and fine yarn (counts 45 and above). Our definition considers both medium and fine yarns 
as high-end, and we also include counts 21 and 22 as such. Reclassifying these two counts as low-end products makes no 
difference to our results. This is perhaps not surprising given the relatively small amount of production of counts 21 and 
22. While for example 20-count output alone represented roughly 30 percent of the industry’s total output during our 
sample, counts 21 and 22 together accounted on average for only about 1.1 percent of industry output. 
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during mandatory output cuts periods. In periods of slow demand, Boren (the industry association) 

imposed mandatory output cuts on its member firms (cartels were legal in Japan until 1947). However, 

output of counts above 20 were largely exempt from those cuts (see appendix A.3 for details). This 

differential treatment also allows us to utilize mandatory output cuts as an instrumental variable in our 

firm growth analysis, as we explain below. 

To investigate firms’ product expansion patterns, we distinguish between new-to-firm vertical 

product differentiations aimed at pushing out the firm’s technology frontier (we also refer to these as 

“product upgrades” below) and horizontal differentiation aimed at diversifying the product portfolio 

inside the existing technological frontier (“product diversifications”). While closely related to the 

distinction between high-end and low-end product varieties above, the definition of an “upgrade” is 

stricter than just making a high-end product. A new product addition is an upgrade if it a) involves a 

high-end product and b) the firm must not have previously made at scale a product of an even higher 

count. A new product addition is called a “diversification” if, regardless of the new product’s count, 

the firm had previously made a product of a higher count. 

 
2.2 Experimental production and product upgrading 

The notion of experimental product introduction plays an important role in our analysis below. 

We explain how we define it here. It is the addition to the firm’s portfolio in semi-annual period t a 

variety that is both novel and produced at a modest quantity. More precisely, for a product variety j to 

be defined as (the beginning of) an experiment at t, it has to satisfy all of the following conditions: (i) 

the firm did not produce variety j in t-1, (ii) variety j accounts for less than three percent of the firm’s 

total output in t, and (iii) variety j had never accounted for more than three percent of the firm’s total 

output in any period before t.6 Thus, a product variety remains in the “experimental stage” from 

introduction (if at a scale below the three-percent threshold) until it reaches this threshold for the first 

time (if at all). Once a firm produces a variety at a scale above the threshold, it is no longer considered 

experimental even if output later falls below the threshold again. This definition allows for potentially 

multiple experiments in the same product line. If a firm temporarily discontinues an experimental 

product before it reaches the threshold and re-introduces it below the threshold after at least one 

period of non-production, this is a second experiment in that product line. (A further cycle would be 

                                         
6 We tried other reasonable thresholds, such as four percent or two percent, and the results were qualitatively similar. See 
Figure A2 and its discussion in appendix A.4 for the distribution of  initial scales of  newly introduced products. We also 
tried an alternative definition of  experiments, which does not rely on any scale thresholds and got similar results. The 
results are presented and discussed in appendix A.4.  
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a third experiment, and so on.) We define an experiment as “successful” if the product rises above the 

three percent threshold after production for a continuous set of periods; otherwise, the experiment 

has “failed.” 

Panel A of Table 1 shows that among the 685 firm-product varieties introduced during our 

sample, 439 (64 percent) were initially “experimental,” and of those, 271 never reached the threshold 

scale.7 Hence, about 60 percent of product lines introduced on experimental basis completely “failed,” 

that is, never scaled above the threshold despite possibly multiple experiments. Of these experimental 

varieties, 76 (11 percent) involved upgrade products. (Recall that an experiment is an upgrade if it the 

firm produces a high-end product with a count higher than any count the firm had produced above 

the three percent threshold before.) About half of these never reached the threshold. In Panel B we 

look at all experimental product launches, counting multiple experiments in the same product line as 

separate episodes. The fraction of experiments that failed is 73 percent for all products, and 64 percent 

for upgrade experiments. We can thus see that experimental product development often fails. 

--- Table 1 around here --- 

The small scale that defines an experimental product and the high failure rates indicate that 

product experimentation per se cannot have a large direct effect on firm growth. However, 

experimentation might offer firms valuable technical or marketing knowledge, especially if the 

experiment involves upgrade products that require mastering new technologies. In our analyses below 

we use the cumulative number of upgrade experiments conducted by firm i through time t as a proxy 

for technical knowledge accumulated through experimentation. Similarly, we also compute a firm’s 

cumulative number of (horizontal) product diversification experiments to use as an additional 

regressor in some specifications. 

 
2.3 Machine orders and high-end versus low-end machines 

Japan did not produce its own cotton spinning machines during our sample. It imported all 

machinery from Britain, mostly from Platt Brothers (Saxonhouse, 1974). The Platt collection in 

Preston, Lancashire, U.K. contains British textile machine manufacturers’ order books (including but 

not limited to Platt Brothers) reflecting orders from cotton spinning firms worldwide. We collected 

data on all Japanese orders placed from the inception of the industry in the early 1880s through 1914.8 

                                         
7 Note that if  a firm operated only two or three product lines, those lines are less likely to be counted as “experimental” 
by construction. Hence, the above probably represents a lower bound on the actual number of  experiments. 
8 These orders had been previously examined by Gary Saxonhouse and his extracts archived at the ICSPR after he passed 
away (Wright, 2011). However, with no originals, it turned out to be impossible to match ICSPR archived data to the 
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All machines were custom made. Each order contains the placement date, shipping dates 

(usually multiple, as machines were commonly shipped in several installments), type of frames ordered 

(ring, mule, or doubling), number of frames and spindles per frame, the range of counts the frames 

were designed to spin, and other technical characteristics (description of cotton input, hank roving to 

be fed into the machines, rotation speed of the spindles, etc.). 

We matched these orders with Japanese archival sources (Enkakukiji, 1901; Sankosho, 1903-

1914; and individual company reports) that provide semiannual firm-level data on the total installed 

capacity: number of spindles, separately by ring, mule, and doubling frames. The details of the 

matching process are described in appendix A.1.6. While we could not match all changes in firms’ 

capacity as recorded by Japanese sources with corresponding orders from British textile machine 

manufacturers, we were able to do so for 105 of the 118 firms in our sample. For these firms, we 

constructed an alternative measure of firm capacity by summing up the number of spindles in all 

orders placed by a given firm, while also taking into account transfers through acquisitions, second-

hand purchases and sales, decommissioning, and destruction in earthquakes and fires. In the end, we 

accomplished an average match rate of 99 percent between this “reconstructed” number of spindles 

and the number actually recorded in the corresponding firms’ balance sheets (Table A.2 in Appendix 

A.1.6). Most of the remaining 13 firms for which we do not have orders data were short-lived and/or 

very small. They constitute just two percent of total industry capacity at any given point in time. The 

bottom line is that we have machine capacity breakdowns for almost all of our sample. We can 

therefore link machines’ technical characteristics to the product varieties produced by firms that 

owned those machines. 

As mentioned, high-end products and low-end products required different machinery. We 

employ the matched orders data to distinguish between machines designed predominantly for high-

end products and those for low-end products. More precisely, we define machines as high-end if their 

specifications indicated the ability to spin counts of 23 or higher. We classify any other machines as 

low-end.9 We also classify most doubling frames (for which our main source of data is Japanese firms’ 

                                         
Japanese data at the firm level, as most firm names were either missing or incorrectly assigned. Our newly collected data, 
including digital photos of  the original orders, are available at http://data.nber.org/data/japanese_machine/. 
9 See Photos 2 and 3 and the corresponding description in appendix A.1 for two specific examples. There is ambiguity 
about some machines ordered early (before the start of  our product variety data), when Japanese firms could not yet 
produce counts above 20. For example, an order placed by Osaka Spinning Company in October 1888 lists the counts to 
be spun from 10-20 using Japanese cotton, but “also up to No. 32 if  the Japanese decide to mix imported cotton with 
Japanese cotton.” (Osaka Spinning was working on imported cotton at the time, but actual imports had not started yet.) 
We classify these machines as high-end due to their versatility, even though they were different from subsequent high-end 
machines specifically designed for high-end products and for use with even higher-quality U.S. and Egyptian cotton. Re-
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balance sheets) as high-end machines, with the exception of a few cases where firms had no high-end 

frames and thus applied doubling to low-end products. Among the 105 firms for which we have a 

breakdown of machine capacity, 42 had at least one high-end machine at some point in our sample. 

However, the capacity distribution was highly skewed, with a median number of spindles of 16,128 

and a mean of 36,763. 

 
2.4 Mandatory output cuts as a source of  exogenous variation 

As mentioned, the industry association Boren periodically imposed output cuts, almost always 

for low-end yarns, applied uniformly to all firms, during periods of slow demand. The timing of these 

cuts was not under the control of any given firm.10 Because high-end products were exempt from 

these mandated cuts, they gave firms extra incentive to experiment with high-end products. 

In appendix A.3 we present the details of output cuts imposed at different points in time, 

compiled from Shoji (1930). There were two major types of curtailments. In one case, Boren would 

impose a certain number of days in a month as “mandated holidays.” Machines producing low-end 

(count 20 and below) yarn were not allowed to operate on those days. The other type of curtailments 

required a certain fraction of spindling frames used to spin low-end yarn to be idled. Compliance was 

enforced by inspections and by Boren officials securing idled frames by putting physical seals on 

spinning rails (Shoji, 1930, p. 156).11 The fraction of such sealed equipment ranged from 20 percent 

to 40 percent (Table A6 in the appendix). 

To differentiate these mandatory output curtailments by their severity, we constructed a 

variable which takes a value of zero during months with no curtailments and equals the fraction of 

idled low-end machine spindles (or its equivalent calculated from the number of mandated holidays) 

during months with mandatory output cuts. The average of this value over a given semi-annual 

observation period, shown in the third column in appendix Table A6, represents our measure of the 

degree of relative output cuts imposed on low-end products.12 In subsequent analyses, we interact this 

measure with the installation of high-end machines ordered from England to obtain an exogenous 

variation in incentives to conduct upgrade experiments. 

                                         
classifying the small number of  these early high-end machines as low-end instead does not affect our main findings. 
10 Association voting rules required consensus from all member firms for output cuts to be imposed (Shoji, 1930), so it 
was impossible for any firm (or a coalition thereof) to exploit the policy for unilateral advantage. 
11 Although Shoji (1930) does report some instances of  temporary non-compliance by a handful of  firms, generally 
speaking, the enforcement appears to have been quite effective. 
12 As can be seen from Table A6, there were some mandated cuts among high counts in 1910-12. Because we are interested 
in the relative stringency of  low-end versus high-end output cuts, when constructing our measure during that period we 
subtracted the fraction of  high-end cuts from the fraction of  low-end output cuts. 
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3. Product Variety Expansion Patterns and Firm Growth 

3.1 Product variety expansion 

3.1.1 Decomposition analysis 

Figure 1 plots the dynamics of average output per firm and the average number of product 

varieties per firm (in Panel A) as well as the number of high-end and low-end product varieties per 

firm separately (in Panel B).13 Average varieties per firm are mostly flat from the start of our data until 

about 1899, but then start increasing. The increase becomes particularly sharp around 1907. From 

1902 onward, there is a high correlation between the total number of product varieties per firm and 

average output per firm, with an increase in the number of product varieties starting to lead the 

increase in output per firm from about 1907. A salient feature of industry-level product variety 

expansion in Panel B of Figure 1 is that low-end products are not replaced by high-end products. 

Rather, both types of product varieties increase after a certain point, but, as the fitted third-degree 

polynomial trendline shows, the growth in the number of high-end product varieties starts earlier and 

clearly leads the increase in the number of low-end product varieties.14 We examine this pattern below. 

--- Figure 1 around here --- 

We now employ more formal decomposition analysis to quantify sources of change in the 

number of product varieties per firm we observe in Figure 1. We first decompose the market-share-

weighted average number of products at time t as 

 𝑦𝑦�𝑡𝑡 ≡ ∑ 𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦𝑖𝑖𝑡𝑡
𝑁𝑁𝑡𝑡
𝑖𝑖=1 = ∑ 𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦�𝑖𝑖∙

𝑁𝑁𝑡𝑡
𝑖𝑖=1 + ∑ 𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦�𝑖𝑖𝑡𝑡

𝑁𝑁𝑡𝑡
𝑖𝑖=1 , 

where Nt is the number of firms operating at time t; 𝑦𝑦𝑖𝑖𝑡𝑡 and  𝑠𝑠𝑖𝑖𝑡𝑡 are firm i’s number of products and 

market share at time t, respectively; 𝑦𝑦�𝑖𝑖∙ = 1
𝑇𝑇𝑖𝑖
∑ 𝑦𝑦𝑖𝑖𝑡𝑡
𝑇𝑇𝑖𝑖
𝑡𝑡=1  is the average number of products produced by 

firm i over the whole period it is observed in the sample (Ti), and 𝑦𝑦�𝑖𝑖𝑡𝑡 = 𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦�𝑖𝑖∙ The change in the 

weighted average number of products between t and t+1 is then 

𝑦𝑦�𝑡𝑡+1 − 𝑦𝑦�𝑡𝑡 = �� 𝑠𝑠𝑖𝑖𝑡𝑡+1𝑦𝑦�𝑖𝑖∙

𝑁𝑁𝑡𝑡+1

𝑖𝑖=1

−�𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦�𝑖𝑖∙

𝑁𝑁𝑡𝑡

𝑖𝑖=1

� + ��𝑠𝑠𝑖𝑖𝑡𝑡(𝑦𝑦�𝑖𝑖𝑡𝑡+1 − 𝑦𝑦�𝑖𝑖𝑡𝑡)
𝑖𝑖∈𝐶𝐶

� + ��𝑦𝑦�𝑖𝑖𝑡𝑡+1(𝑠𝑠𝑖𝑖𝑡𝑡+1 − 𝑠𝑠𝑖𝑖𝑡𝑡)
𝑖𝑖∈𝐶𝐶

� + �� 𝑠𝑠𝑖𝑖𝑡𝑡+1𝑦𝑦�𝑖𝑖𝑡𝑡+1
𝑖𝑖∈𝐸𝐸𝑁𝑁

�

− �� 𝑠𝑠𝑖𝑖𝑡𝑡𝑦𝑦�𝑖𝑖𝑡𝑡
𝑖𝑖∈𝐸𝐸𝐸𝐸

� 

                                         
13 We employ conversion coefficients similar to those developed in Braguinsky et al. (2015) to aggregate threads of  various 
counts into a single, “20-count equivalent” measure of  total firm output in physical units. All the results below are robust 
to using machine inputs (number of  spindles in operation) or labor inputs (number of  worker-hours) as alternative 
measures of  firm size. 
14 The one-time interruption of  the trend in 1904-1905 visible in Figure 1 is due to the onset of  the Russo-Japanese War, 
which temporarily increased demand for single-type coarse yarn used to make military uniforms. 
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where C, EN, and EX indicate continuing firms, entrants, and exiting firms, respectively.  

We call the first term on the right-hand side the “composition effect.” It captures the change 

in the average number of products due to the difference in the composition of firms between t and 

t+1. This measures the difference, over their lifetimes, in the average number of products of new 

entrants versus exiting firms. The second term is the “expansion effect” of continuing firms. It 

captures within-firm changes in product variety counts between t and t+1, holding fixed firms’ base 

period market shares. The third term is the “allocation effect,” measuring the contribution of changes 

in the market shares of continuing firms between t and t+1. Finally, the fourth and fifth terms measure 

the contribution of entrants and exiting firms, respectively, coming from deviations in the first 

observation (for entrants) and the last observation (for exiting firms) from their own long-term 

average number of products. A positive (negative) number in the fourth term means that entrants’ 

average number of products varieties is greater (less) when they enter than in later periods of their 

operation. A positive (negative) number in the fifth term means that exiting firms’ average number of 

products is greater (less) right before they exit than in their earlier periods of operation. We label the 

sum of the last four terms in the decomposition the “overall within effect.” 

Table 2 presents the results. The main takeaways are as follows. First, the decomposition 

shows there was an increase of 9.0 in the average number of all products per firm between 1893 and 

1914. Of this, the within effect accounts for a greater share (5.6 products) than the composition effect 

(3.3 products). However, when we divide the sample before and after the spike in product varieties in 

1907, there are stark differences. From 1893-1906, the overall increase of 2.5 products per firm is 

more modest, and the composition effect (1.6) contributes more than the within effect (0.9). 

Decomposition of the within effect also shows that it is entirely driven by allocation—changes in 

market shares, although we do not report it in Table 2. We see a complete reversal from 1907-1914. 

While the absolute magnitude of the composition effect remains roughly the same (1.7), the within 

effect (4.7) becomes a dominant contributor to the total growth in average products per firm of 6.4. 

Almost all of this within effect now comes from the expansion of continuing firms, while the 

allocation effect is much smaller. 

Thus, during the first subperiod (1893-1906), which is the period of large-scale entry, followed 

by a shakeout and initial industry consolidation, the growth in number of product varieties was driven 

by new entry and by increasing market shares of continuing firms that produced more product 

varieties. In the second subperiod (1907-1914), while new entry still contributed to product variety 

growth at about the same magnitude as before, the number of product varieties produced by 



 12 

continuing firms swelled. This growth came to dominate the overall expansion of the number of 

product varieties produced by the industry. Separate decompositions of high- and low-end products 

present essentially the same picture in both cases, although with some nuanced differences. 

--- Table 2 around here --- 

Thus, the big boost received by industry growth after 1907 from the expansion of the number 

of product varieties seen in Figure 1 resulted almost entirely from an increase in the number of both 

high-end and low-end products produced within continuing firms. 

The findings from the decomposition analysis raise questions. Were the firms whose 

expansion drove the growth in high-end and low-end product varieties the same or different firms? If 

they were the same, did they first expand their low-end product varieties and then move on to high-

end products, as implied by the learning-by-doing theory of Stokey (1988), for example? Or, did they 

invert that order? 

 
3.1.2 Same or different firms? 

Table A8 in appendix A.5 shows that as high-end machine capacity increased from virtually 

zero at the start of  our sample, it spread across firms of  different sizes but remained heavily 

concentrated among the largest firms. This leads to the same pattern in the number of  high-end 

product varieties. More interestingly, the number of  low-end product varieties, which do not require 

high-end machines for their production, also becomes heavily concentrated in the same set of  firms. 

Thus, the same firms accounted for the expansion of  both high- and low-end product varieties. 

Moreover, those were the firms that invested in high-end machines and grew to become the top firms 

in the industry (see also appendix Table A9). This leads to questions about the relationships between 

product upgrading and diversification and their ties to firm growth. This is what we explore next. 

 
3.2 Upgrade experiments and product varieties expansion  

We saw above that almost two-thirds of firms’ new products were initially launched on a small 

scale (experimental production), and 60-70 percent of those experiments were not scaled up. 

