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Abstract

I study optimal monetary policy and capital controls in a small open economy model with nomi-

nal rigidities, incomplete markets, and cross-border holdings of assets denominated in home and

foreign currency. Monetary policy can enhance risk sharing across countries by in�uencing ex-

change rates. The strength of this channel depends on the international portfolio, giving rise to

a potential rationale for capital controls. I develop an approximation method that allows me to

characterize the optimal policy explicitly. I show that optimal monetary policy is a weighted av-

erage of an in�ation target and an insurance target and characterize the optimal weight sharply.

Perhaps surprisingly, as insurance considerations become more important, home-currency posi-

tions become larger, and the realized excess return volatility of home-currency assets actually

decreases, rather than increases as one would expect with exogenous portfolios. In addition, I

�nd that private portfolio decisions in small open economies are approximately e�cient so that

di�erential capital controls on foreign- vs. home-currency assets are not necessary.
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1 Introduction

The size of international balance sheets has increased dramatically in the past three decades (Lane

and Milesi-Ferretti, 2007). In this context, small movements in exchange rates, stock, and bond

prices can create large capital gains and losses across borders. Today, these valuation e�ects are

often of comparable magnitude to current account �uctuations (Gourinchas and Rey, 2013; Lane
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and Milesi-Ferretti, 2007; Tille and van Wincoop, 2010). As a result, they are crucial to understand

the behavior of a country's international invesment position. However, the policy implications of

this phenomenon remain largely unexplored.

In this paper, I study the implications of �nancial integration for optimal monetary policy and

capital controls. The focus on these two policy instruments is motivated by two observations.

The �rst observation is that both monetary policy and capital controls can be used to in�uence

exchange rate movements, which are one of the most important sources of asset-price �uctuations in

open economies (Lane and Shambaugh, 2010). For example, tightening monetary policy and taxing

savings typically leads to a stronger currency, increasing the return of home-currency bonds. Thus,

by increasing the returns of the country's international portfolio in bad times, and decreasing them

in good times, central bank policies can improve the hedging properties of the portfolio; that is,

they can play an insurance role.1

The second observation is that a country's international portfolio is the key determinant of

the strength of the insurance channel. When agents have sizeable cross-border positions in home-

currency assets, exchange rate movements can be very powerful as a means of completing markets.

This has two implications. First, there is a two-way feedback between monetary policy and portfolio

choice, as positions depend on agents' expectations of monetary policy. Second, capital controls

taxing the composition of international portfolios may be desirable, as agents do not internalize the

e�ect of their portfolio choice on the ability of the central bank to provide insurance. Indeed, the

presence of incomplete markets and nominal rigidities guarantees this will be the case (Geanokoplos

and Polemarchakis, 1986, Farhi and Werning, 2016). However, there is little guidance as to how

important these taxes may be or even what sign they may have.

The main contribution of this paper is to characterize optimal monetary policy and capital

controls in a model that allows for the previous considerations. From an economic standpoint, this

requires: (i) extending the typical open economy macroeconomic model used for optimal policy

analysis, where either markets are complete and there is no insurance role, or there is a single

asset and there is no role for portfolio choice; and (ii) developing new tools to study optimal policy

in these richer environments, where the standard linear-quadratic framework cannot immediately

be applied due to the indeterminacy of the portfolio at the steady state. To this end, I extend a

canonical open economy model by allowing the home country to trade multiple assets with the rest

of the world. I assume that these assets are insu�cient to span the whole state space (i.e. markets

are incomplete) and that the return of some of these assets depends on monetary policy. I overcome

the indeterminacy of the steady-state portfolio by showing how the perturbation approach in Judd

and Guu (2001) employed in positive analysis can be used to extend the linear-quadratic normative

framework in Benigno and Woodford (2012).

The main results in this paper arise from the interaction between exchange rate management

and international portfolio choice. To illustrate the forces at play in the simplest possible way, I

1It is well understood that monetary policy can play an insurance role in environments with incomplete markets
by a�ecting the terms of trade (Obstfeld and Rogo�, 2002, Corsetti, Dedola and Leduc, 2010). I abstract from this
channel by focusing on a small open economy that faces exogenous terms of trade.
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start with a static small open economy model where agents have an endowment of tradable goods

and produce nontradable goods with labor. There are two periods.2 In the �rst period, agents

only trade �nancial assets. In the second period, the state of the world is realized, agents produce,

honor their �nancial obligations, and consume. The model has two key ingredients. First, like in

the canonical model, there are nominal rigidities (sticky prices). This ingredient gives rise to the

traditional demand-management role for monetary policy, which can undo the distortions associated

with sticky prices. The second ingredient is the availability of home- and foreign-currency bonds

that can be traded internationally. This ingredient gives rise to the insurance channel discussed

above, and a nontrivial portfolio problem.

In this environment, I study the problem of a planner that maximizes the utility of home

households under commitment. The planner has two tools: monetary policy and capital controls.

Monetary policy is a state-contingent exchange rate rule. Capital controls are taxes on �nancial

assets. My approximation method allows me to get closed form solutions for the optimal monetary

policy, portfolio, and capital controls around the nonstochastic steady state. Using this approx-

imation, the two ingredients described above translate into two targets for monetary policy: a

demand-management target and an insurance target. The former is the exchange rate that would

be required to attain a zero output gap (i.e. restores production e�ciency). The latter is the

one that equalizes the marginal utility of tradables at home and abroad (i.e. replicates complete

markets).

The optimal monetary policy balances these two objectives. I show that the optimal weight

on the insurance target increases with the size of gross positions. The reason is that large gross

positions make the return of the portfolio sensitive to monetary policy. That is, small exchange rate

movements create substantial capital �ows. As a result, the planner can enhance risk sharing at a

small cost in terms of the output gap. Conversely, letting the exchange rate �oat freely to close the

output gap is very costly, as this would imply large undesirable transfers of wealth across borders.

In other words, currency mismatches endogenously create �fear of �oating� in some states of the

world, e.g. after non-tradable productivity shocks.

I show three main results that emerge from studying endogenous portfolio choice. The �rst result

is that the planner chooses the portfolio to align the two targets as much as possible but, forced

to prioritize an objective, the planner chooses larger gross positions when the insurance motive is

more important. This makes it ex post more di�cult to stabilize demand, but improves the ability

of the planner to provide insurance.

When is the insurance objective more important? There are two main determinants. First,

there are primitives that control whether one objective dominates over the other, e.g. the degree of

risk aversion or price stickiness. Second, there is the relative likelihood of di�erent kinds of shocks.

For example, in the simple model shocks to nontradable productivity require that the exchange

rate moves to close the output gap (the demand-management target) but that it stays constant

to prevent transfers of wealth (the insurance target). Shocks to the tradable endowment create

2I refer to this as the static model because there is no intertemporal decision.
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the opposite pattern. Thus, the more volatile the tradable endowment, the more important the

insurance motive is. In other words, although risk is a second-order phenomenon, it matters for

optimal monetary policy to �rst order via the portfolio decision.

The second result is that endogenous portfolio choice is crucial for the volatility of home-currency

returns. That is, suppose that the planner now cares more about insurance, e.g. prices become

more �exible, what happens to the volatility of the home-currency returns? Holding the portfolio

constant, the optimal policy prescribes that home-currency returns move more in states of the

world where there is a demand for insurance, e.g. after tradable-endowment shocks, but move less

otherwise, e.g. after non-tradable productivity shocks. Crucially, I show that this composition

e�ect is exactly zero when evaluated at the optimal portfolio. Since gross positions increase under

the optimal policy, the volatility of home-currency returns relative to a pure demand-management

policy decreases: a smaller change is need to provide insurance and it becomes more costly to close

the output gap.3

The third main result is that the approximate solution implies that capital controls should not

tax the composition of international �ows, despite the presence of aggregate-demand externalities.

While private agents would choose the wrong portfolio absent taxes (Farhi and Werning, 2016), as

risk vanishes the portfolio that they would choose converges to the socially-optimal portfolio. The

key observation behind this result is that eliminating production ine�ciencies in this economy is

feasible, i.e. the planner can always close the output gap. As a result, the economy only expe-

riences booms and recessions because the planner is trying to improve international risk sharing.

Formally, this implies that output gaps are proportional to social marginal utility. Furthermore,

the wedge between social and private marginal utility is also proportional to the output gap. These

observations imply that social and private marginal utilities are proportional to one another, which

is enough to establish the asymptotic optimality of the private portfolio decision.

After solving the simple model, I consider a general framework that allows for a large class

of preferences, technology, multiple assets, and a potentially �nite number of foreign arbitrageurs.