Experiments could therefore not mechanically have been responsible for the coincident growth of 

firm size and product variety. It turns out, nevertheless, that upgrade (although not diversification) 

experiments did contribute to product varieties expansion. We establish this fact here, and we examine 

the mechanisms behind it in the next section. More specifically, we show how accumulated past 

upgrade experiments are tied to expansion in product varieties of all types, even those not directly 

targeted by such experiments. 
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The estimation equation is: 

  ∆𝑦𝑦𝑖𝑖𝑡𝑡+1 = 𝛼𝛼 + 𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1 + 𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑠𝑠_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1 + 𝛽𝛽3𝑋𝑋𝑖𝑖𝑡𝑡 + 𝛾𝛾𝑖𝑖 + 𝛿𝛿𝑡𝑡 + 𝜁𝜁𝜏𝜏 + 𝜀𝜀𝑖𝑖𝑡𝑡 ,    (1) 

where ∆𝑦𝑦𝑖𝑖𝑡𝑡+1 it is the change from t to t+1 in the total number of products produced by firm i, and 

separately in the number of high-end and low-end products; 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1  and 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑠𝑠_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1, represent the cumulative numbers of upgrade and diversification experiments 

conducted by firm i by time t-1, respectively; 𝑋𝑋𝑖𝑖𝑡𝑡 is a vector of controls, and 𝜀𝜀𝑖𝑖𝑡𝑡 is the error term. We 

include firm fixed effects 𝛾𝛾𝑖𝑖 and semi-annual period fixed effects 𝛿𝛿𝑡𝑡. In addition, we include a set of 

dummies 𝜁𝜁𝜏𝜏 to nonparametrically control the number of periods 𝜏𝜏 the firm has been in the sample 

(the first equal to one for every firm’s earliest period in the sample, the second equal to one for firms’ 

second periods, and so on). We include these to ensure that our key variables of interest, the 

cumulative numbers of upgrade and diversification experiments, capture accumulated past experience 

with experiments and not simply how long the firm has happened to be in the data. We exclude each 

firm’s first and last periods because they often cover less than a full six months.15 

The results, shown in Table 3, make clear that a firm’s past upgrade product experiments, but 

not diversification experiments, are tied to growth in its number of products of all types. Columns (1)-

(3) include the number of products (all, high-end, and low-end, respectively) produced by firm i at 

time t as a control in 𝑋𝑋𝑖𝑖𝑡𝑡.16 An additional past upgrade experiment is associated with adding product 

varieties of all types in the following period. To give some sense of the magnitude of this relationship, 

conditional on past upgrade experiments being positive, the 25th-percentile of cumulative past upgrade 

experiments is one, while the 75th-percentile is five experiments. Hence, the interquartile differential 

is tied to about 1.3 (0.33x4) more new product varieties added during any given semi-annual period. 

It is worth emphasizing that past upgrade experiments are associated with not just future 

growth of high-end products, but low-end products as well. Indeed, the magnitudes of the experiment-

associated high- and low-end product growth are similar. Because upgrade experiments never involve 

low-end products by construction, the results in column (3) suggest there may be substantial spillovers 

from firms experimenting with product upgrading to their abilities to increase the number of 

seemingly unrelated low-end products.  

                                         
15 We do the same in all subsequent regressions below, unless explicitly stated otherwise. 
16 The total number of  available product varieties (and hence the potential number of  products any firm can produce) is 
bounded from above in our data, so we need to control for the level of  product diversification already attained. To check 
if  the estimation results are sensitive to the inclusion of  the lagged number of  products, which also enters the dependent 
variable with the minus sign, as a control, we conducted an ordered logit estimation with the dependent variable being a 
dummy taking values of  minus 1, zero, and plus one if  the firm respectively reduced, did not change, or increased the 
number of  product varieties from t to t+1. The results were very similar; details are available upon request. 



 14 

--- Table 3 around here --- 

Columns (4)-(6) of Table 3 include additional controls: an indicator for the firm installing new 

machines (whether high-end or low-end) during the observation period, and another indicator 

equaling one if the firm employed a university-educated engineer or had a board member who was a 

prominent cotton yarn or garments merchant (as a proxy for “connectedness” to markets; see 

Braguinsky et al., 2015). The point estimates on past upgrade experiments fall slightly but retain 

economic and statistical significance. 

Among the covariates, high-end machine installation has a positive, economically large and 

statistically significant association with both high-end and low-end product varieties expansion. Other 

things equal, expanding high-end machine capacity during the previous period relates to an average 

increase of new product introductions of 0.82 products per period, about 59 percent (0.48/0.82) of 

which are new high-end products and the remainder new low-end products. The tie between growth 

in low-end products and high-end machine expansion (which in principle could be used for low-end 

production but rarely were because of their expense) is even more suggestive evidence that pushing 

the technology frontier helps firms grow within the frontier as well. 

Low-end machine expansions, on the other hand, do not exhibit patterns characteristic of 

spillovers. They are statistically unrelated to the expansion of high-end product varieties. And while 

they do accompany growth in low-end products, the magnitude of this relationship is about 60 percent 

of the relation with high-end machine expansion and statistically only marginally significant. 

The relationships between high-end machine expansion and product growth hold even 

conditioning on past upgrade experiments. As we will see below, however, adoption and expansion 

of high-end machines (but not of low-end machines) are nevertheless significantly related to additional 

experimentation. 

 
4. Exploration of  Mechanisms 

The relationship between pushing the technology boundary and subsequent product variety 

expansion and firm growth raises questions about the mechanics behind it. As mentioned, most 

upgrading experiments fail to scale up and to stay in a firm’s portfolio, so the direct effect of upgrade 

experiments on the expansion of product varieties is limited. Further, upgrade experiments have no 

direct effect whatsoever on the expansion of low-end product varieties yet are strongly connected to 

them quantitatively. We address these questions in this section. 
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4.1 High-end machines, market ties, engineering human capital, and product experiments 

High-end machines were needed for venturing into the high-end product space, and we saw 

above that having such machines was indeed associated with the expansion of high-end product 

varieties. But delivering high-end products was difficult and entailed much uncertainty. At the 

beginning of our sample, Japanese mills were catching up to the world technology frontier. 

Introducing high-end machines was a costly investment decision. Moreover, successfully introducing 

high-end products often required more than just procuring high-end machines. It called for a 

combination of engineering talent, market knowledge, and product experimentation.17 

In Table 4 we present summary statistics showing the relationships between having high-end 

machines and a number of firm-level outcomes: employment of university-educated engineers; the 

presence of cotton yarn and garments merchants (hereafter, “merchants” for short) on firms’ boards 

of executives, as a proxy for market knowledge or “market ties”; and product experimentation. 

--- Table 4 around here --- 

Firms that installed high-end machines had merchants as their board members in 71 percent 

of the cases compared to 57 percent for other firms (a difference that is statistically significant). These 

firms also employed 1.6 university-educated engineers on average, ten times the level of firms that did 

not. A similar order-of-magnitude difference exists for the number of second-tier educated 

engineers—graduates from technical colleges, corresponding to today’s Institutes of Technology. 

Thus, adoption of high-end machines was closely related to superior market ties and engineering 

human capital. 

The numbers in Table 4 also show that firms with high-end machines conducted experimental 

product introductions at a much higher frequency (an average of 1.2 products per year as opposed to 

0.5 products per year for those without). In contrast, the bottom three rows of the table show that 

there was no difference in the frequency with which firms introduced new products above the three 

percent threshold. Thus, high-end machines facilitated experimentation with new products before 

scaling up in ways low-end machines could not, or at the very least, did not. 

                                         
17 For example, Nihon Spinning, the first firm to produce gassed yarn in Japan, ordered its first machines from Platt 
Brothers in April 1894. Henry Ainley, a British engineer who met with three of  Nihon Spinning’s founders at the time, 
expressed surprise that the Japanese were even contemplating producing gassed yarn at that stage (Geppo, 1893, No. 5, p. 
89). Indeed, it took two full years for the firm to actually start production. In-between, Japanese engineers, together with 
two British advisers who came from England to help, had to resolve a host of  technological issues. These ranged from 
finding ways to procure heat-resistant brick in Japan to dealing with drafts that caused burners to flutter and damage the 
thread, all the while fighting suffocating heat inside gassing chambers (Kinugawa, 1964, Vol. 7, p. 13). See also the example 
of  Amagasaki Spinning company detailed below and in the appendix. 
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Notably, while high-end machines were unsurprisingly associated with a greater frequency of 

product upgrade experiments, they were also tied to a doubled propensity to conduct horizontal 

product diversification experiments. (The opposite is true regarding the propensity to introduce new 

products on a non-experimental basis, per the bottom rows.) Because high-end machines were not 

directly relevant to low-end products, this is once again consistent with adoption of high-end machines 

having spillover effects on all types of new product experimentation. Conditional on conducting 

experiments, firms with high-end machines had a lower fraction of successful experiments (new 

experimental product introductions that were subsequently scaled). Those with high-end machines 

scaled 22 percent of their experimental products compared to 34 percent (of a much smaller number) 

of experimental products of firms without high-end machines. This difference is economically and 

statistically significant and may reflect both higher uncertainty faced by high-end machine users and 

the fact that they derived useful knowledge from experimentation regardless of the outcome. 

Given the size of the investment high-end machinery required and the potential heterogeneity 

in firms’ benefits and costs from doing so, it is likely that the differences observed in Table 4 between 

firms with and without high-end machines are not purely causal. We take installations as given 

immediately below but later employ an instrument based on industry-wide mandatory output cuts of 

low-end products as a source of exogenous variation in firms’ incentives to use their machines to 

conduct upgrade experiments.18 

 
4.2 Predictors of  vertical upgrade experiments 

We now examine more closely the complementary factors to upgrade experimentation. In 

Panel A of  Table 5 we present the results of  estimations where the dependent variable is the number 

of  upgrade experiments started by a firm in a given semi-annual period. The explanatory variables of  

interest are whether the firm had high-end machines, whether it expanded its high-end (low-end) 

machine capacity, the presence of  merchants on firms’ boards of  executives, and whether the firm 

employed a degreed engineer. We also control for firm age and semi-annual time dummies. Because 

the dependent variable is a count variable consisting of  zeroes and small integers, we employ Poisson 

regression estimates. (We obtained similar results using negative binomial regression, as well as OLS.) 

                                         
18 We examine further in appendix A.6 how firms select into procuring high-end machines. A key finding is that among 
firms that did not yet have high-end machines, those that would later purchase them—“future adopters”—tended to 
already conduct more experiments and have more merchant board members than firms that never installed high-end 
machines. Future adopters were somewhat larger in terms of output, but they were neither more diversified nor more 
likely to expand low-end machine capacity before adopting high-end machines. Thus, again we see that diversification and 
expansion of low-end machines happened after firms successfully expanded into high-end product space. 
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In the estimation results in column (1), the coefficient on the indicator for having high-end 

machines indicates that these machines were associated with starting about 1.1 additional upgrade 

experiments per semi-annual period. This echoes the pattern in Table 4 above. In column (2) we look 

at high- and low-end machine capacity expansions. Adding high-end machines, but not low-end 

machines, was associated with an additional 1.4 new upgrade experiments per period. Thus, both the 

presence and expansion of  high-end machines were associated with firms experimenting more with 

vertically upgraded products. Repeating the same exercise on the subsample of  firms that already had 

high-end machines in column (5) yields a coefficient that implies about 0.95 new upgrade experiments 

upon high-end machines expansions, a number that is still statistically significant despite the much 

smaller number of  observations. 

In column (3) we look at engineering human capital and market ties. Firms that employed a 

university-educated engineer started a marginally significant 0.7 more upgrade experiments per period. 

Having a merchant on the board of  executives was associated with an additional 1.5 upgrade 

experiments per semi-annual period. Thus, our proxy for having market ties is similarly related to 

incremental experimentation as high-end machine capacity expansions, and is twice that of  having a 

university-educated engineer. These results are not directly comparable to the firm-fixed-effects 

estimations in Table 3 above because this regression uses across-firm variation. However, it is worth 

noting the contrast between the strong correlation between having market ties and upgrade 

experimentation here and the lack of  a significant relationship between market ties and product 

varieties expansion seen above.19 Merchants on executive boards accompanied experimentation but 

played little explanatory role in subsequent product varieties expansion and, as we will see below, 

overall firm growth. This suggests market ties were important in helping firms cope with initial market 

uncertainty when experimentally introducing unfamiliar products, but subsequent expansion was less 

dependent on such ties and instead relied more on the experience and technological knowledge 

embodied in engineers.20  

--- Table 5 around here ---  

                                         
19 Regression specifications in Table 3 include firm fixed effects because we are interested in examining within-firm impact 
of  knowledge accumulation, as proxied by cumulative past upgrade experiments. Nevertheless, if  we drop firm fixed 
effects from these specifications, the coefficient on the indicator for having a merchant as a board member is still about 
half  the magnitude of  the coefficient on the indicator for having a university-educated engineer, in sharp contrast to the 
estimation results in Table 5. 
20 As discussed below and in appendix A.6, the presence of  merchants on executive boards was also closely related to 
experiments that led to the selection of  firms into purchasing high-end machines in the first place. 
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The relationships in columns (1)-(3) and (5) may reflect the influence of third factors that 

jointly determine both the explanatory variables and experimentation. To gain exogenous variation in 

experimentation for our causal analysis below, we construct an instrument that uses the interaction 

between contemporaneous installment of new high-end machines and the industry’s imposition of 

mandatory output cuts for low-end products, as described in Section 2.4. Here, we use indicator 

variables for each condition for illustrative purposes; in our firm growth specifications below, we use 

more continuous measures of each. 

The logic of this interaction as a valid instrument for product upgrade experimentation is as 

follows. The relevance condition requires that the coincidence of a firm’s high-end machinery 

installation and mandated output cuts in a given period be correlated with the number of upgrade 

experiments conducted by the firm that period. The connection between having and installing high-

end machines and conducting experiments is intuitively obvious. As for mandated output cuts, 

because they exempted high-end products, firms had a lower opportunity cost of shifting labor and 

capital inputs from (now restricted) low-end products to high-end opportunities. 

The exclusion condition requires that the interaction be uncorrelated with any factors that 

drive experimentation other than through the relevance mechanism above. The mandated output cuts 

were imposed at the industry level and were sourced in the wake of unexpected demand shocks like 

the Boxer rebellion of 1900, which shut down exports to China, or the stock market crash of 1907. It 

is unlikely therefore that the cuts would correspond to any firm- or even industry-wide shifts in the 

desire to experiment with new products. Regarding high-end machinery installations, one might be 

concerned that they were driven in part by a firm’s expected return to high-end product 

experimentation. However, by using machinery that started operating only in period t to construct the 

instrument, we are taking advantage of the considerable lags between ordering, delivery, and 

installation of machinery in the industry. The minimum order-to-installation lag was one year and 

could often be longer, for random reasons; see Saxonhouse (1974). It is implausible that firms would—

somehow anticipating a fall in demand and a resulting mandated output cut at least one year in the 

future—place a machine order with the intention of it arriving and becoming operational coincident 

with the output cut.21 

We include this interaction term in columns (4) and (6) of  Table 5. As can be seen, it is 

positively and significantly related to firms starting more upgrade experiments, verifying the relevance 

                                         
21 High-end machine expansion could also happen through acquisitions. There too it took at least a year, often more, to 
consummate an acquisition. 
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condition as an instrument. The effect is especially large among firms that already have high-end 

machines. There, high-end machine capacity expansions that coincided with mandatory output cuts 

led to those firms starting over 1.8 new experiments in such periods. 

 
4.3 Factors in diversifying experiments and selection into high-end machine adoption 

Panel B of Table 5 shows the results of running the same specifications as in Panel A, except 

with the dependent variable being the number of diversification experiments started in a given period. 

With the notable exception of the interaction of new high-end machine installation and 

mandatory output cuts (which of course applied to low-end products), the factors that explain 

diversification experiments are similar to those for upgrade experiments in Panel A. Firms with high-

end machines start on average about one more diversification experiment in each period than do firms 

with no high-end machines. And once again high-end, but not low-end, machine capacity expansions 

are associated with more experimentation. This conforms to the results in Table 3, which showed low-

end product expansion was related to the same factors as high-end product expansion. 

Engineers play a more prominent role than merchants in explaining diversification 

experiments. This is consistent with market ties playing a bigger role in the initial push to expand the 

technology frontier, while engineering and technical knowledge matters more for following through 

with production at scale. As we will see in the next section, the interaction between accumulated past 

upgrade experimentation with the expansion of low-end product varieties is a key determinant of firm 

output scale growth. 

 
5. Product upgrading, product diversification and firm growth 

We have established that the relationship between pushing the technology boundary and 

subsequent product variety expansion is mediated by experiments in moving to products up the 

technology ladder, followed by application of the knowledge gained toward diversifying low-end 

product offerings. In this section, we examine if these factors also translated into higher total output 

growth. Specifically, we measure how the interaction of a firm’s cumulative upgrade experiments and 

the fraction of low-end products in the firm’s portfolio affects output growth. This interaction 

summarizes the experiment-learn-apply process. 

The basic estimating equation is: 

𝑐𝑐𝑙𝑙(𝑦𝑦𝑖𝑖𝑡𝑡+1) − 𝑐𝑐𝑙𝑙(𝑦𝑦𝑖𝑖𝑡𝑡) = 𝛼𝛼 + 𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 +

𝛽𝛽3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 × 𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 + 𝛽𝛽4𝑋𝑋𝑖𝑖𝑡𝑡 + 𝛾𝛾𝑖𝑖 + ∆𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡,             (2) 
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where 𝑦𝑦𝑖𝑖𝑡𝑡  is firm i’s output at time t, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡  is the cumulative number of upgrade 

experiments conducted by the firm up to time t, 𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 is the fraction of low-end products in the 

firm’s total number of products, and 𝑋𝑋𝑖𝑖𝑡𝑡 is a set of control variables, including indicators for firm i 

employing a university-educated engineer or having a merchant on its board of executives, the growth 

rates of both high-end and low-end machine capacity (spindles) between t and t+1, and logged output 

at time t. This panel regression with firm fixed effects 𝛾𝛾𝑖𝑖  captures firm-specific knowledge 

accumulation through upgrade experiments and the transfer of that knowledge into expansion of the 

firm’s low-end product portfolio. The parameters of interest are 𝛽𝛽1  and, especially, that on the 

interaction term, 𝛽𝛽3. A positive 𝛽𝛽3 is consistent with a complementarity between product upgrading 

experimentation and product diversification. 

 Table 6 reports the results. In column (1) we simply examine whether the cumulative number 

of upgrade experiments raises firms’ growth rates. The coefficient on the cumulative number of 

upgrade experiments is positive but not statistically significant at conventional levels. Employing a 

degreed engineer is associated with a 9.7 percent increase in the firm growth rate, other things equal. 

This corresponds to about half of the gap in growth rates between the 25th and the 75th quartiles in 

the sample. Having a merchant on the firm’s board of executives is unrelated to firm growth. 

In the specification in column (2) we add the interaction of the cumulative number of upgrade 

experiments and the fraction of low-end products. While the coefficient on cumulative upgrade 

experiments is economically and statistically indistinguishable from zero, the coefficient on the 

interaction is positive and significant. Given that the mean number of cumulative upgrade experiments 

in the sample is 1.14 and the mean fraction of low-end products is 0.84, the coefficient of 0.04 implies 

an additional upgrade experiment at the mean low-end product fraction is associated with a 3.4-

percentage-point higher output growth rate. Similarly, increasing the fraction of low-end products by 

one standard deviation (0.27) is associated with a 1.2 percentage point higher growth rate at the mean 

number of cumulative upgrade experiments. These results indicate the link between upgrade 

experiments and growth may act through a mechanism tying experimentation with vertically 

differentiated products to the extent of the horizontal differentiation of the firm’s product offerings. 

In fact, we also find that cumulative upgrade experiments initially affect the scaling of new upgrade 

products more than the scaling of new diversifying products, but this relation is reversed later (See 

Table A12 in appendix A.7). 

--- Table 6 around here --- 
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While looking within firm as above controls for several possible confounds, it is still possible 

that a firm may time its product upgrading experiments with other unobservable factors related to 

firm growth. To obtain a better sense of the causal connection between upgrade experimentation and 

firm growth, as discussed above we use the interaction of high-end machine arrival and installation 

with mandatory output cuts to gain a source of exogenous variation in upgrade experimentation. Here, 

we employ continuous measures of each. For machine installation, we use the growth rate of high-

end machine capacity due to new installations during period t. We count the machines as installed if 

at the end of period t the new spindles were reflected in the semi-annual firm balance sheets. Reading 

company reports makes it clear that new spindles were included in firm balances only after the 

machines were fully operational (before that, their value would sometimes be reflected in a separate 

“expansion” account). Thus, “time to build” (waiting for ordered machines to arrive and the 

installation process) happened before that. We conducted sensitivity checks taking this time to build 

into consideration, and the results were similar. Details are available upon request. 

For output cuts, we use the size of the required production drop in low-end products. The 

resulting instrument is the product of these two values, and it varies both intertemporally and in the 

cross section. 

Because the endogenous variable is cumulative high-end experiments but the logic of our 

exogenous variables works contemporaneously (it predicts current-period experiments), we estimate 

our IV specification in two stages. First, similar to Table 3 above, we use a Poisson regression to 

obtain a predicted number of upgrade experiments conducted by a firm in a particular period. The 

model uses the aforementioned instrument as well as other exogenous variables like firm age. Next, 

we sum these period-specific predicted values to construct the firm’s predicted cumulative upgrade 

experiments. This constructed value is the key explanatory variable in our causal inference regressions. 

We present the first stage regression results in column (1) of Table 7. The dependent variable 

is the number of upgrade experiments the firm starts in period t, while the explanatory variables 

include the instrument, which is itself an interaction, and the two main effects. The coefficient on the 

interaction is positive and significant. Firms that expanded high-end machines during times of output 

cuts were in fact pushed toward conducting (more) upgrade experiments. 

--- Table 7 around here --- 

As a placebo test to help verify the validity of the instrument, we conducted a similar regression 

using the growth rate in low-end machine capacity instead. The results are in column (2). As expected, 

there is no relationship between upgrade experiments and the interaction. 
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We use the constructed number of upgrade experiments to estimate the effect of such 

experiments on firms’ output growth. Because we use a constructed instrumental variable in the 

second-stage estimation, we implemented bootstrap for standard errors, clustering at the firm level, 

with 1,000 replications. The results are in columns (3) and (4) of Table 7. The coefficient on the 

predicted cumulative number of upgrade experiments in column (3) is positive but small and 

statistically insignificant, similar to column (1) in Table 6. However, when we include in column (4) 

the interaction of constructed cumulative upgrade experiments and the fraction of low-end products, 

the interaction’s coefficient is twice as large as the corresponding coefficient in Table 6 and more 

precisely estimated. The implied increase in output growth rate from an additional upgrade experiment 

in the IV regression is about six percentage points at the mean fraction of low-end products in the 

firm product portfolio. 

That there appear to be growth effects of product upgrade experimentation raises the question 

of why firms in our sample did not engage it in all the time (or at least, more often). A couple points 

are worth noting. First, there could be substantial firm heterogeneity in expected growth effects. In 

our empirical results above, we condition on the firm having installed high-end machinery. As seen in 

Table 4, these firms might be systematically different from those that did not. One of these differences 

could be the expected return to upgrade experimentation. To examine this further, we also conducted 

panel firm-fixed effect estimation similar to that in Table 6 but separately for firms that already had 

high-machinery installed. Remarkably, the coefficients measuring growth effects of specifically 

upgrade experiments conducted by firms that already had high-end machines were very similar in 

magnitude and statistical significance to those from the second-stage regression in Table 7 despite 

very different estimation methodologies (details are available upon request). 

Second, experimentation likely also has costs, even among firms with high-end machines. A 

particular cost relevant in the context of the instrumental variable is the opportunity cost of the labor 

and capital inputs the firm uses to conduct experiments. Part of this opportunity cost is the value of 

the low-end product output (and any associated future growth tied to this) that those inputs would 

create in absence of experimentation. Effectively, the instrument uses instances where the firm faces 

an exogenously sourced temporary reduction in those opportunity costs. This pushes the net benefit 

of upgrade experimentation into positive territory, inducing experimentation and the gross growth 

benefits it creates. We are measuring the average growth benefit across firms whose upgrade 

experimentation benefit-cost calculus is close enough to the margin for the instrument to spur them 

into action.  
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We also examined the impact of past launches of new products at a larger scale (three percent 

or more of firm’s output). The effects on the change in the number of product varieties were 

qualitatively similar to those in Table 3 above (see Table A15 in appendix A.11), although the 

economic impact is smaller: conditional on past upgrade product introductions “at scale” being 

positive, the interquartile differential is two, so it is tied to about 0.7 more new product varieties added 

during any given semi-annual period, as opposed to 1.3 new varieties in Table 3. As for the impact on 

growth rates of total output, the direct effect of upgrade product launches at scale in panel growth 

regressions analogous to Table 6 is also similar to the direct effect of upgrade experiments (see Table 

A16 in appendix A.11). However, in contrast to Table 6, the coefficient on the interaction term with 

the firm’s low-end product portfolio indicates a negative (albeit statistically insignificant) relationship. 

Thus, new upgraded products launched at scale differed from experiments in that they did not appear 

to create complementarities between product upgrading and diversification. Estimations (not shown) 

also reject new upgraded product launches at scale as a valid instrument for an IV regression because 

of the lack of correlation with the interaction term between contemporaneous installment of new 

high-end machines and the industry’s imposition of mandatory output cuts for low-end products.22 It 

thus appears that experimental upgrade product introductions and only those contribute both to the 

proliferation of product varieties and to overall output growth through building an intangible stock of 

knowledge. In appendix A.4 we also discuss the results of the IV estimation using an alternative 

definition of knowledge-building upgrading experiments, independent of the scale threshold, which 

produces very similar results. 

The instrument we are using to obtain a source of exogenous variation for upgrade 

experiments operates on the supply side. The demand side (market ties and knowledge), however, 

does appear to play an important role, especially at the stage firms had to decide whether to embark 

on product upgrading. For example, Amagasaki Spinning, the first company in Japan to produce 42-

count doubled yarn, not only sent its chief engineer to study the technology in Britain and the U.S., 

but also dispatched its top sales manager to literally knock on wholesalers’ doors with the samples of 

the new product. The manager (whom the company had recruited from those same wholesalers’ 

circles) managed to persuade his former colleagues, who until then had only trusted a British supplier, 

to buy from the company on a trial basis. This established a foothold for Amagasaki’s new high-end 

product, of which it dominated domestic production for years to come (Unitika, 1989). 

                                         
22 There is no reason to expect such a correlation in the first place, of  course, so this is another placebo test for our 
instrument in Table 7. 
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Beyond anecdotal evidence, we have collected data on board members and included controls 

for the presence of reputable merchants (such as Amagasaki’s sales manager above) on companies’ 

boards to proxy for demand development capability (cf. Braguinsky et al., 2015). As noted above, the 

presence of a merchant on the board of directors contributed to increasing the number of upgrade 

experiments conducted by a firm (see Table 5); merchants also played an important role in the process 

through which firms “selected” themselves into procuring high-end machines (see Table A11 in 

appendix A.6 and the discussion therein).23 Based on this evidence, we conjecture that better market 

ties and knowledge of demand gave an impetus to firms to embark on product upgrading in the first 

place, by providing a sense of direction and helping to overcome the initial market skepticism. 

However, as noted, we do not see much effect of market ties on subsequent expansion of product 

varieties and growth. In the end, new products still had to beat competition, notably from British 

imports, so improving the supply side––building knowledge through experiments, expanding stock of 

engineering talent and high-end machines––was the key to long-term growth. 

 
6. Transmission channels 

How exactly does technical knowledge acquired through experimentation with upgrade 

products lead to the expansion of low-end product varieties and firm output growth? We consider 

two possible channels: increased flexibility of the firm’s production system, including in low-end 

products, and increased demand-side appeal of low-end products. 

 
6.1 Production system flexibility 

Recall that besides being differentiated by counts, product varieties in our data are also 

distinguished by the direction of twist (S-twist and Z-twist single yarn) and whether yarn is further 

doubled and/or gassed. These different types, even within the same count category, serve different 

needs of fabric weavers. During our sample, S-twist yarn was often associated with weft while Z-twist 

was often associated with warp.24 S-twist and Z-twist yarn also differ in strength and softness (Z-twist 

is stronger, but S-twist is softer to the touch). Doubled and gassed yarn serve still other weaving 

purposes. As demand conditions change, firms that can flexibly switch across different twist directions 

within a given count or across adjacent counts are better able to respond to such changing conditions, 

                                         
23 Another important factor noted in appendix A.6 was the general quality of  the top management teams. See Agarwal, 
Braguinsky, and Ohyama (2020) for more on this. 
24 In the process of  weaving textiles from yarn, the longitudinal warp yarns remain stationary on a frame or loom, while 
the transverse weft is drawn through and inserted over and under the warp. 
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and thus have better growth opportunities. We examine if the knowledge capital accumulated through 

upgrading experiments contributed to firms developing more flexible production systems. 

To construct an empirical measure of production system flexibility, we use monthly data to 

construct two measures of the frequency of a firm’s product portfolio rebalancing. The first counts 

how often the firm changes the “lead direction” of its yarn of the same count. For example, suppose 

that both firm A and firm B produce 16-count yarn. Suppose further that firm A produces 80 percent 

of its 16-count output in S-twist and 20 percent in Z-twist in both t and t-1. Firm B, on the other hand, 

produces 80 percent of its 16-count output in S-twist and 20 percent in Z-twist in t-1, but then changes 

to 80 percent in Z-twist and 20 percent in S-twist in t. We say that firm B rebalanced its portfolio of 

16-count yarn between t-1 and t, while firm A did not. More generally, for each count category, we 

define the “lead direction” to be the way in which the majority of yarn in the count category was 

processed (S-twist, Z-twist, doubled or gassed). We use monthly data to count the number of times 

the firm changed this lead direction in any given semi-annual period. Adjusting the lead direction 

involves opportunity costs (see appendix A.7), so we infer that firms that did such adjustments more 

frequently had a more flexible production system. 

A second measure of portfolio rebalancing counts the number of times a firm changed its 

“lead” count category within each direction (S-twist, Z-twist, doubled and gassed yarn). Suppose firms 

A and B produce two count categories of S-twist yarn, 16 and 20 counts. Firm A produces 80 percent 

of its output of S-twist yarn as 16-count and 20 percent as 20-count in both t and t-1. Firm B, on the 

other hand, produces 80 percent of its output of S-twist yarn as 16-count and 20 percent as 20-count 

in t-1, but then switches in t to 80 percent as 20-count and 20 percent as 16-count. Once again, we say 

that firm B rebalanced its portfolio of S-twist yarn between t-1 and t, and firm A did not. This 

operation also involves opportunity costs, so our second measure of a firm’s production system 

flexibility is the number of times it changed the “lead count” category in a given semi-annual period. 

To address the role played by knowledge capital accumulated through product upgrade 

experiments as cleanly as possible, we limit our product flexibility measure to low-end products (up 

to 20 count). We examine how the two measures of product portfolio rebalancing at the low-end of 

the product variety spectrum were associated with the cumulative number of product upgrade 

experiments, which by construction involve only high-end products, and product diversification 

experiments, which can involve low-end products. (All the findings presented below are robust to 

using product portfolio rebalancing measures over all product varieties.) 
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Table 8A reports estimation results from within-firm panel regressions. The estimation 

equation is 

𝑦𝑦𝑖𝑖𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1 + 𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑠𝑠_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡−1 + 𝛽𝛽3𝑋𝑋𝑖𝑖𝑡𝑡 + 𝛾𝛾𝑖𝑖 + ∆𝑡𝑡, 

where 𝑦𝑦𝑖𝑖𝑡𝑡 are the two measures of firm-specific production system flexibility described above. The 

explanatory variables of interest are again the cumulative numbers of upgrade and diversification 

experiments conducted by firm i by time t-1. We include as control variables 𝑋𝑋𝑖𝑖𝑡𝑡 indicators for high-

end and low-end machine expansions in t-1 as well as for the presence of a university-educated 

engineer and a merchant on the board of firm i at time t. The regressions also include semi-annual 

time dummies and firm fixed effects. The firm fixed effects mean we are measuring the within-firm 

relationship between conducting more upgrade/diversification experiments and its production system 

flexibility in the low-end product space. 

The results strongly support the conjecture that knowledge accumulated through product 

upgrade experiments contributed to greater production system flexibility in low-end product varieties. 

After firms conducted vertical upgrading experiments, they rebalanced their portfolios of low-end 

product varieties more frequently, both across twist directions within a given count category and 

across count categories within a twist direction. The relationship was stronger for within-count lead 

direction changes than for within-direction lead count changes (e.g., switching from 20-count S-twist 

to 20-count Z-twist rather than switching from 16-count S-twist to 20-count S-twist). 

The coefficient on the cumulative number of upgrade experiments in the within-count 

portfolio rebalancing regression (the first column in Table 8A) is 0.24, while the mean number of 

within-count portfolio rebalancing events is 0.5. Hence an additional upgrade experiment was 

associated with an increase in portfolio rebalancing within counts by 50 percent of its mean. The 

coefficient on the cumulative number of upgrade experiments in the across-count portfolio 

rebalancing estimations (the second column in Table 8A) is 0.15, implying that an additional upgrade 

experiment is associated with an increase in portfolio rebalancing across counts by 12.5 percent of its 

mean (equal to 1.2). 

Remarkably, experience conducting diversification experiments had no such effects, even 

though diversification experiments involve low-end products. Once again, vertical product expansions 

appear to have spillovers into production capabilities that horizontal expansions do not. These 

spillovers do not appear to be due the direct operation of the (indeed more flexible) high-end machines 

themselves. There is no obvious advantage of high-end machines for within-count direction 

rebalancing, and we control for high-end machine expansion in the regressions. Accumulated technical 
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knowledge from product upgrade experiments, not the presence of high-end machines per se, appears 

responsible for more flexible within-count portfolio rebalancing.25 

--- Table 8A around here --- 

Table 8B confirms that these transmission channels of upgrade experiments contributed to 

firm growth. A rise in portfolio rebalancing from t to t+1, both within- and across-count, was 

economically and statistically significantly associated with accelerations in firm growth. One extra 

within- (across-) count portfolio rebalancing is associated with 1.0 (1.2) percentage point higher 

growth rates. Because the distribution of rebalancing events across firms and time is highly skewed, a 

better sense of the magnitudes might be obtained by calculating the effect of a firm moving from 

doing no portfolio rebalancing to the mean rebalancing level conditional on rebalancing being positive. 

This conditional mean of within- (across-) count portfolio rebalancing events is 2.33 (2.35). Moving 

from no within-(across-) count portfolio rebalancing to its conditional mean is thus associated with a 

2.33 (2.82) percentage point faster growth rate of total output. If we include both upgrade experiments 

and portfolio rebalancing in the same growth regressions (not shown), the coefficients on cumulative 

past upgrade experiments in Table 6 and those on the number of portfolio rebalancing events in Table 

8B remain the same. The two relationships therefore operate independently of each other.26 

--- Table 8B around here --- 

 
6.2 Quality of low-end products 

In this section we examine how a firm’s experience in upgrading experimentation affects the 

demand for its low-end products. To measure this demand appeal, we utilize the Khandelwal (2010) 

method of estimating quality for horizontally differentiated products, which essentially boils down to 

                                         
25 This link can be put in a broad historical context. At the start of our sample, the lion’s share of all yarn produced by 
Japanese firms was S-twist. This changed dramatically over time. Figure A4 in appendix A.8 plots the dynamics of the 
fraction of non-S twist varieties in the total number of product varieties. The fraction of non-S-twist varieties was less than 
30 percent of the total in both high-end and low-end product varieties early on, but producers of high-end product varieties 
quickly switched to almost exclusively Z-twist, doubled, and gassed yarn. The fraction of non-S-twist among low-end 
product varieties, on the other hand, was at about 40 percent at the turn of the 20th century and gradually increased to 
about 60 percent toward the end of the sample, with firms producing high-end products leading the way. The mean 
fraction of non-S-twist varieties in the total number of low-end varieties over the sample was 0.48 for firms that produced 
at least one high-end product, but only 0.28 for firms that did not produce high-end products. This difference is statistically 
significant. Experience with high-end products enabled the broadening of the product varieties range, creating more 
flexible production systems at the low end (cf. Roberts, 2004, pp. 37-38). 
26 Because upgrade experiments and the associated more flexible production system allow firms to better respond to 
changing demand, these should also be associated with higher capacity utilization rates. We know firms’ installed spindle 
capacities as well as the number of  spindles they had in operation each period, so we computed capacity utilization and 
confirmed that it positively covaries with our product system flexibility measures. Each additional lead change (both within- 
and across-count) is associated with about 2.4 percent increase in capacity utilization rates. Details are available upon 
request. 



 28 

looking at relative market shares after adjusting for price differences. While we do not have firm-level 

price data for most product varieties, we do for a key 20-count yarn for about 40 percent of 

observations.27 

As described above, count and finish completely summarized the physical aspect of the 

product. However, some horizontal differentiation existed due to reasons of geography or 

idiosyncratic buyer-supplier relationships. Most firms did in fact have their own registered brands, 

including for 20-count yarn (e.g., Kanegafuchi Spinning’s “Rangyo (Indigo Fish)” brand, Settsu 

Spinning’s “Kujyaku (Peacock)” brand, etc.). That said, given the physical equivalence of the products, 

within-count substitution across brands was very high and there was very modest equilibrium price 

variation.28 This makes it hard to precisely estimate the effect of price on demand, but we tried anyway. 