Three main lessons emerge. First, the analysis carries over in terms of two su�cient statistics: the

transfers that would arise under complete markets, which capture the potential insurance bene�ts,

and the realized returns in an economy where foreigners do not hold home-currency bonds, which

capture the potential fear-of-�oating costs associated with currency mismatches. Second, when

there are multiple assets, one needs to correct the aforementioned su�cient statistics and subtract

the insurance the planner can get �for free�, i.e. using the assets at their disposal without distorting

production e�ciency. Third, limited participation in home-currency bond markets creates a demand

for cooperation in monetary and capital-control policy across borders. A sel�sh home planner would

manipulate asset prices to favor the home country, which involves putting non-zero approximate

3Note that this result is described with respect to the volatility of the home-currency returns under demand-
management. However, the volatility of the returns under a pure demand-management policy itself also changes with
the portfolio. Interestingly, this e�ect depends on the sign of the position: it decreases volatility when home agents
are short the home-currency bond and vice versa. Thus, in the empirically-relevant case where the home country is
short the home-currency against the rest of the world (Bénétrix et al., 2019), both e�ects go in the same direction
and overall volatility decreases.
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taxes to lower international risk sharing.4

Next, I study a dynamic version of this economy. I show analytically the robustness of the

results and derive new insights, which stem from the fact that the planner has more than one way

to a�ect the return of the country's portfolio. For example, to increase the return of the home-

currency bond, the planner can either appreciate the exchange rate today or promise to do so in

the future (or both). In addition, the planner can achieve this appreciation using monetary policy

and savings taxes. Generically, the planner relies on both policy instruments. In other words,

while the composition of capital �ows should not be taxed, net �ows should, i.e. taxes should be

uniform across assets in the approximate solution. The optimal policy mix depends on features of

the environment, such as the maturity of the home-currency bond.

Finally, I calibrate the model to explore numerically the quantitative relevance of the results.

Since the theoretical analysis assumes commitment, I take Canada as a benchmark advanced small

open economy. The numerical results illustrate that modelling endogenous portfolio choice is crucial.

Indeed, a key feature of the optimal policy is that the home economy takes more debt in its own

currency against the rest of the world. Without this lever, i.e. if the portfolio were exogenously

�xed at the calibrated value, the weight on the insurance target under the optimal policy would be

about seven times smaller and the welfare gains of �nancial integration almost halved.

Related literature This paper belongs to a large literature exploring deviations of optimal mon-

etary policy from in�ation targeting in New Keynesian open economy models, surveyed by Corsetti,

Dedola and Leduc (2010). In particular, my analysis is closely related to papers where monetary

policy plays an insurance role linked to the composition of international portfolios. Benigno (2009a)

and Benigno (2009b) characterize the optimal policy in an economy with home- and foreign-currency

bonds, but lack endogenous portfolio choice. Chang and Velasco (2006) and Senay and Sutherland

(2019) compare the performance of a set of policy rules with optimal portfolio choice. Devereux

and Sutherland (2008) study optimal monetary policy, but in a special case where there are enough

assets to replicate the �rst-best allocation. I contribute to this literature by solving the joint optimal

monetary and capital-control policy in a second-best environment.

Second, this paper contributes to the literature that studies environments where the planner can

control both the country's portfolio (directly, i.e. government debt, or indirectly, via regulation) and

monetary policy. Closest to my work is Farhi and Werning (2016), who study a static small-open

economy with home- and foreign-currency debt in one of their applications. They provide a formula

for portfolio taxes, pointing out that they are generically nonzero. Perhaps surprisingly, I show

that, as risk vanishes, these taxes converge to zero faster than the risk premium, so no taxes are

needed in the approximate solution. Du, P�ueger and Schreger (2020), Engel and Park (2022), and

Ottonello and Perez (2019) study the interaction of monetary policy and the currency denomination

of sovereign debt. Drenik, Kirpalani and Perez (2022) study the interaction between the currency

denomination of contracts by private agents and monetary policy, chosen by a government that lacks

4This result is related to Costinot, Lorenzoni and Werning (2014), except that consumption is optimally procyclical
across states (i.e., imperfect risk sharing) instead of over time - see section 4.
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commitment. This paper complements these studies by analyzing the problem under commitment.

Third, there is a related closed-economy literature that studies the potential of monetary policy

to complete markets with nominal assets in environments with commitment; see Schmitt-Grohe and

Uribe (2004), Siu (2006), Lustig, Sleet and Yeltekin (2008) and Sheedy (2014). In these papers, a

similar trade-o� between demand-management and insurance emerges, but insurance takes place

between the government and the private sector, or between borrowers and savers. In addition, my

analysis emphasizes the role of exchange rate movements, and the portfolio decision between home-

and foreign-currency bonds, which is absent from these studies.

Finally, this paper makes a methodological contribution to the literature on optimal portfolio

choice in dynamic stochastic general equilibrium models (Devereux and Sutherland, 2011; Evans

and Hnatkovska, 2012; Tille and van Wincoop, 2010). These papers are positive, aiming to approx-

imate the competitive equilibrium given a policy rule. I extend these methods to tackle normative

questions. That is, I show how the abstract linear-quadratic optimal policy framework of Benigno

and Woodford (2012) can be adapted to handle problems with portfolio choice.