Because 20-count yarn is also just at the borderline between low-end and high-end products, 

we can instrument for its price using a plausible cost shifter that would be difficult to obtain for other 

product types in our data. Specifically, we use our portfolio rebalancing measure introduced in the 

previous section, here focusing on counts around 20, and interact it with the degree of industry-wide 

mandatory low-end product output cuts. As noted above, rebalancing the portfolio entailed 

adjustment costs, and firms that had lower costs could adjust more frequently. Firms with more 

flexible production systems could therefore respond more easily to mandated cuts by shifting their 

production to high-end products. This implies, especially in the face of having to meet short-run fixed 

costs, that more flexible firms would feel less pressure to reduce the 20-count price during periods of 

slow demand.29 This gives us a supply-side source of price variation that is plausibly uncorrelated with 

quality (demand appeal). Thus, our instrument for the price of 20-count yarn interacts our across-

count portfolio rebalancing measure for counts from 17 to 48 (that is, excluding very low and very 

high counts) with the time-varying degree of mandatory output cuts. 

                                         
27 20-count yarn was the industry’s modal output, accounting for 27.6 percent of  production over the sample, but its 
importance goes beyond this. When the industry was still in its infancy, Japanese firms could not produce counts higher 
than 16 because they were limited to poor quality domestic and Chinese cotton. Indian cotton imports arrived at the end 
of  the 1880s, and in 1890 the Osaka Spinning Company exported the first experimental batch of  20-count yarn to China. 
This marked the transition to a globally competitive industry (Kinugawa, 1961, Vol. 4, Ch. 1). Even as new high-end 
products were developed, 20-count yarn remained the most important low-end product. It was one of  only two yarn 
counts listed on the Osaka Three Articles Exchange (alongside 16 count), and it totally dominated trade volume (95 million 
yen gross trade volume in 1914 as opposed to a mere 1320 yen for the 16 count). 
28 Table A13 in appendix A.9 shows the coefficient of  variation of  20-count prices was just 2.8 percent across the entire 
sample, and the interquartile dispersion coefficient was a meager 1.6 percent. Even the 90-10 percentile dispersion 
coefficient was only a bit over 3 percent. All of  these were an order of  magnitude smaller than, for instance, the 
corresponding statistics of  wages of  female production workers in the industry. 
29 The average price of  20-count yarn was significantly lower (between 2-9 percent) during mandatory output cut periods 
than in adjacent periods without cuts. 
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We present the first-stage estimates in the first column of Table 9A. Lower portfolio 

adjustment costs, reflected in more frequent portfolio rebalancing by a firm, have a small, negative 

correlation with the firm’s 20-count price during normal times. However, rebalancing is strongly 

positively associated with the firm’s 20-count price during periods of mandatory output cuts. This 

holds controlling for both firm and time fixed effects. Going from no portfolio rebalancing to its 

mean conditional on being positive and mandated output cuts being in place (0.38) is associated with 

1.2 percent higher 20-count price. That is small in absolute size but, given the price variation described 

above, is two-thirds of the interquartile dispersion during periods of output cuts. 

Recall that in the previous section we also constructed a second measure of portfolio 

rebalancing, across different directions (S-twist, Z-twist) within the same count. While this measure 

was associated with lower adjustment costs and firm growth (see Tables 8A and 8B above), there is 

no reason why lower adjustment costs within the same count should be relevant for keeping up the 

price of the 20 count during mandatory output cuts. Based on this logic, we conducted a “placebo 

test” by looking at the relationship between the 20-count price and the interaction of within-count 

portfolio rebalancing and mandatory output cuts. The estimation results are in the second column of 

Table 9A. The logic holds; the relationship is statistically and economically indistinguishable from zero. 

The second stage regression of the firm’s (logged) share of industry-wide 20-count output on 

the instrumented logged price is shown in Table 9B. The estimated own-price elasticity is negative and 

large in magnitude, about -5.4. This is line with high substitutability across horizontally differentiated 

brands. That said, it is worth noting that the standard errors on these elasticity estimates are high, most 

likely because of low price variation in the sample discussed above. For the sake of comparison, in 

appendix A.9, Table A14 we present the results of an OLS estimation of firms’ market shares of 20 

count on own price. This “naïve” regression produces an own-price elasticity of -3.1, so the IV 

estimation, while imprecise, moves the estimated elasticity in the theoretically predicted direction. 

We use the demand estimates to construct the Khandelwal (2010)-style quality (demand 

appeal) measure for each firm’s 20-count product in each period. This involves adding the estimated 

coefficients for the corresponding firm and time fixed effect to the demand residual.30 

We then use this demand appeal metric as a dependent variable and examine whether past 

experimentation is related to it. As before, we capture the temporal complementarity between product 

upgrading and horizontal diversification by interacting the cumulative number of upgrade experiments 

                                         
30 In our setting, Khandelwal’s “outside good” is an amalgam of  cotton yarns of  all other counts. 



 30 

and the fraction of low-end products in the total number of product varieties produced by a firm. The 

estimation equation is:  

𝑦𝑦𝑖𝑖𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 + 𝛽𝛽2𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 + 

                        𝛽𝛽3𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 × 𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 + 𝛽𝛽4𝑋𝑋𝑖𝑖𝑡𝑡 + ∆𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡,               (3) 

where 𝑦𝑦𝑖𝑖𝑡𝑡 is the quality (demand appeal) measure of firm i’s 20 count at time t constructed as above; 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢_𝑢𝑢𝑒𝑒𝑢𝑢𝑖𝑖𝑡𝑡 is the cumulative number of upgrade experiments conducted by the firm up to 

time t; 𝑐𝑐𝑙𝑙𝑙𝑙_𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑖𝑖𝑡𝑡 is the fraction of low-end products in the total number of products the firm makes; 

and 𝑋𝑋𝑖𝑖𝑡𝑡 is a set of control variables including indicators for the firm employing a university-educated 

engineer or having a merchant as a board member, the growth rates of high-end and low-end machine 

capacity between t and t+1, and firm age. As in the growth regression (2), the parameters of interest 

are 𝛽𝛽1  and 𝛽𝛽3 . If experimentation with vertical product upgrading (the complementarity between 

experimentation with vertical product upgrading and product diversification) positively affects the 

demand appeal of 20-count yarn, we expect 𝛽𝛽1 (𝛽𝛽3) to be positive. 

--- Tables 9A-9C around here --- 

Table 9C presents the results. A firm’s upgrade experiments and their interaction with 

subsequent low-end product diversification are positively related to the firm-specific demand appeal 

in 20-count yarn. The estimated magnitude is largest when we instrument for upgrade experimentation, 

similarly to Table 7 above. Interestingly, the coefficient on the indicator for a firm employing a 

university-educated engineer is also positive and statistically significant in all specifications. 

Engineering talent apparently is independently associated with demand appeal. 

Historical materials provided us with an opportunity to check the external validity of our 

estimation by comparing our quality measure to quality rankings of 20-count yarns published by the 

Osaka Three Articles Exchange in 1907. As can be seen from Figure A5 in appendix A.9, the two 

quality indices are by and large consistent with each other, with a correlation of 0.69. We also have 

evidence of importance attached by top firms to quality from frequent mentioning of quality-related 

issues in notices (Shihainin Kaisho) sent out by Sanji Muto (top executive of Kanegafuchi Spinning 

Company) to managers of various mills owned by the company.31 

 
7. Robustness 

                                         
31 For instance, in a notice letter dated May 24, 1902 and addressed to the manager in charge of  a recently acquired 
Suminodo mill Muto cited a complaint from a customer about the quality of  the yarn from that mill being inferior to the 
flagship Hyogo mill and instructed to improve the product quality. 
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7.1 Survival rates 

Our results indicate that firms that installed high-end machines and conducted product 

upgrade experiments grew faster. While this might seem to reflect a superior outcome for firms, it is 

possible that upgrade experimentation actually increased the variance of outcomes rather than raising 

their mean. If so, we would observe faster growth conditional on survival, but this would be balanced 

against a lower chance of surviving for experimenting firms. While such a variance increase might still 

be preferable for firms (limited liability companies are essentially a call option, after all), this is a 

qualitatively different mechanism than one where upgrade experimentation simply raises expected 

growth. To explore this possibility, we investigate survival patterns in our data. 

In Table 10, we present summary statistics on the status of firms at the end of our sample in 

1914. A total of 33 firms survived to the end of the sample. Of these, 19 (58 percent) had high-end 

machines. This compares to 42 of 105 firms for which we have machine data (40 percent) having 

high-end machines over the entire sample. Firms with high-end machines therefore had a substantially 

higher probability of survival. This is inconsistent with product upgrade experimentation primarily 

increasing the variance of firms’ growth rates. 

Moreover, among the 72 firms that left the sample, we can distinguish exits by acquisition (53 

firms) and liquidation (19 firms). Firms that exit by acquisition are more likely to have high-end 

machines than firms that shut down, as seen in the table. High-end machines not only were associated 

with a greater chance of acquisition, but they also improved shareholders’ returns conditional on being 

acquired. We have data on acquisition prices for 46 acquisition cases. In 18 of these cases, the acquired 

firm had high-end machines. We computed the “salvage fraction” of shareholders paid-in capital by 

dividing the acquisition price by the shareholders paid-in capital. The mean salvage fraction was 1.04 

for acquired firms with high-end machines but only 0.70 for those that did not (a statistically significant 

difference at the 5 percent level). 

--- Table 10 around here --- 

 
7.2 Mergers and acquisitions 

Firms can expand the range of their product varieties and scale up production through mergers 

and acquisitions (M&A). Here we examine the possibility that M&A generate some of the patterns of 

complementarity between product upgrading and diversification we document above. 

Using the industry M&A data from our earlier work (Braguinsky et al., 2015), we find that new 

product introductions do increase at the time of acquisition events (the probability of a product 
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addition increases by about 25 percent), but acquisitions themselves are rare events compared to 

product introduction events. As a result, just 3.6 percent of new product introductions in our sample 

coincide with an acquisition event. Thus, while there is some uptick in new product introductions at 

the time of acquisitions, acquisitions played a minor role in product variety expansion during our 

sample. Also, if we include an acquisition event dummy in growth regressions like those in Table 6 

above, the coefficient is not statistically significant at conventional significance levels. In growth 

regressions similar to Table 7, acquisitions are positively related to firm growth (as to be expected), 

but the effect of temporal complementarity between product upgrading and diversification on firm 

growth remains qualitatively unchanged even after controlling for merger and acquisition events. 

 
7.3 Market competition 

Increased competition in high-end product markets over time might induce firms to renew 

their attention to low-end product markets. This presents a potential alternative explanation for the 

“first experiment with upgrades, then turn to diversification” temporal relationship seen several ways 

above. We examine several market competition measures from our data to look for suggestive 

evidence regarding this hypothesis. 

Figure A6 in appendix A.10 depicts the evolution of the market shares of firms operating in 

low- and high-end product markets, the industry-level ratio of high-end to low-end output, and the 

average real price of 20-count yarns (as a proxy for the average price of low-end products). While the 

fraction of firms producing in low-end product markets is stable throughout our sample period after 

some initial volatility, the fraction of firms in high-end product markets increases sharply between 

1899 and 1904 and fluctuates thereafter. Our decomposition analysis in Table 2, on the other hand, 

showed that most of the product variety expansion into low-end product markets took place after 

1907, so the timing of product variety expansion into low-end product markets and the timing of rapid 

entry (and increased competition) in high-end product markets do not match. Also, after falling 

sharply in the 1890s, the average real price of 20 count yarns fluctuates around 60-70 yen after that, 

without any discernible upward or downward trend. Thus, it is difficult to infer that low-end product 

markets became more attractive after 1907, when firms started expanding low-end product varieties 

and scaling their production. 

We also conducted firm-level regression analysis with new product introductions as the 

dependent variable, and the number of firms in low-end and high-end product markets as well as the 

average real price of 20-count yarns as explanatory variables. None of these variables were related to 
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new product introductions at conventional significance levels. Overall, we do not see much supportive 

evidence for the hypothesis that heightened competition in high-end product markets pushed firms 

toward low-end product markets. 

 
7.4 The role of  exports 

We explored whether the motive to operate in export markets might have driven both upgrade 

experimentation and firm growth. 

As has been observed in many other settings in the literature, firms that export in our sample 

are larger on average than non-exporting firms. However, cotton spinning firms that export more (as 

a share of their output) produce fewer product varieties, especially high-end varieties. Hence it does 

not appear that exporting was a driving factor in our results above. 

The nature of industry exports during our sample explains this. Japanese cotton spinners 

successfully drove out imports and started exporting low-end products to East Asian markets during 

the 1890s. During those years, and to a large degree after that as well, exports were concentrated in a 

few low-end products (especially S-twist 16 count and Z-twist 20 count yarn). Major exporting firms 

tended to focus on scaling their output in and around these product varieties. More often than not, 

they chose to forgo opportunities in high-end markets. 

 
8. Conclusions and Discussion 

Using detailed historical panel data from the Japanese cotton spinning industry, we find firm 

growth is associated with increased number of product varieties, but the identity (type) of product 

varieties matters. High-growth firms followed a particular pattern of product variety expansion. They 

first went outside of their existing technological frontiers and experimentally introduced innovative 

products, sometimes successfully but often not. Either way, they subsequently increased the number 

of product varieties they produced inside their frontier. In other words, they first engaged in attempted 

vertical product differentiation and, later, horizontal differentiation. 

The consistency of this pattern reflected spillovers that product upgrade experiments had onto 

the horizontal diversification of firms’ product sets. Experimentation required firms to overcome 

technological constraints and cope with uncertainty by investing in new types of machines and hiring 

educated engineers. These newly developed inputs and their associated technical knowledge were 

broadly applicable—useful not just for upgrading but also for producing new varieties within the firms’ 

existing technological capabilities. This process was the major driver of industry firms’ growth. In 

contrast, conducting only horizontal product diversification (experiments) without upgrade 
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experiments did not generally lead to sustained growth in either the number of product varieties 

produced or output. 

We identified at least two specific channels through which accumulated technical knowledge 

contributed to higher firm growth throughout the product space: increased flexibility of the 

production system and improved quality (demand appeal) of low-end products. Both of these were 

strongly tied to product upgrade experimentation. 

Standard models do not consider the relationship between product variety expansion and firm 

growth uncovered in our study. Models of endogenous growth through product variety expansion 

(e.g., Romer, 1990) predict that high-growth firms are those that keep introducing new product lines, 

all of which are of the same type. Quality ladder models (e.g., Grossman and Helpman, 1991; Klette 

and Kortum, 2004) predict that high-growth firms are those that keep generating innovative products 

which are upgrades over existing versions, but vertical differentiation happens only within, not across 

product lines, and innovation is often untargeted. In both these versions of endogenous growth theory, 

any past product introduction contributes to the accumulation of knowledge capital and serves as a 

determinant of future product expansion and firm growth. In our setting, in contrast, introducing 

technologically more challenging products relates much more strongly to growth than simple 

horizontal product proliferation. This highlights the importance of incorporating into analytical 

frameworks heterogeneity in the particular ways and directions product variety expansion occurs. 
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Figures and Tables  
 

Figure 1.  
Panel A. Dynamics of  output    Panel B. Dynamics of  the number of   

and number of  product varieties per firm  high-end and low-end product varieties per firm 

 
Source: Our calculations using the data described in the main text and in the appendix. The number of products per firm 
is weighted by firm’s share in total industry output at any given time. The trendline is fitted by a third-degree polynomial 
although second-degree and fourth-degree polynomials produce very similar pictures. 
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Table 1. Breakdown of product lines and products by experimental and nonexperimental 
 

Panel A. Product lines    
 All (1) Fraction in total Never scaled (2) Ratio: (2)/(1) 
New product lines  685 1.000 271 0.396 
Of which: never experimental 246 0.359   
                 initially experimental 439 0.641 271 0.617 
Of which: Upgrade lines 76 0.111 33 0.434 
     
Panel B. Experimental products   
 All “Successful” (scaled) “Failed” (not scaled) Fraction “failed” 
All experimental products 819 223 596 0.728 
Of which: upgrade experiments 116 42 74 0.638 
               diversification 

 
703 181 522 0.743 

Fraction upgrades 0.142 0.188 0.124  
Source: Our calculations using the data described in the main text and in the appendix. “New” product lines are those 
that were not in the firm’s set of product varieties produced at entry or at the time of the first observation. 
 

 

 

Table 2. Decomposition analysis  
 Total change Composition  Within (Deviation from own average) 
Period   Total Continuing firms Entrants Exiting firms 
1893.2-1914.2 9.0 3.3 5.6 6.7 -0.2 -0.8 
1893.2-1906.2 2.5 1.6 0.9 1.0 -0.3 0.1 
1907.1-1914.2 6.4 1.7 4.7 5.6 0.0 -0.9 

Source: Our calculations using the data described in the main text and in the appendix.  
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Table 3. Product variety expansion as a function of  past upgrade experiments 

Panel data estimation with firm fixed effects. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
 

Table 4. Firms with and without high-end machines: Market ties, educated engineers, and 
experimental v. non-experimental product introductions 

 High-End Machines No High-End 
Machines 

Fraction of firms with a merchant as a board member 0.71 0.57 
Number of university-educated engineers employed 1.61 0.14 
Number of technical college-educated engineers employed 4.76 0.72 
New experimental product introductions: All 0.60 0.25 

Of which, fraction that are successful 0.22 0.34 
New experimental product introductions: Upgrade 0.10 0.03 

Of which, fraction that are successful 0.32 0.36 
New experimental product introductions: Diversification 0.50 0.22 

Of which, fraction that are successful 0.18 0.35 
New non-experimental product introductions: All 0.11 0.11 
New non-experimental product introductions: Upgrade 0.06 0.01 
New non-experimental product introductions: Diversification 0.05 0.09 

Notes: The differences in means of new experimental product introduction are highly statistically significant between firms 
with and without high-end machines using double-sided t-test. The differences in means of fractions of successful 
experiments are not statistically significant for upgrading whereas they are statistically highly significant for diversification. 
The differences in the fraction of firms with a merchant as a board member and in the means of the number of university- 
and technical college-educated engineers are highly statistically significant between firms with and without high-end 
machines. 

VARIABLES 

DV: # of all 
products at 

t+1, minus # 
of all 

products at t 

DV: # of 
high-end 

products at 
t+1, minus # 
of  high-end 
products at t 

DV: # of 
low-end 
products at 
t+1, minus # 
of low-end 
products at t  

DV: # of all 
products at 

t+1, minus # 
of all 

products at t 

DV: # of 
high-end 

products at 
t+1, minus # 
of  high-end 
products at t 

DV: # of 
low-end  
products at 
t+1, minus # 
of low-end  
products at t  

 (1) (2) (3) (4) (5) (6) 
Cumulative number of upgrade 
experiments at t-1 

0.331*** 0.172*** 0.179** 0.293*** 0.148** 0.162** 
(0.102) (0.062) (0.085) (0.101) (0.062) (0.076) 

Cumulative number of diversification 
experiments at t-1 

0.039 0.013 0.026 0.046 0.014** 0.031 
(0.044) (0.008) (0.039) (0.041) (0.007) (0.037) 

Dummy equal to 1 if high-end machine 
expansion between t-1 and t 

   0.818*** 0.479*** 0.344*** 
   (0.175) (0.116) (0.115) 

Dummy equal to 1 if low-end machine 
expansion between t-1 and t 

   0.122 -0.084 0.206* 
   (0.118) (0.074) (0.117) 

Dummy =1 if university-educated 
engineer employed at t 

   0.145 0.206 -0.045 
   (0.228) (0.134) (0.175) 

Dummy =1 if merchant a member of 
board at t 

   0.178 -0.040 0.218* 
   (0.164) (0.063) (0.124) 

Number of all products at t  -0.381***   -0.397***   
(0.040)   (0.039)   

Number of high-end products at t 
 -0.412***   -0.427***  
 (0.048)   (0.045)  

Number of low-end products at t 
  -0.383***   -0.392*** 
  (0.044)   (0.045) 

Constant 2.900*** 0.788*** 2.155*** 2.657*** 0.742*** 1.924*** 
(0.587) (0.257) (0.527) (0.595) (0.250) (0.534) 

Semiannual time and observation 
 

Included Included Included Included Included Included 
Firm FE Included Included Included Included Included Included 
Observations 1,509 1,509 1,509 1,509 1,509 1,509 
Within R-squared 0.221 0.235 0.228 0.237 0.256 0.236 
Number of firms 95 95 95 95 95 95 
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Table 5. Factors affecting the number of experiments a firm started during period t 
 
Panel A. DV: Product upgrade experiments 

 (1) (2) (3) (4) (5) (6) 

VARIABLES All firms Firms with high-end 
machines 

Dummy equal to one if had high-end 
machines in period t 

1.066***      
(0.378)      

Dummy equal to 1 if high-end 
machine expansion during period t 

 1.387***  0.700* 0.943*** 0.295 
 (0.305)  (0.379) (0.343) (0.362) 

Interaction term between high-end 
machines expansion and mandated 
output cuts dummies during period t 

   1.111*  1.846*** 
   (0.588)  (0.603) 

Dummy equal to 1 if low-end 
machine expansion during period t 

 -0.002  -0.132 -0.039 -0.045 
 (0.334)  (0.374) (0.420) (0.431) 

Dummy =1 if university-educated 
engineer employed at t 

  0.715* 0.565  0.485 
  ((0.408) (0.421)  (0.494) 

Dummy =1 if merchant a member of 
board at t 

  1.521*** 1.455***  1.666*** 
  (0.432) (0.416)  (0.547) 

Firm age 
0.007 0.017 -0.009 -0.012 0.002 -0.036 

(0.026) (0.023) (0.030) (0.031) (0.028) (0.032) 

Constant 
-2.396*** -2.251*** -3.501*** -3.437*** -1.602*** -3.097*** 

(0.485) (0.410) (0.580) (0.547) (0.487) (0.815) 
Semi-annual time dummies Included Included Included Included Included Included 
Observations 1,618 1,618 1,618 1,618 701 701 

 
Panel B. DV: Product diversification experiments 

 (1) (2) (3) (4) (5) (6) 

VARIABLES All firms Firms with high-end 
machines 

Dummy equal to one if had high-end 
machines in period t 

0.941***      
(0.209)      

Dummy equal to 1 if high-end 
machine expansion during period t 

 1.099***  0.830*** 0.746*** 0.582* 
 (0.210)  (0.300) (0.212) (0.297) 

Interaction term between high-end 
machines expansion and mandated 
output cuts dummies during period t 

   0.059  0.288 
   (0.423)  (0.424) 

Dummy equal to 1 if low-end 
machine expansion during period t 

 0.236  0.148 0.138 0.072 
 (0.215)  (0.218) (0.260) (0.257) 

Dummy =1 if university-educated 
engineer employed at t-1 

  0.846*** 0.743***  0.675*** 
  (0.182) (0.177)  (0.211) 

Dummy =1 if merchant a member of 
board at t-1 

  0.456** 0.387**  0.442* 
  (0.180) (0.163)  (0.268) 

Firm age 
-0.024 -0.018 -0.040** -0.040** -0.025 -0.048** 
(0.017) (0.017) (0.018) (0.017) (0.020) (0.019) 

Constant 
-1.150*** -1.015*** -1.440*** -1.497*** -0.244 -0.997** 

(0.319) (0.323) (0.330) (0.305) (0.386) (0.489) 
Semi-annual time dummies Included Included Included Included Included Included 
Observations 1,618 1,618 1,618 1,618 701 701 

Poisson regression with the number of upgrade experiments started in period t as the dependent variable. Robust 
standard errors clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Note: mandated output cuts 
measure does not vary within periods and is therefore absorbed by the semi-annual time dummies. 
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Table 6. Firm growth and complementarity between product innovation and diversification:  
Panel estimation 

 
 DV: Ln(output) at t+1, minus Ln(output) at t 

  (1) (2) 

Cumulative number of upgrade experiments at t 0.021 
(0.013) 

-0.001 
(0.011) 

Cumulative number of upgrade experiments x 
fraction of low-end products at t 

 0.040** 
(0.019) 

Fraction of low-end products in total number of 
products at t 

-0.018 
(0.066) 

-0.105 
(0.080) 

Dummy = 1 if university-educated engineer at t 0.097** 
(0.042) 

0.102** 
(0.042) 

Dummy = 1 if merchant board member at t 0.017 
(0.025) 

0.017 
(0.026) 

Logged installed high-end spindles in t+1, minus 
logged installed high-end spindles in t 

0.013* 
(0.007) 

0.013* 
(0.007) 

Logged installed low-end spindles in t+1, minus 
logged installed low-end spindles in t 

0.000 
(0.015) 

0.000 
(0.015) 

Ln(output) at t -0.308*** 
(0.048) 

-0.312*** 
(0.048) 

Constant 2.497*** 
(0.356) 

2.605*** 
(0.369) 

Semiannual time dummies Included Included 
Firm FE Included Included 
Observations 1,608 1,608 
R-squared 0.325 0.326 
Number of firms 99 99 

Fixed-effect panel estimations.  Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
Note: because high-end and low-end capacity can take values of zero, we have applied the inverse hyperbolic sine 
transformation, 𝑧𝑧 = 𝑐𝑐𝑙𝑙𝑢𝑢�𝑦𝑦 + �1 + 𝑦𝑦2�, where y is the actual number of spindles to obtain “Logged installed high-end 
spindles” and “Logged installed low-end spindles” in the table above. We apply the same transformation in Table 7 and 
Table 8B below.  
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Table 7. Firm growth and complementarity between product innovation and diversification:  
IV estimation 

 
 DV: number of upgrade 

experiments started at t 
DV: Ln(output) at t+1, minus 

Ln(output) at t 
VARIABLES First stage “Placebo test” Second stage 
 (1) (2) (3) (4) 
     Cumulative number of upgrade experiments   0.012 

(0.007) 
-0.014 
(0.009) 

Fraction of low-end products in total number 
of products 

-2.371*** 
(0.463) 

-2.360*** 
(0.461) 

-0.029 
(0.027) 

-0.080** 
(0.034) 

Cumulative number of upgrade experiments x 
fraction of low-end products 

   0.081*** 
(0.020) 

Fraction of output cuts enforced at t x Logged 
installed high-end spindles in t+1, minus 
Logged installed high-end spindles in t 

2.539*** 
(0.647) 

   

Fraction of output cuts enforced at t x Logged 
installed low-end spindles in t+1, minus 
Logged installed low-end spindles in t 

 -0.040 
(0.565) 

  

Logged installed high-end spindles in t+1, 
minus Logged installed high-end spindles in t 

-0.132 
(0.095) 

0.039 
(0.092) 

0.019*** 
(0.007) 

0.019*** 
(0.007) 

Logged installed low-end spindles in t+1, 
minus Logged installed low-end spindles in t 

0.121* 
(0.065) 

0.103 
(0.078) 

0.014 
(0.016) 

0.012 
(0.016) 

Dummy = 1 if university-educated engineer at 
t 

-0.682 
(0.524) 

-0.627 
(0.513) 

0.064*** 
(0.025) 

0.071*** 
(0.025) 

Dummy = 1 if merchant board member at t 0.980** 
(0.385) 

1.025*** 
(0.385) 

0.025 
(0.018) 

0.022 
(0.019) 

Logged total firm output at t 0.578*** 
(0.180) 

0.519*** 
(0.185) 

-0.030** 
(0.014) 

-0.046*** 
(0.015) 

Firm age 0.051 
(0.032) 

0.053 
(0.033) 

-0.006*** 
(0.002) 

-0.009*** 
(0.002) 

Constant -4.920*** 
(1.534) 

-4.568*** 
(1.550) 

0.503*** 
(0.122) 

0.681*** 
(0.136) 

Semiannual time dummies Included Included Included Included 
Observations 1,608 1,608 1,608 1,608 
Log pseudolikelihood (Adj. R-squared) -273.2 -277.3 0.170 0.177 
Estimation Poisson Poisson IV IV 
First stage: Poisson regression with robust standard errors clustered at the firm level. Second stage: OLS with standard 
errors clustered at the firm level from bootstrap (1,000 replications). *** p<0.01, ** p<0.05, * p<0.1. Cumulative 
number of upgrade experiments is an instrumented variable in the IV estimations. Note: mandated output cuts measure 
does not vary within periods and is therefore absorbed by the semi-annual time dummies.  
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Table 8A. Product upgrade experiments and production system flexibility 
 

DV: Portfolio rebalancing 
VARIABLES Within-count Across-count 

Cumulative number of upgrade experiments at t-1 0.241*** 0.153* 
(0.083) (0.085) 

Cumulative number of diversification experiments at t-1 0.022 0.012 
(0.016) (0.024) 

Dummy = 1 if university-educated engineer at t 0.190 -0.091 
(0.152) (0.293) 

Dummy = 1 if merchant board member at t 0.084 0.154 
(0.098) (0.170) 

Dummy equal to 1 if high-end machine expansion during 
period t 

0.184 0.258** 
(0.141) (0.122) 

Dummy equal to 1 if low-end machine expansion during 
period t 

0.171 -0.003 
(0.127) (0.111) 

Total output (thousands of tons, adjusted to 20-count) 
during period t 

-0.033 -0.138*** 
(0.035) (0.038) 

Constant 0.447* 1.122*** 
(0.250) (0.310) 

Observations 1,605 1,605 
Semiannual time dummies and firm dummies Included Included 
Number of firms 99 99 
R-squared 0.085 0.068 

 
Table 8B. Portfolio rebalancing and growth 

VARIABLES DV: Ln(output) at t+1 minus Ln(output) at t 
Change in the number of within-count portfolio  0.010**  
rebalancing from t to t+1 (0.004)  
Change in the number of across-count portfolio   0.012*** 
rebalancing from t to t+1  (0.004) 
Dummy = 1 if university-educated engineer at t 0.103** 0.103** 

(0.041) (0.041) 
Dummy = 1 if merchant board member at t 0.011 0.008 

(0.026) (0.025) 
Logged installed high-end spindles in t, minus 
Logged installed high-end spindles in t-1 

0.014* 0.014* 
(0.007) (0.007) 

Logged installed low-end spindles in t, minus 
Logged installed low-end spindles in t-1 

-0.002 -0.002 
(0.015) (0.015) 

Logged total output at t -0.298*** -0.296*** 
(0.048) (0.047) 

Constant 2.409*** 2.400*** 
(0.340) (0.335) 

Observations 1,608 1,608 
Semiannual time dummies and firm dummies Included Included 
Number of firms 99 99 
R-squared 0.324 0.326 

Fixed-effect panel estimations. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 9A. 20-count demand estimation, First stage 
 

 DV: Logged 20-count price 
Estimation Instrumental regression  Placebo test 
Number of across-count portfolio rebalancing (between 17-48 
counts) 

-0.002**  
(0.001)  

Number of across-count portfolio rebalancing (between 17-48 
counts), interacted with mandatory output cuts 

0.032***  
(0.007)  

Number of within-count portfolio rebalancing (between 17-48 
counts)  -0.001 

(0.001) 
Number of within-count portfolio rebalancing (between 17-48 
counts), interacted with mandatory output cuts measure  0.005 

(0.006) 
Constant 4.897*** 4.895*** 

(0.027) (0.028) 
Semiannual time dummies and firm dummies Included Included 
Observations 743 743 
R-squared 0.984 0.983 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Note: mandated output cuts measure does not 
vary within periods and is therefore absorbed by the semi-annual time dummies. 
 
 

Table 9B. 20-count demand estimation, Second stage 
 

 DV: Logged market share of 20 count 
Instrumented logged 20-count price -5.407 

(6.136) 
Constant 16.932 

(30.047) 
Semiannual time dummies and firm dummies Included 
Observations 743 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Instruments: number of across-count portfolio 
rebalancing and number of across-count portfolio rebalancing interacted with mandatory output cuts measure as 
explained in the main text. 
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Table 9C. Product upgrade experiments and quality of 20 count products 
 

  DV: Khandelwal (2010)-style measure of 20-count quality 
VARIABLES (1) (2) (3) (4) 

Estimation OLS IV 

Cumulative number of upgrade experiments at t 0.067*** -0.037   
(0.026) (0.081)   

Cumulative number of upgrade experiments x 
fraction of low-end products at t 

 0.158   
 (0.114)   

Cumulative number of upgrade experiments at t 
(instrumented) 

  0.503*** -0.101 
  (0.062) (0.217) 

Cumulative number of upgrade experiments x 
fraction of low-end products at t (instrumented) 

   0.925*** 
   (0.320) 

Fraction of low-end products in total number of 
products at t 

0.884*** 0.803*** 1.532*** 1.028*** 
(0.289) (0.294) (0.289) (0.364) 

Dummy = 1 if university-educated engineer at t 0.989*** 1.001*** 0.763*** 0.762*** 
(0.118) (0.119) (0.116) (0.117) 

Dummy = 1 if merchant board member at t 0.189* 0.167 0.027 -0.056 
(0.112) (0.112) (0.107) (0.110) 

Logged installed high-end spindles in t+1, minus 
Logged installed high-end spindles in t 

0.055 0.051 0.050 0.046 
(0.036) (0.037) (0.039) (0.038) 

Logged installed low-end spindles in t+1, minus 
Logged installed low-end spindles in t 

0.291 0.283 0.212 0.213 
(0.305) (0.304) (0.308) (0.303) 

Firm age -0.018* -0.018* -0.052*** -0.060*** 
(0.010) (0.010) (0.011) (0.012) 

Constant 3.068** 3.174** 2.630* 3.199** 
(1.413) (1.415) (1.400) (1.420) 

Semiannual time dummies Included Included Included Included 
Observations 721 721 721 721 
R-squared 0.492 0.493 0.522 0.527 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. “Khandelwal-style” quality measure is calculated 
at the firm-observation level, as the sum of firm and time fixed effects and the residuals from the regression of logged 
market share of 20 count on instrumented logged 20-count price, as detailed in the main text. 
 

 

 

 

Table 10. Firm survival 
  

Numbers of: Surviving firms Exiting firms; of which: Total    
By acquisition Shut down 

 

Had high-end 
machines 

Yes 19 22 1 42 
No 14 31 18 63 

Total 
 

33 53 19 105 
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Appendix—For Online Publication 
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A.1 Data construction  

A.1.1. Product varieties data 
Our data source for firm-level output by product varieties comes from bulletins (“Geppo”) published 

by the All-Japan Cotton Spinners’ Association (“Boren,” using its name’s abbreviation in Japanese). These 
bulletins were issued monthly, starting from 1889 (even earlier data are available from government statistics, 
starting from 1883), and they, in particular, contained firm-level input and output data for all members of the 
Association which was basically the universe of all firms operating in the industry at any time. The first time 
the breakdown of output by product varieties was added to the bulletins was May 1893. Since then, the data 
have been published continuously in dedicated tables in each issue. We have coded all such tables until 
December 1914 which is the end of our sample. Photo 1 presents a table showing output by product varieties 
by each firm for December 1906. 
 

Photo 1. Output by product varieties table, December 1906. 
 

 
Source: Geppo, No. 173, Jan. 25, 1907. 
 
A.1.2. Engineers data 

The information about university-educated engineers was obtained from restricted-use alumni lists, 
Gakushikai Kaiinroku compiled by Gakushikai (The University Graduates’ Society), the association of the alumni 
of Imperial Universities, containing information about addresses and workplaces of the graduates. Until 1897 
Tokyo Imperial University was the only one. In 1897 Kyoto Imperial University was founded and its first cohort 
graduated in 1901. Two more Imperial Universities were founded in 1907 and 1911 but there were no graduates 
of the last one available to the industry at the end of our sample (1914) as yet.  

The above information was verified and supplemented, especially for earlier years, from chapters 
dedicated to the history of each firm in Kinugawa (1964) and from published company histories (Kanebo, 1988; 
Unitika, 1989; Toyobo, 1986; Fujibo, 1998, Shikibo, 1968, Kurabo, 1953). Engineers educated in British 
universities, in particular, were identified from these industry history sources and added to the list of graduates 
of Japanese Imperial Universities. 

For technical college graduates, we used annual Ichiran (Catalogs) (Tokyo Koto Kogyo Gakko Ichiran, Kyoto 
Koto Kogei Gakko Ichiran, Osaka Koto Kogyo Gakko Ichiran, Nagoya Koto Kogyo Gakko Ichiran, Kumamoto Koto Kogyo 
Gakko Ichiran, and Sendai Koto Kogyo Gakko Ichiran), which contain the lists of alumni with their current 
workplaces, and picked up all graduates of mechanical engineering and dyeing departments who worked in one 
of the firms in our sample in any given year.  The first technical college was established in Tokyo in 1881, the 
second one in Osaka, in 1896. By the end of our sample there was the total of six technical colleges that already 
had alumni working in the industry; all those alumni data were coded and added to the database of educated 
engineers employed by cotton spinning firms. 
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A.1.3. Board members and merchants data 
About 90 percent of firms in our sample (and all significant firms) were public (joint stock) companies, 

obligated to issue shareholders’ reports every half a year (see Braguinsky et al., 2015, and Agarwal et al., 2020, 
for details). We have photocopied and processed 1,443 reports on 106 firms (Kokajo, 1883-1914), all such 
reports that we could find surviving until the present day.32 Each report, in particular, contains a list of all 
shareholders and board members (“torishimariyaku”) of the company issuing it. For privately held firms as well 
as in cases where some shareholders reports of incorporated firms were missing in the archival data, we 
supplemented this with information from the All-Japan Registry of Firms Executives (“Yakuinroku”), the first 
issue of which was published in 1893. We coded and reconciled the information on the members of the boards 
across these two sources, and also cross-checked the data by using information in company histories (Kinugawa, 
1964; Kanebo, 1988; Unitika, 1989; Toyobo, 1986; Fujibo, 1998, Shikibo, 1968, Kurabo, 1953), and in Geppo. 

The data published in “Yakuinroku” (above) were used to extract the names and addresses of  board 
members of  the four incorporated cotton yarn-related trade companies (Naigai Wata, Nihon Menka, Nitto 
Menshi and Mitsui Bussan), while the data contained in the 1943 brief  history of  Osaka Three Article Exchange 
(“Sampin Shoshi”) were used to extract the names of  board members and traders registered at this most 
important exchange dealing with cotton and cotton yarn in each year. The data in four available editions of  
Nihon Zenkoku Shoko Jinmeiroku, a nationwide registry of  traders and manufacturers (for 1892, 1898, 1907, and 
1914), were utilized to extract the names and addresses of  individual merchants likely to play the most 
prominent role in cotton spinners’ output markets; that is, traders in cotton yarn and cotton yarn-woven 
garments who paid business taxes exceeding a certain threshold (10-15 yen, depending on the year). We 
considered all these individuals to be potential providers of  market knowledge (“market ties”) for cotton 
spinning firms; hence, we matched their names and addresses to the names and addresses of  cotton spinning 
firms’ executives. Through this process (which involved both a computer algorithm and a manual re-check), we 
identified 55 executives of  incorporated cotton yarn-related trade companies and board members and registered 
traders at the Osaka Three Articles Exchange, as well as 172 significant individual traders who were also board 
members in cotton spinning firms and created panel data reflecting their presence as an executive board 
member in firm i at time t. The variable “merchant as a board member” used in the main text takes value of  
one if  at least one such merchant was identified to be a member of  the executive board of  firm i at time t and 
zero otherwise. 

 
A.1.4. Machine capacity data 

The data on machine capacity (the number of spindles installed by firm i at time t) were compiled and 
validated by cross-checking from three sources. The first source is the already mentioned semiannual 
shareholders’ reports (Kokajo, 1883-1914), which often contained inventory of all property owned by the firm, 
including details about machines (number of spindles, their basic type––ring, mule or doubling––and the name 
of the manufacturer, such as Platt Brothers of Oldham, etc.). In some cases, however, those detailed inventories 
were not included, or the reports themselves may be missing. “Enkakukiji” (1901) contains the details of all 
installation and decommissioning of machines by cotton spinning firms from the inception of the industry and 
until 1901, while “Sankosho” (1903-1914), a semiannual bulletin published by Boren parallel to Geppo, contains 
the details about machines (number of spindles and their basic type, although not the name of the manufacturer) 
starting from 1903. Combining and manually cross-checking the data from these three sources, we were able 
to construct the full panel with the number of spindles installed by each firm at each point in time during our 
sample. 
A.1.5. Machine orders from British manufacturers 

We collected and processed archival data on machine orders by Japanese cotton spinning firms placed 
with British textile machine manufacturers and preserved in Lancashire archives from the earliest such orders 
and until 1914. As mentioned in the main text, the same data collected by the late Gary Saxonhouse are archived 
on the ICPSR website (Wright, 2011). We had to collect and re-process these data once again because there 

                                         
32 We are grateful to Osaka University library and Prof. Takeshi Abe, its academic director at the time; to Yoshiyuki 
Murakami, head of  the company history division of  Toyo Boseki at the time (now retired); and to Kobe University 
Kanematsu Collection for their cooperation in allowing us to photocopy company reports used in this research. 
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were no original photos and firm names were missing from the ICPSR files, making it impossible to perform 
firm-level matching to Japanese sources of capacity data described above.33  The total number of orders we 
collected and processed was 430. In Photos 2 and 3 below we present two representative orders placed with 
Platt Brothers of Oldham around the same time (Spring-Summer 1896) by two different Japanese firms. As can 
be seen, machines were custom-made, and each order contains the number of frames ordered, the number of 
spindles per frame (so that the total number of new spindles being ordered can be calculated), as well as detailed 
technical characteristics, additional hand-written notes taken by British engineers presumably during 
consultations with the client Japanese firms, the dates the order was taken and when machines were booked 
(shipped), in multiple installments.  

The technical characteristics of machines specified in the orders allow us to differentiate between types 
of products they were designed to produce, types of inputs required, and other technological nuances. For 
example, the order in Photo 2 lists “Numbers to be Spun Av” as 42s. This is a “high-end” product in our 
classification and, hence, the machines that came with this order are high-end machines. We also know from 
the product varieties data (as well as from industry and firm history) that at the time, Amagasaki was beginning 
to scale its output of 42 count doubled yarn first introduced on experimental basis only a few years earlier. We 
can also see from the same photo that cotton input is described as Good American and that hank roving is 
listed as 6 ½ double. Thus, we can indeed see that high-end machines designed for vertically upgraded products 
required dedicated inputs and technologies (compare to Photo 3 discussed immediately below). In the particular 
case of this order, we also have a description of how it actually happened in the company history (Unitika, 1989, 
p. 13). Amagasaki’s chief engineer, Kyozo Kikuchi (one of a few educated engineers employed by Japanese 
cotton spinning firms at the time), personally went to England to discuss the details of the order with the British 
engineers, traveling before that to the U.S. to examine the technology for producing 42 count doubled yarn, 
including comparing between Good and Middling cotton––and reaching the conclusion about using Good 
cotton. 

 
Photo 2. High-end machines order placed by Amagasaki Spinning in July 1896 

 
Source: The Platt Collection, Lancashire Archives, Lancashire City Council, Preston, U.K. 

  

                                         
33 Our newly collected and processed data, including photos of  the originals, are publicly available from NBER Industry, 
Productivity, and Digitalization Data Library (http://www.nber.org/data). 

http://www.nber.org/data)


 49 

Photo 3 presents another typical order, by Fukushima Spinning, for 4,992 spindles (13 frames with 384 
spindles in each frame). In this order, “Numbers to be Spun Av” are 10’s-20’s, with average 14’s. In line with 
this, cotton input is listed as Indian, Japanese, and Chinese while hank roving is 2 5/8 single. We therefore 
classify the machines in this order as “low-end machines” since they were not designed or intended to be used 
for high-end, vertically upgraded products. (Fukushima Spinning actually never produced high-end products 
during our sample.) 

 
Photo 3. Low-end machines order placed by Fukushima Spinning in May 1896 

 
Source: The Platt Collection, Lancashire Archives, Lancashire City Council, Preston, U.K. 
 
A.1.6. Hand-matching machine capacity panel data with technical characteristics of machines 

There were three major sources of changes to machine capacity owned by Japanese firms over the 
sample that are identifiable in the data. The first such source was the installation of new machines ordered from 
Britain. To illustrate how we matched orders to capacity changes in the Japanese firms that placed them, we 
work off Amagasaki Spinning 1897 capacity change. 

Amagasaki Spinning’s spindle capacity was reported by Enkakukiji (1901) to be 27,036 spindles in the 
first half of 1897 (verified from Unitika, 1989; matched also with previous orders). The company shareholders 
report No. 15 (for the first half of 1898) indicates that the capacity had increased by 18,176 spindles to the total 
of 45,212 spindles by the end of the second half of 1897. Where did these new machines come from? The order 
presented in Photo 2 provides us with the bulk of the answer: in 1896 the firm placed an order with Platt 
Brothers of Oldham, for 14,544 “high-end” spindles (36 frames, 404 spindles in each frame). Another order 
(not shown), for 2,828 spindles, also for high-end machines (numbers to be spun 30s-42s, average 36s) was 
placed with Platt Brothers even earlier, in December 1894 and booked the next year, but was apparently installed 
together with the 14,544 spindles above, as part of the same expansion (verified also through company history). 
Out of the remaining 804 new spindles, 404 are accounted for by an order (not shown) placed in 1896 with 
another British manufacturer, Dobson & Barrow, also to spin 42 count yarn.34 This leaves 400 spindles (2.2 

                                         
34 A hand-written annotation (apparently by a Dobson & Barrow employee) reads that “This is a sample trial order so let 
everything be finished with the utmost care, as further large order depends on the same being satisfactory.” Amagasaki 
Spinning never placed another order with Dobson & Barrow, preferring to continue working with Platt Brothers. The note, 
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percent) of the total capacity increase in late 1897 “unaccounted for,” in the sense that we do not have a record 
of the corresponding order. From the firm inventory of property (not shown) we know that Amagasaki 
Spinning also added a 400-spindle frame manufactured by Brooks & Doxey at about the same time. Even 
though the actual order record is missing, due to its small size and timing, we can safely assume that this was 
another sample trial order, which in all probability should be similar to orders from Platt Brothers and Dobson 
& Barrow above. Hence, in this case, we have definitively matched 97.8 percent of the increase in installed 
capacity as reflected in property inventories to the corresponding orders, and we feel very confident that the 
remaining 2.2 percent of new capacity were of a similar design. 

Applying the above procedure, we were able to hand-match all 430 orders whose records we found in 
Lancashire archives to corresponding changes in firms’ machine capacity using the timing,35  number of 
spindles, and the information about which of possibly multiple mills operated by the firm the order was slotted 
for (e.g., in Photo 2 machines are slotted for Amagasaki Mill No. 3––and company reports tell us that No. 3 
was the mill constructed at the time to expand the output of the 42 doubled count yarn––the designated number 
of counts to be spun noted in the order is consistent with that). 

The second source of changes to machine capacity owned by Japanese firms over the sample was 
acquisitions. Fifty eight firm-by-firm acquisitions were consummated during the period of our sample in the 
industry, involving 69 different mills (plants) (see Braguinsky et al., 2015; the number of acquisitions in there is 
listed as 73, involving 95 plants but 15 acquisitions involving 26 plants happened in 1915-20 which is outside 
of our current sample). As a result of these acquisitions, two-thirds of total industry capacity changed hands 
over the period, hence, it was imperative to trace machines from their original owners to subsequent (at times 
multiple) owners. Fortunately, all the acquisitions are well documented in company histories and company 
reports; the latter also reflect new machines acquired as a result of firm-by-firm acquisitions in the property 
inventories. Hence, we were able to create a script that reassigned machines (and technical characteristics 
thereof) through (possibly multiple consecutive) acquisitions to new owners, making sure that we updated the 
breakdown of machine capacity of acquiring firms each time they expanded their capacity through 
acquisitions.36 

The third source of capacity changes were the removal of aging machines and their destruction in 
accidents such as fires or earthquakes. Fortunately, fires and other destruction were rare events, and those that 
did happen are documented in company histories, including the details of which machines were lost. As for 
machine removal, those were also uncommon (Japanese firms used their machines while conducting necessary 
repairs along the way for many decades). Inasmuch as the machines were decommissioned, such events 
concentrated in larger firms and in later years of our sample, where inventories of properties in company reports 
are especially detailed, so we had no problem identifying the machines that were being removed and updating 
the capacity breakdown of the remaining machines accordingly. 

While we were thus able to match all orders available in Lancashire archives to firm capacity changes, 
and then follow those machines through acquisitions and possible destruction and removal as above, the 
converse is not always true. That is, not all firm capacity changes identified in our panel data using Japanese 
archival sources could be matched to orders placed with the British manufacturers. There are, broadly speaking, 
two reasons for that. One reason is that originals of the orders may be missing from Lancashire archives (such 
as the small order Amagasaki Spinning placed with Brooks & Doxey mentioned above). Rather than drop all 
such observations, we imputed machine characteristics (high-end or low-end) to new machine arrivals reflected 
in firms’ property inventories whenever we had unambiguous evidence allowing us to do that (once again, the 

                                         
however, gives a glimpse of  the competition among British textile machinery makers. 
35 As can be seen from the Amagasaki example above, one-two or even more years would normally elapse between the 
placing of  the order and the time the machines would be fully installed and reflected in firms’ property inventories. (Newly 
arrived machines were commonly included in property inventories after they were installed and ready to be operated; prior 
to that, new arrivals would be reflected in balance sheets in the “expansion account” but not in property inventories, which 
are the primary source of  our panel data on firm capacity.) 
36 In addition to firm-by-firm acquisitions, there was one plant-by-firm acquisition, in which a firm bought just one of the 
plants from another firm. We know exactly which machines were involved in this acquisition too.   
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case of 400 spindles of Brooks & Doxey machines added to Amagasaki Spinning capacity around 1897 
mentioned above serves as an example). Such “imputed orders” comprise about 10 percent of the total orders 
we matched to firms’ property inventories, both in terms of the number of cases and the total number of 
spindles (Table A1). 

 
Table A1. Machine orders: actual and imputed 

  Number of orders Number of spindles ordered 
From Lancashire archives’ originals 430 2,439,414 
Imputed   50     301,106 
Fraction imputed  0.10       0.11 

 
The second reason is second-hand market transactions where firms bought machines decommissioned 

by other firms. We do have several documented instances like that in company histories, and those are 
accounted for in our capacity breakdown. However, we do not have systematic records of purchases in the 
second-hand market, and in cases where we were also missing company reports, we had to drop observations 
where we could not know the origins of the machines, from the analysis that required machine characteristics. 
This affected 11 percent of all firms but only seven percent of all observations. Moreover, firms with unknown 
machine origins were generally small, so their fraction in the total number of capacity-weighted observations in 
our data is just about two percent (Table A2). Thus, dropping them from the analysis affects it only marginally. 

 
Table A2. Total spindle-observations matched to underlying orders 

 # of firms # of observations Capacity (# of spindles): Total Of which: matched Fraction matched 
Matched sample 105 1,911 61,719,337 60,824,202 0.99 
Unmatched sample 13 154 1,020,912 0 0.00 
Fraction matched 0.89 0.93 0.98 1.00 0.97 

 
As Table A2 shows, for firms for which we do have the data on how their machine capacity evolved 

through orders, acquisitions and removal/destruction (the “matched sample”), the correspondence between 
machine capacity changes recorded in Japanese archival sources (based on property inventories) and our 
calculated changes combining the data sources above is nearly perfect. Specifically, we were able to match 60.8 
million spindle-observations out of 61.7 million total in the matched sample of 105 firms, the match rate of 
more than 99 percent. This brings the fraction of total industry capacity (including also firms for which 
matching turned out to be impossible) that we could match to the characteristics of the machines comprising 
it to 97 percent (Table A2). 
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A.2 Historical trends 
 

Figure A1. Dynamics of the number of firms and industry output 
 

 
 

Table A3. Imports, production, and exports, 1880-1900 (units: kori=0.18 ton) 
 

Year Imports from: Total Dom. production Export Dom. supply 
 England India     

1880 84,367 10,908 95,324   95,324 
1881 73,515 17,932 92,421   92,421 
1882 61,708 21,794 84,324   84,324 
1883 55,687 26,448 82,135 2,326  84,461 
1884 48,790 21,797 70,622 5,687  76,309 
1885 40,437 30,887 71,324 3,370  74,694 
1886 45,251 36,850 82,101 16,217  98,318 
1887 54,103 56,884 111,096 25,273  136,369 
1888 77,583 80,546 158,281 33,142  191,423 
1889 62,194 80,488 142,929 69,959  212,888 
1890 59,703 46,566 106,588 108,374 31 214,931 
1891 42,624 15,560 58,123 160,207 108 218,222 
1892 53,494 27,527 81,534 213,489 109 294,914 
1893 48,426 16,216 65,174 222,223 1,053 286,344 
1894 45,353 7,778 53,555 304,584 11,796 346,343 
1895 44,157 4,472 49,876 383,565 11,776 421,665 
1896 63,859 2,854 67,373 428,864 41,916 454,321 
1897 52,380 355 54,555 544,461 140,116 458,900 
1898 52,697 353 54,563 670,067 229,445 495,185 
1899 27,101 252 28,339 785,612 341,202 472,749 
1900 30,035 101 30,941 647,484 208,732 469,693 

Source: Takamura (1971), Vol. 1, pp. 146, 183; Association data (dom. production in 1883-85). 
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Table A4. Imports and domestic production by variety 1891-93 (units: kori=0.18 ton) 
 

Imports from: Variety (count) 1891 1892 1893 
India 10’s-18’s 2,449 4,507 1,164 

20’s 17,570 17,657 12,376 
Subtotal 20,019 22,164 13,540 

England 16’s-24’s 13,079 13,130 9,385 
28’s-32’s 13,727 14,967 8,737 
38’s-42’s 1,431 2,345 1,759 

32’s doubled 2,506 10,827 12,045 
42’s doubled 5,882 

60’s-120’s gassed 5,377 7,809 8,532 
Subtotal 42,003 48,444 40,458 

Total 
 

62,022 70,608 53,998 
(Total import, stat.) 58,123 81,534 65,174 

Domestic production <14’s 
 

43,677 43,052 
14’s-15’s 

 
38,064 39,579 

16’s 
 

36,347 44,125 
17’s-19’s 

 
8,918 10,617 

20’s 
 

49,919 68,604 
21’s-24’s 

 
1,390 3,894 

25’s-27’s 
 

104 31 
28’s-32’s 

 
4,329 8,121 

33’s-37’s 
 

113 131 
38’s-42’s 

 
51 0.2 

Other 
 

8,377 6,730 
Total 160,207 189,206 225,091 

Source: Takamura (1971), Vol. 1, p. 184. Per source, import data come from port statistics in Kobe and Tokyo, 
therefore, does not correspond exactly to customs statistics data in Table 1 but captures most of it. 
 

Table A5. Imports and domestic production by variety, 1898 (units: kori=0.18 ton) 
Variety Estimated import Dom. production Export Domestic supply  

min max 
  

min max 
<16’s 

  
160,355 3,246 157,109 157,109 

16’s-24’s 4,248 4,248 453,936 198,246 259,938 259,938 
16’s 

  
224,982 120,039 104,943 104,943 

20’s 
  

208,479 77,905 130,574 130,574 
28’s-32’s 3,186 3,186 22,032 45 25,173 25,173 
38’s-42’s 531 531 2,115 

 
2,646 2,646 

60’s gassed 6,372 7,434 19 
 

6,391 7,453 
80’s gassed 9,558 10,620 3,044 

 
12,602 13,664 

100’s gassed 2,655 2,655 
  

2,655 2,655 
120’s gassed 1,593 1,593 

  
1,593 1,593 

doubled <32’s 
  

517 
 

517 517 
32’s doubled 7,965 9,558 1,779 

 
9,744 11,337 

42’s doubled 14,337 15,930 7,022 
 

21,359 22,952 
Total 50,445 55,755 650,819 201,537 499,727 505,037 

Source: Takamura (1971), Vol. 1, p. 322. 
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A.3 Industry Association-mandated output cuts 
Table A6 presents the details of Boren-mandated output cuts and (in the right column) our measure 

of their relative impact on low-end products. For output cuts imposed as mandated holidays, we converted 
those into percentage terms by dividing the number of holidays by 30 (e.g., 4/30=0.133). The numbers in the 
column “Implied fraction of lower counts mandated cuts” is the difference between the numbers in previous 
two columns. 
 

Table A6. Mandatory output cuts during our sample period 
    Output of 20 count and lower Output of 21 count and higher Implied relative 

fraction of lower 
counts mandated cuts year month Policy detail 

1899 1 4 mandated holidays 4 mandated holidays 0 

1899 2-12 None None 0 

1900 1-4 None None 0 

1900 5-7 4 mandated holidays None 0.133 

1900 8-12 40% of spindles to be idled or suspension of 
night shift None 0.400 

1901 1-3 40% of spindles to be idled or suspension of 
night shift None 0.400 

1901 4-12 None None 0 

1902 1-6 None None 0 

1902 7-12 4 mandated holidays 4 mandated holidays 0 

1903 1-12 None None 0 

1904 1-12 None None 0 

1905 1-12 None None 0 

1906 1-12 None None 0 

1907 1-12 None None 0 

1908 1-4 5 mandated holidays None 0.167 

1908 5-12 27.5% of spindles to be idled or suspension of 
night shift None 0.275 

1909 1-12 27.5% of spindles to be idled or suspension of 
night shift None 0.275 

1910 1-4 20% of spindles to be idled or suspension of 
night shift None 0.200 

1910 5-9 None None 0 

1910 10-12 
27.5% of spindles to be idled; or 12.5% of 

spindles to be idled, plus 4 days and 2 hours per 
workday mandated holidays 

20% of spindles to be idled or 5 days and 2 
hours per workday mandated holidays 0.075 

1911 1-9 
27.5% of spindles to be idled; or 12.5% of 

spindles to be idled, plus 4 days and 2 hours per 
workday mandated holidays 

20% of spindles to be idled or 5 days and 2 
hours per workday mandated holidays 0.075 

1911 10-12 
27.5% of spindles to be idled; or 12.5% of 

spindles to be idled, plus 4 days and 2 hours per 
workday mandated holidays 

10% of spindles to be idled or 5 days mandated 
holidays 0.175 

1912 1-3 
27.5% of spindles to be idled; or 12.5% of 

spindles to be idled, plus 4 days and 2 hours per 
workday mandated holidays 

10% of spindles to be idled or 5 days mandated 
holidays 0.175 

1912 6-9 4 mandated holidays 4 mandated holidays 0 

1912 10-12 None None 0 

1913 1-12 None None 0 

1914 1-7 None None 0 

Source: compiled from Shoji, Otokichi, 1930. Boseki Sogyo Tanshuku Shi (History of Operational Curtailments in Cotton 
Spinning, in Japanese). Nihon Mengyo Kurabu, Osaka, Japan. 
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Since in the main text we use semi-annual data in our IV growth regression estimations, we converted 
the numbers from Table A6 into semi-annual data by multiplying the implied relative fraction of lower counts 
mandated output cuts by the number of months during which the restrictions were applied in any given semi-
annual period, divided by 6. For example, 4 mandated holidays in the first half of 1900 were imposed for two 
months (May and June), hence our measure of mandatory output cuts impact on lower counts for the first half 
of 1900 is 0.133*2/6 = 0.089. For the second half of the same year it is 0.133*1/6 (July output cuts) + 0.4*5/6 
(output cuts in the rest of the year) = 0.356, and so on. 

 
A.4 Initial scale of new product introduction and definitions of product experimentation  
Figure A2 presents the distribution of within-firm shares of newly introduced products. The mean and 

median within-firm shares are 5.27 percent and 1.39 percent, respectively. The majority of new products in our 
data are thus introduced as a small share of firm’s total output, and new product introduction below three 
percent threshold are quite common. However, this initial small scale of new product introduction is much 
more pronounced among firms with high-end machines than for firms without such machines (the mean and 
median within-firm shares of newly introduced products for the first time for firms with high-end machines 
are 3.49 percent and 0.9 percent respectively, as opposed to 5.74 percent and 1.58 percent, respectively, for 
firms with no high-end machines).  

 
Figure A2. Distribution of within-firm share of newly introduced products 

 
mean s.d. 10th 25th 50th 75th 90th N 
5.27 10.43 0.08 0.33 1.39 4.91 15.21 793 

 
While in the main text we have used the three-percent cutoff  of  the within-firm share of  newly 

introduced products as our empirical definition of  an experimental product, we conducted sensitivity analysis 
and confirmed that the findings are robust to using reasonable alternative thresholds (such as two percent or 
four percent). It is also possible to define experiments in alternative ways. For example, we may consider a 
newly introduced product to be experimental if  it was not produced in positive quantity for most of  the time 
during the early stages after the firm tried producing it for the first time––that is, if  its output was on an off  
during those early stages. To operationalize this concept, we use monthly production data and classify a new-
to-the-firm product as experimental if  its output was positive, regardless of  scale, only for three months or 
less during the first 12 months following its introduction for the first time, and non-experimental otherwise. 
Thus, an experimental product is a product where the firm could not or would not continue producing it on a 
continuous basis at least during the first year after launch. We count the number of  all such products during 
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any semiannual time period to arrive at the alternative count of  the number of  experiments with new product 
varieties. Note that this makes the definition independent of  the scale at which the product was introduced. 
As before, we define experiments to be product upgrade experiments if  they involve a high-end product and 
if  the firm had not produced of  an even higher count before.37 
 

Table A7. Firm Growth and complementarity between product innovation and diversification:  
IV Estimation with an alternative definition of experiments 

 
 DV: number of upgrade experiments 

started at t 
DV: Ln(output) at t+1, minus 

Ln(output) at t 
VARIABLES First stage “Placebo test” Second stage 
 (1) (2) (3) (4) 
     Cumulative number of upgrade experiments   0.013 

(0.012) 
-0.016 
(0.015) 

Fraction of low-end products in total number of 
products 

-2.592*** 
(0.322) 

-2.600*** 
(0.322) 

-0.030 
(0.029) 

-0.079** 
(0.036) 

Cumulative number of upgrade experiments x 
fraction of low-end products 

   0.146*** 
(0.030) 

Fraction of output cuts enforced at t x Logged 
installed high-end spindles in t+1, minus Logged 
installed high-end spindles in t 

1.386*** 
(0.433) 

   

Fraction of output cuts enforced at t x Logged 
installed low-end spindles in t+1, minus Logged 
installed low-end spindles in t 

 -0.403 
(0.562) 

  

Logged installed high-end spindles in t+1, minus 
Logged installed high-end spindles in t 

-0.164 
(0.118) 

0.049 
(0.073) 

0.019*** 
(0.007) 

0.019*** 
(0.007) 

Logged installed low-end spindles in t+1, minus 
Logged installed low-end spindles in t 

-0.126 
(0.087) 

-0.090 
(0.107) 

0.014 
(0.016) 

0.012 
(0.016) 

Dummy = 1 if university-educated engineer at t -0.404 
(0.402) 

-0.400 
(0.395) 

0.065*** 
(0.026) 

0.078*** 
(0.027) 

Dummy = 1 if merchant board member at t 0.285 
(0.340) 

0.336 
(0.335) 

0.026 
(0.018) 

0.024 
(0.018) 

Logged total firm output at t 0.309*** 
(0.117) 

0.277*** 
(0.114) 

-0.028*** 
(0.013) 

-0.048*** 
(0.014) 

Firm age 0.051 
(0.032) 

0.053 
(0.033) 

-0.005** 
(0.002) 

-0.010*** 
(0.002) 

Constant -2.083*** 
(1.014) 

-1.962* 
(1.008) 

0.489*** 
(0.117) 

0.697*** 
(0.131) 

Semiannual time dummies Included Included Included Included 
Observations 1,608 1,608 1,608 1,608 
Log pseudolikelihood (Adj. R-squared) -223.6 -225.1 0.195 0.203 
Estimation Poisson Poisson IV IV 
First stage: Poisson regression with robust standard errors clustered at the firm level. Second stage: OLS with robust 
standard errors clustered at the firm level. *** p<0.01, ** p<0.05, * p<0.1. Cumulative number of upgrade experiments 
is an instrumented variable in the IV estimations. Note: mandated output cuts measure does not vary within periods and 
is therefore absorbed by the semi-annual time dummies. 

                                         
37 Since firms may not know which new product varieties are going to be produced on a continuous basis and which are 
going to be discontinued at the time of  their introduction, defining experimental product varieties in this way gives rise to 
a “selection on outcome” concern potentially biasing our definition toward failed product introductions. Note that this 
definition also precludes us from looking at the second, third, and so on experiments in the same product line. 
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 Table A7 presents the results of the IV growth estimations as in Table 7 in the main text, using the 
afore-mentioned alternative definition of upgrade experiments. In the first stage, we once again use a Poisson 
regression to obtain a predicted number of upgrade experiments conducted by the firm in a particular period. 
The coefficient on the interaction term between mandated output cuts and high-end machines installation is 
still positive and statistically significant, although the instrument is somewhat weaker. The “Placebo test” once 
again finds no correlation between the interaction term and upgrade experiments conducted by the firm when 
the interaction is with low-end, not high-end machines installations. The results from the second stage 
regression are also quite similar to the results presented in the main text. In particular, the coefficient on the 
interaction term between the instrumented cumulative number of upgrade experiments and the fraction of low-
end products in the firm product portfolio (statistically highly significant) implies that an additional 
(instrumented) upgrade experiment at the mean low-end product fraction is associated with a 7.9-percentage-
point higher output growth rate. We also estimated the impact that the cumulative numbers of upgrade and 
diversification experiments under this alternative definition had on the increase in the number of total, high-
end, and low-end products in a setting otherwise the same as in Table 3 in the main text. The findings were, 
once again, similar to Table 3, although higher standard errors made some coefficients statistically not 
significant at conventional levels (details are available upon request). Finally, we repeated the estimations above 
using a definition of experiments where we required that the new product was both introduced on a scale less 
than three percent of the firm’s total output and met the alternative definition above. The estimation results 
(not shown) once again look quite similar.  
 

A.5 Concentration of output, high-end machines, and product varieties 

Table A8. Concentration of output, high-end machines, high-end and low-end products 

  High-end machine capacity 
Output quintile 1893 1899 1907 1913 

1                 -                  486                256                 154  
2                 -               2,873             1,799                 924  
3                 -               2,362             5,313             12,057  
4            5,445             3,016             4,351             46,092  
5            2,966            16,162            67,100           122,260  
  Number of high-end product varieties 

Output quintile 1893 1899 1907 1913 
1 0.0 1.2 0.8 0.4 
2 0.0 0.0 0.0 0.3 
3 0.0 1.0 0.8 1.8 
4 0.5 0.4 1.4 2.9 
5 1.4 2.3 3.6 6.3 
  Number of low-end product varieties 

Output quintile 1893 1899 1907 1913 
1 2.3 1.8 1.8 2.3 
2 2.7 3.3 2.9 2.7 
3 4.1 4.1 2.9 3.7 
4 4.6 3.8 5.4 5.1 
5 6.2 5.6 5.4 9.0 

Source: Our calculations using the data described in the main text and in the appendix. 
 

Table A8 presents high-end machine capacity (measured by the number of high-end machines spindles 
installed), the number of high-end product varieties and the number of low-end product varieties by quintiles 
of total output (firm size measured by output scale, as in the right panel of Figure 3) at four points in time 
during our sample. The top panel shows that as high-end machine capacity increases from virtually zero at the 
start of our sample, it spreads out across firms of different size, but remains heavily concentrated among the 
largest firms (even though the composition of the largest firms changes due to higher growth rates of firms 
with high-end machines, as we document below). Not surprisingly perhaps, we can see the same pattern in the 
number of high-end product varieties produced in the middle panel. What is most interesting, however, is that 
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the number of low-end product varieties (which do not require high-end machines for their production) also 
becomes heavily concentrated over time, especially in the last period (which corresponds to the second 
subperiod in Table 2 in the main text when there was a big increase in within-firm number of product varieties). 
When the top decile firms (in terms of output) are compared with the second decile firms in 1913 (not shown), 
both categories are similar in the number of high-end product varieties and high-end machine capacity, but the 
number of low-end product varieties in the former category is twice as many as that in the latter category. This 
difference corresponds to the difference in total output, indicating that the expansion of low-end product 
varieties is also critical for firm growth.  

Table A9 presents the average numbers of all product varieties and of low-end product varieties among 
those, produced by firms that did and did not have high-end machines at a given point in time. We present 
these statistics for the whole sample as well as for two subperiods in Table 2 in the main text. Firms with high-
end machines produced on average almost twice as many product varieties as firms that did not have such 
machines over the whole period, with the gap larger in the second period than in the first (all the differences in 
means in Table A9 are statistically highly significant). Even more interestingly, firms that had high-end machines 
produced more low-end product varieties compared to firms that only had low-end machines, and the gap, once 
again, is larger in the second subperiod than it is in the first. When limited to firms that had high-end capacity 
above the median in each period, the gap with firms with no high-end machines is even much larger. 
 

Table A9. Number of products and low-end products by firms with and without high-end machines 

  Firms with high-end machines 

Of which: firms 
above the median 
# of spindles in 

high-end 
machines 

Firms with no high-end machines 

  1893.2-1914.2 1893.2-
1906.2 

1907.1-
1914.2 1893.2-1914.2 1893.2-

1914.2 
1893.2-
1906.2 

1907.1-
1914.2 

Number of products 
Mean 7.81 6.77 9.56 10.47 3.99 3.89 4.33 
St. Err. 0.20 0.18 0.41 0.31 0.07 0.07 0.17 
# obs 743 465 278 361 1045 810 235 

Number of low-end products 
Mean 4.97 4.59 5.60 5.58 3.78 3.71 4.03 
St. Err. 0.13 0.14 0.26 0.23 0.06 0.06 0.15 
# obs 743 465 278 361 1045 810 235 

 Source: Our calculations using the data described in the main text and in the appendix. The difference in means 
between firms with and without high-end machines are highly statistically significant using double-sided t-test. 
 

A.6 Selection into high-end machine adoption 
We have taken the separation of firms into those that adopt high-end machines with the aim of 

conducting product innovation and subsequent product diversification and firms that stick to scaling their 
existing products (or do not grow at all) as given. Here, we use our data to try to open the “black box” of this 
separation. 

We first conduct a simple cross-sectional comparison of founding team characteristics between firms 
that installed high-end machines at some point during our sample (including those that entered with high-end 
machines right away) and firms that never had high-end machines. Since university educated engineers played 
a crucial role at all stages of utilizing high-end machines and firm growth, we test whether firms that managed 
to secure the services of such engineers at the time of their founding (incorporation) were more likely to 
(eventually) have high-end machines. We also test whether market ties, proxied by the presence of merchants 
among members of founding teams, played an independent role in high-end machine adoption. The results of 
estimating the effects of these two founding team characteristics are presented in columns (1) and (3) of Table 
A10. In column (1) the dependent variable is the firm-specific dummy equal to one if the firm had high-end 
machines at some point during our sample and zero otherwise, while in column (3), where the sample is limited 
to post-1893 entrants, it is the dummy equal to one if the firm entered with high-end machines and zero 
otherwise (pre-1893 entrants basically did not have a chance to install high-end machines at the time of entry). 
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The estimation results show that firms which installed high-end machines were indeed much more 
likely to employ a university educated engineer already at the time they were founded (note that no firm 
employed more than one at the time they were founded). The presence of merchants on the founding teams is 
also positively associated with high-end machines, but the magnitude of the coefficient is much smaller and it 
is statistically not significant at conventional levels. Historical evidence documented in Kinugawa (1964), 
company histories and other sources shows that it was both (i) forward-looking firms realizing that they needed 
to secure high-level engineering human capital if they wanted to install high-end machines and try to adopt new, 
unfamiliar production technologies required to operate at the high end of the product space; and (ii) hired 
educated engineers playing a key role in working with the British suppliers to order, customize, and install high-
end machines. Thus, while we cannot claim causality whereby having university educated engineers at founding 
led to adoption of high-end machines, we do see strong selection (positive assortative matching) on both sides 
(founding teams and engineers), associated with the adoption of high-end machines. 
 

Table A10. Founding team differences among firms with and without high-end machines 

DV: Probability of ever having high-end 
machines 

Probability of entry with high-end 
machines 

VARIABLES (1) (2) (3) (4) 

University educated engineer employed at 
founding 

0.333*** 0.243** 0.313** 0.228* 
(0.111) (0.109) (0.132) (0.125) 

Merchant a member of founding team 
0.071 0.017 0.064 0.021 

(0.094) (0.091) (0.100) (0.093) 

Firm capacity (in thousands of spindles) at 
entry 

 0.018***  0.018*** 
 (0.005)  (0.005) 

Constant 
0.287*** 0.175** 0.144* -0.001 
(0.069) (0.074) (0.073) (0.080) 

Observations (firms) 105 105 69 69 
R-squared 0.093 0.186 0.091 0.232 
 Linear probability estimation. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1The sample in columns (3) 
and (4) is limited to post-1893 entrants. Probit estimations lead to very similar results. 

 
To probe for this assortative matching further, we add firm size (measured by the number of spindles 

installed) at the time of entry as another regressor. Initial entry size has been shown to be associated with the 
entrepreneurial ability both theoretically (Lucas, 1978) and empirically (Klepper, 2010), so we use it as a proxy 
for entrepreneurial ability of the founding team in our data. Estimation results presented in columns (2) and (4) 
of Table A10 show that higher entry size in our data is indeed positively and statistically highly significantly 
associated with the adoption of high-end machines. However, while whatever impact the presence of merchants 
had on high-end machines adoption is almost completely absorbed by entry size, the coefficients on university 
educated engineers employed at founding, although smaller in magnitude, remain economically and statistically 
significant. Indeed, comparing the magnitudes of the coefficients on engineers and entry size, we can see that 
having a university-educated engineer has an estimated association with high-end machines adoption which is 
equivalent to an increase in more that 10,000 spindles (more than one standard deviation from the mean) in 
entry size. Thus, hiring university-educated engineers’ human capital can be seen to be a critically important 
independent factor in high-end machine adoption, alongside higher entry size.38 

We next utilize observations on firms which we observe while they did not yet have high-end machines 
they would have in the future. Among the 42 firms that had high-end machines at some point during our sample, 
19 entered with high-end machines right from the beginning but 23 installed them at some point after entry. 
Four of these 23 added their first high-end machines prior to the start of product variety data, so we do not get 
a chance to observe them before that. For the remaining 19 firms we do have this opportunity, and we use this 

                                         
38 While, once again, we cannot claim causality based on our data, it is worth noting that in a recent paper, Choi et al. 
(2019) establish causal effect from founding team’s human capital to startup growth. 
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sample to look into the issue of “pre-treatment” selection by comparing those firms before they actually adopted 
high-end machines with the firms that never introduced such machines during our sample. If the “treatment” 
(adoption of high-end machines) was an outcome of a random draw, we should not observe systematic 
differences in the pre-treatment period. 

In Panel A of Table A11 below we present the results of the estimations, where the dependent variable 
is a dummy equal to one if the firm adopted high-end machines in the future and zero otherwise. We regress 
this on various actions and characteristics before they had high-end machines (if any). To err on the side of 
caution, we exclude not only observations after the high-end machines appear on firms’ balance sheets but also 
all observations pertaining to the period after firms placed their first high-end machines order (if any), even 
though the machines are not reflected in the balance sheets yet. While this results in losing observations 
(including all observations on three of the 19 firms whose orders were placed early), it makes sure that, especially 
when looking at experimental production, we do not inadvertently pick up experiments conducted with high-
end machines that may have been partially installed.39 

The estimation results in column (1) in Panel A of Table A11 show that firms that ordered high-end 
machines in the future (hereafter, “future adopters,” for short) tended to introduce significantly more new 
products on experimental basis than firms that never adopted high-end machines, already prior to adoption. 
Strikingly, they were even more likely to conduct product upgrading experiments than diversification 
experiments compared to other firms during the pre- adoption stage. Although, as mentioned, producing most 
high-end products was impossible without high-end machines, stretching low-end machines enabled some 
small-scale production at the (lower end of the) high-end product space, and this is what we apparently observe 
in these data. Thus, one interpretation of these results is that potential entrepreneurial firms were conducting 
small pre-adoption experiments to determine whether they should make the costly decision of investing in high-
end machines (Kerr et al., 2014). 

According to the model in McCardle (1985), experiments with new technologies result in a separating 
equilibrium where some firms (receiving bad signals) decide not to adopt the new technology, while other firms 
(receiving good signals) decide to go ahead with investment. We test this in another regression, the results of 
estimating which are presented in Panel B of Table A11. In column (1) we calculate the fraction of successful 
experiments (products first introduced on experimental basis and subsequently scaled) among all experiments 
started by firms at time t and we use it as a key explanatory variable in a regression where the dependent variable 
is, once again, the dummy equal to one if the firm was a future adopter and zero otherwise. Because we are 
conditioning on starting at least one experiment at t, the number of observations is much smaller than in Panel 
A. Nevertheless, there is an economically important and statistically significant at the 10 percent level 
relationship between success in experimental production and future high-end machine adoption––the standard 
deviation from the mean in this sample is 0.44, so one standard deviation from the mean success rate is 
estimated to increase the probability of high-end machine adoption in the future by about 8 percentage points, 
or by about 40 percent, given that the mean fraction of future high-end machines adoption in the sample is 0.2. 
Thus, future adopters both conducted more experiments than non-adopters and were more successful in the 
experiments they did conduct, in line with the predictions in McCardle (1985). 

In columns (2) and (3) of Panel B in Table A11 we look at how the duration of successful and failed 
experiments, respectively, was different between future adopters and non-adopters. As can be seen from the 
corresponding coefficients, in the case of successful experiments, those conducted by future adopters were 
significantly shorter than those conducted by non-adopters, but the opposite is true of eventually failed 
experiments. The first finding is consistent with future adopters having better success odds (higher exponential 
arrival rate of success in any given experiment). The latter finding renders itself to several possible 
interpretations, the most likely ones (not necessarily mutually exclusive) being (a) extra confidence future 
adopters had about their chances to eventually succeed which made them persist longer despite a string of bad 
signals, and (b) higher value placed by future adopters on experiments as a means of accumulating technological 
and marketing knowledge, even regardless of outcome. 
 

                                         
39 The results remain similar if  we use all observations prior to high-end machines appearing on the balance sheets. 
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Table A11. “Selection” among firms with no high-end machines 

Panel A. Characteristics and actions associated with future high-end machine orders 
 

DV: Dummy equal to 1 if placed high-end machines orders in the future 
VARIABLES (1) (2) 
Number of upgrade experiments started at t 0.418*** 0.349*** 

(0.147) (0.118) 
Number of diversification experiments started at t 0.066** 0.031 

(0.031) (0.038) 
Firm age -0.003 0.006 

(0.008) (0.009) 
Number of university-educated engineers employed at t 

 
-0.073  
(0.057) 

Dummy equal to one if merchant a board member at t 
 

0.167**  
(0.079) 

Shared TMT leadership at t 
 

0.003  
(0.096) 

Dummy equal to one if a TMT leader ousted in the 
previous two years 

 
-0.169***  

(0.063) 
Dummy equal to one if added low-end machines at t 

 
-0.044  
(0.042) 

Logged firm total output at t 
 

0.110**  
(0.047) 

Logged number of products at t 
 

-0.014  
(0.058) 

Constant 0.211** -0.733** 
(0.080) (0.361) 

Semiannual time dummies Included Included 
Observations 964 921 
R-squared 0.065 0.212 
Pooled OLS. Robust standard errors clustered at the firm level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Sample 
limited to firms before high-end machine orders were placed for the first time. 
 
Panel B. Success rates and duration of successful and unsuccessful experimental production 
  DV: Dummy equal to 1 if placed high-end machines orders in the future 
VARIABLES (1) (2) (3) 

Fraction of successful experiments among those 
started at t 

0.208*     
(0.117)     

Average duration of successful experiments 
  -0.037**   
  (0.015)   

Average duration of failed experiments 
    0.043*** 
    (0.010) 

Firm age 
0.008 0.025 -0.000 

(0.006) (0.016) (0.006) 

Constant 
0.201*** 0.266** 0.203*** 
(0.070) (0.128) (0.064) 

Semiannual time dummies Included Included Included 
Observations 153 98 172 
R-squared 0.294 0.430 0.335 
Pooled OLS. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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In column (2) of Panel A in Table A11 we add more regressors capturing time-varying firm 
characteristics––employment of university educated engineers, market ties (proxied by merchants as board 
members), the situation in top management teams (TMT), expansion of (low-end) machine capacity, as well as 
output scale and scope. The coefficient on upgrading experiments is reduced in magnitude but remains 
economically and statistically highly significant in predicting which firms are going to order high-end machines 
in the future. Among other variables, market ties (as captured by the presence of merchants on boards) 
significantly positively affect the probability of adding high-end machines in the future in this sample, but the 
number of university educated engineers employed has no such impact. Thus, even though having a university-
educated engineer at the time of founding is an important predictor of high-end machines at entry or at some 
point in the future (see Table A10 above), firms that did not adopt high-end machines at the time of entry did 
not on average employ more educated engineers than other firms either, until they decided to order such 
machines for the first time or even later. 

Looking at the top management teams (TMT), Agarwal et al. (2020) find that stable shared leadership 
(that is, having multiple TMT leaders who created division of labor while avoiding rifts leading to forced 
departures) contributed to firm growth and ability to attract engineering talent. We test this here by including 
also dummies capturing whether a firm had shared TMT leadership and whether there was a forced TMT leader 
departure in the two years preceding time t (where “forced” is defined as not due to death, illness, or resignation 
for personal circumstances unrelated to the firm). While shared TMT leadership by itself does not predict future 
adoption of high-end machines, we do find that within-TMT conflicts leading to forced departures are strongly 
negatively associated with high-end machines adoption. Since such departures represent disruptions and loss of 
managerial human capital, this finding is in line with the conclusions drawn in Choi, et al. (2019) using U.S. 
Census data. Finally, we also see that while future adopters were somewhat larger in terms of their output scale, 
they were neither more diversified nor more likely to expand their (low-end) machine capacity than other firms 
prior to adopting high-end machines. Thus, we have another strong piece of evidence showing that 
diversification and expansion of low-end machines happened after firms adopted high-end machines and 
successfully expanded into the high-end product space, not before. 

To conclude, it appears that (a) conducting more experiments and being more successful in those 
experiments; (b) stronger market ties (merchants as members of boards); and (c) ability to avoid within-TMT 
conflicts leading to forced departures and loss of human capital were all salient features associated with 
“selection into treatment” (future high-end machine adoption). At the same time, most of the impact on growth, 
product varieties proliferation and hiring of educated engineers (as well as further increase in experimental 
production) happened already after high-end machines had been adopted and the firms had embarked on the 
process of growth using those machines and exploiting the complementarity channel from product upgrading 
to product diversification. 
 

A.7 Scaling of new products before and after first high-end machine expansion 
In this section, we look at scaling of new products as a function of knowledge accumulated through 

upgrade experiments and the state of high end machine expansions to confirm, from a bit of a different angle, 
what was found in the main text related to growth patterns.  

Table A12 presents marginal effects from a Poisson regression where the dependent variable is the 
number of new scaled products (all and separately by upgrade and diversification products). This captures the 
number of all products that were produced at scale in period t and had been not produced at scale at any point 
before t. In Panel A the first three columns are on the sample of all firms that did or would have high-end 
machines at some point, prior to first high-end machine expansion (if at all). In Panel B the sample is that of 
“high-end expanders” (firms that expanded high-end machines during our sample; that is, those firms that were 
not one and done with high-end machines installation), prior to their first high-end machine expansion. The last 
three columns in both panels are based on 205 observations on high-end expanders after the first expansion. 
The regressions include firm dummies, firm total output to control for time-varying firm size and a fourth-
degree polynomial in calendar time (because of relatively small number of observations, some regressions with 
semi-annual time dummies did not converge). 
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Table A12. Poisson regression, showing marginal effects 
Panel A: All firms that ever had high end machines 

 Before first high-end machines expansion After first high-end machines expansion 

Variables 

DV: # of 
new scaled 
products 

DV: # of 
new scaled 
upgrade 
products 

DV: # of new 
scaled 
diversification 
products 

DV: # of 
new scaled 
products 

DV: # of 
new scaled 
upgrade 
products 

DV: # of new 
scaled 
diversification 
products 

Cumulative # of upgrade 
experiments by t-1 

0.116*** 0.067*** 0.034 0.129** 0.049*** 0.102** 
(0.031) (0.021) (0.027) (0.056) (0.012) (0.048) 

Cumulative # of diversification 
experiments by t-1 

-0.015 -0.020** 0.006 0.016* 0.011*** 0.011 
(0.017) (0.009) (0.013) (0.009) (0.004) (0.007) 

Observations 719 719 719 205 205 205 
 

Panel B: High-end expanders only 

 Before first high-end machines expansion After first high-end machines expansion 

Variables 

DV: # of 
new scaled 
products 

DV: # of 
new scaled 
upgrade 
products 

DV: # of new 
scaled 
diversification 
products 

DV: # of 
new scaled 
products 

DV: # of 
new scaled 
upgrade 
products 

DV: # of new 
scaled 
diversification 
products 

Cumulative # of upgrade 
experiments by t-1 

0.209*** 0.131*** 0.074** 0.129** 0.049*** 0.102** 
(0.047) (0.051) (0.033) (0.056) (0.012) (0.048) 

Cumulative # of diversification 
experiments by t-1 

-0.077*** -0.053*** -0.029 0.016* 0.011*** 0.011 
(0.029) (0.019) (0.018) (0.009) (0.004) (0.007) 

Observations 303 303 303 205 205 205 
Poisson regression with firm fixed effects, firm total output and fourth degree polynomial in calendar time as controls. 
Standard errors clustered at the firm level. Marginal effects (dy/dx) are shown. 
 
 The estimation results show that before the first high-end machine expansion, accumulated technical 
knowledge from cumulative upgrade experiments affected the scaling of new upgrade products more than it 
affected the scaling of new diversifying products. This is most strongly pronounced in Panel A but even in 
Panel B, which is a select sample of high-end expanders, we see a contrast between the impact of cumulative 
upgrade experiments on the number of scaled upgrade/diversifying products before and after the first high-
end machine expansion. That is, while those select firms utilize the knowledge from upgrade experiments in 
scaling both types of new products right from the beginning, they utilize it relatively more in scaling new 
diversification products after they expand their high end machines. Thus, we have another piece of evidence 
showing time complementarity between knowledge accumulated through upgrade experiments and 
diversification of the whole product portfolio which was shown to be most related to firm growth in the main 
text. Moreover, high-end expanders are the firms that on average grow most in our sample, so the findings in 
Panel B present direct evidence of this time complementarity. 
 

A.8 Flexible production system 
 According to our interviews with Kanji Tamagawa (a prominent Japanese historian of cotton 
spinning technology), switching the direction of twist (from S to Z and vice versa) and/or changing the count 
to be spun between adjacent counts (say, from 16 to 18 or from 20 to 22) involved the following operations: 
 

Operation Required time 
(1) Changing the draft (adjusting the draft change gear) About 10 minutes 
(2) Changing the twist number (adjusting the twist change gear) About 10 minutes 
(3) Changing the direction of the twist (changing the direction of the tin roller) About 10 minutes 
(4) Changing the spindles rotation speed (adjusting the gear) About 10 minutes 
(5) Changing the traveler (choosing a traveler of appropriate weight) About 30 minutes 
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With appropriate skill, the first four operations could be completed during the time required to 
complete the fifth, so, under ideal conditions, the whole process would take about 30 minutes. 

However, if the task was to change to a count of yarn  that was further apart (such as from 16 count 
to 20 or from 24 count to 32 count), such a change also required a change in roving to be fed into the 
machine, taking about two hours, so such adjustment was much costlier. Thus, firms with a more diversified 
product portfolio could change counts more easily.  

 
Figure A4. Historical trend in the fraction of non-S twist products in the total number of product varieties 

 
 

A.9 Low-end product quality 

Table A13. Comparing 20-count prices and female operative wages dispersion 

  Coefficient of 
variation 

Quartile coefficient of 
dispersion 

90-10 percentile coefficient 
of dispersion 

Prices of 20 count 0.028 0.016 0.031 

Wages of female operatives 0.147 0.094 0.182 
Note: The coefficient of variation is the ratio of the mean over the standard deviation. The quartile coefficient of dispersion 
is (p75-p25)/(p75+p25). The 90-10 percentile coefficient of dispersion is (p90-p10)/(p90+p10). Averages for the whole 
sample. 
 

Table A14. OLS regression of logged market share of 20 count on logged 20-count price 
 DV: Logged market share of 20 count 
Estimation OLS 

Logged 20-count price 
-3.056** 
(1.191) 

Constant 
7.132 

(5.432) 
Semiannual time dummies and firm dummies Included 
Observations 743 
R-squared 0.732 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Figure A5. Estimated quality index and historical quality ratings 

 
Note:  Quality rating is firm-level quality ratings of Z-twist 20 count in 1907 determined by the cotton yarn quality rating 
committee at the Osaka Three Articles Exchange (Arao, 1920, pp. 33-36). Rating 4 indicates the highest quality and rating 
1 indicates the lowest quality. “Quality index IV” represents sample averages of our estimated quality measures for the 
same firms. 
 
 

A.10 Market competition 

Figure A6.  Fraction of firms, output ratio, and price 
 

 
 

0

10

20

30

40

50

60

70

80

90

0.000

0.200

0.400

0.600

0.800

1.000

1.200

18
93

18
94

18
95

18
96

18
97

18
98

18
99

19
00

19
01

19
02

19
03

19
04

19
05

19
06

19
07

19
08

19
09

19
10

19
11

19
12

19
13

19
14

Av
er

ag
e 

pr
ic

e 
of

 1
6-

20
 c

ou
nt

s

Fr
ac

tio
n 

of
 fi

rm
s o

r R
at

io
 o

f h
ig

h-
en

d 
to

 
lo

w
-e

nd
 o

ut
pu

ts
 

Fraction of firms in high-end markets Fraction of firms in low-end markets

Ratio of high end output to low end output Average real price of 20 counts



 66 

A.11 Impact of past product introductions at (non-experimental) larger scale 

Table A15. Product variety expansion as a function of  past product introductions “at scale” 

Panel data estimation with firm fixed effects. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
Product introduction “at scale” is defined as a new-to-the-firm product that was produced at three percent or more of 
firm total output during the first semiannual time period it appeared in the firm product portfolio. 
 

VARIABLES 
DV: # of all products at 

t+1, minus # of all 
products at t 

DV: # of high-end 
products at t+1, minus # 
of high-end products at t 

DV: # of low-end 
products at t+1, minus # 
of low-end products at t 

 (1) (2) (3) 
Cumulative number of new upgrade products 
introduced “at scale” by t-1 

0.343** 0.266** 0.159 
(0.139) (0.105) (0.096) 

Cumulative number of new diversification products 
introduced “at scale” by t-1 

0.047 -0.017 0.048 
(0.074) (0.026) (0.063) 

Number of all products at t  
-0.350***     

(0.042)     

Number of high-end products at t 
  -0.404***   
  (0.041)   

Number of low-end products at t 
    -0.364*** 
    (0.044) 

Constant 
2.767*** 0.710*** 1.529*** 
(0.592) (0.206) (0.307) 

Semiannual time and observation dummies Included Included Included 

Firm FE Included Included Included 
Observations 1,509 1,509 1,509 
Within R-squared 0.213 0.213 0.193 
Number of firms 95 95 95 
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Table A16. Firm growth and introduction of new products “at scale:” Panel estimation 
 

 DV: Ln(output) at t+1, minus Ln(output) at t 
  (1) (2) 

Cumulative number of new upgrade products introduced 
“at scale” by t 

0.024 
(0.015) 

0.045 
(0.035) 

Cumulative number of new upgrade products introduced 
“at scale” x fraction of low-end products at t 

 -0.035 
(0.043) 

Cumulative number of new diversification products 
introduced “at scale” by t 

0.012 
(0.016) 

0.014 
(0.016) 

Fraction of low-end products in total number of 
products at t 

-0.005 
(0.077) 

0.061 
(0.126) 

Dummy = 1 if university-educated engineer at t 0.097** 
(0.041) 

0.099** 
(0.043) 

Dummy = 1 if merchant board member at t 0.014 
(0.026) 

0.014 
(0.026) 

Logged installed high-end spindles in t+1, minus logged 
installed high-end spindles in t 

0.014* 
(0.007) 

0.014* 
(0.007) 

Logged installed low-end spindles in t+1, minus logged 
installed low-end spindles in t 

0.003 
(0.016) 

0.002 
(0.016) 

Ln(output) at t -0.311*** 
(0.047) 

-0.311*** 
(0.047) 

Constant 2.469*** 
(0.345) 

2.404*** 
(0.366) 

Semiannual time dummies Included Included 
Firm FE Included Included 
Observations 1,608 1,608 
R-squared 0.327 0.327 
Number of firms 99 99 

Fixed-effect panel estimations. Product introduction “at scale” is defined as a new-to-the-firm product that was produced 
at three percent or more of firm total output during the first semiannual time period it appeared in the firm product 
portfolio. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Note: because high-end and low-end 
capacity can take values of zero, we have applied the inverse hyperbolic sine transformation, 𝑧𝑧 = 𝑐𝑐𝑙𝑙𝑢𝑢�𝑦𝑦 + �1 + 𝑦𝑦2�, 
where y is the actual number of spindles to obtain “Logged installed high-end spindles” and “Logged installed low-end 
spindles” in the table above. We apply the same transformation in Table 7 and Table 8B below.  
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