Layout The paper is organized as follows. Section 2 presents a two-period model of a small open

economy that trades home- and foreign-currency assets with the rest of the world. I derive the

planning problem and describe the approximation method. Section 3 characterizes the optimal

policy in this environment. Section 4 extends the two-period model along several dimensions,

allowing for large economies and general preferences, technology, and �nancial assets. Section 5

studies a dynamic version of the model. Section 6 numerically explores the quantitative importance

of the results in a calibrated model. Section 7 concludes.

Appendix A contains a general proof for the approximation of planning problems with portfolio

choice used in this paper, extending the abstract framework of Benigno and Woodford (2012), which

may be of independent interest. Appendix B contains all other proofs and additional extensions.

Appendix C contains additional numerical exercises with the calibrated model.

2 Static model

I start with a simple two-period model to illustrate the main analytical results. Since there are no

savings decisions, I henceforth refer to this model as the static model. I generalize these results

along several dimensions in sections 4 and 5 and appendixes B.4 and B.5.

2.1 Setup

At t = 0, agents trade �nancial assets. At t = 1, a state of the world s ∈ S is realized, agents honor

their �nancial obligations, produce, and consume.5

5My approximation in section 2.3 puts restrictions on S. I parametrize shocks as ξs = ϵus where ϵ > 0 is a scalar
with the interpretation of risk and take the limit ϵ→ 0. The implicit function theorem and the bifurcation theorem I
rely on require that us is bounded-vector stochastic process (see appendix A).
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Home households There is a continuum of households in the home country, maximizing a

Greenwood�Hercowitz�Hu�man (GHH) utility function

∑
s

πsU(CTs, CNs, Ls) =
∑
s

πs ln

(
κCα

TsC
1−α
Ns − 1− α

1 + φ
L1+φ
s

)
, (1)

where α > 0, πs is the probability of state s, CTs is tradable consumption, CNs is nontradable

consumption, Ls is labor, and κ ≡ α−α(1− α)−(1−α) is a normalization constant.

At t = 0, agents can trade two assets with foreigners: home-currency bonds B, which o�er

a �xed payment R in home currency, and bonds B∗, which o�er a �xed payment of 1 in foreign

currency. The budget constraint is given by

(1 + τB)B +B∗ = T0,

where τB is an ad valorem tax on home bonds and T0 is a lump-sum transfer from the central bank.

I assume positions are bounded by K̄ > 0, i.e. |B| ≤ K̄.6

At t = 1, the state of the world s is realized and agents receive a tradable endowment YTs. I

normalize the foreign-currency price of the tradable good P ∗
Ts to 1. The budget constraint in state

s is

CTs + E−1
s PNsCNs = YTs + E−1

s WsLs + E−1
s ΠNs +RE−1

s B +B∗

where PNs is the price of nontradables, Ws is the wage, and ΠNs are pro�ts from nontradable

good producers, and Es is the nominal exchange rate in units of home currency per unit of foreign

currency. Optimization over tradable and nontradable consumption and labor yields

(
α

1− α
)
CNs

CTs
=

Es

PNs
, (2)

κ−1C
α
Ns

Cα
Ts

Lφ
s =

Ws

PNs
. (3)

Asset optimization yields a no-arbitrage condition,

∑
s

πs

[(
(1 + τB)

−1RE−1
s − 1

) ∂U
∂CT

(s)

]
= 0. (4)

Nominal rigidities A representative �rm produces nontradable goods with labor using a linear

technology,

YNs = ZsLs,

6I normalize the exchange rate at t = 0, E0 = 1, the return of the foreign bond, R∗ = 1, and the tax on foreign-
currency debt, τB∗ = 0. This is without loss of generality in the static model because there is no consumption or
production at t = 0; i.e. only the relative price of the assets is determined in equilibrium.
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where Zs > 0 is nontradable productivity, which may vary across states. The price of the nontrad-

able good is �xed at one

PNs = 1 ∀s ∈ S. (5)

Firms satisfy any demand at this price.

Foreign households The home economy is assumed to be small relative to the rest of the world,

i.e. its actions do not a�ect foreign consumption C∗
s . Foreigner optimization implies the following

no-arbitrage condition,7 ∑
s

πs

[
(RE−1

s − 1)
dU∗

dC∗ (s)

]
= 0. (6)

Central bank The central bank in the economy has two tools: monetary policy and capital

controls. Monetary policy is a state-contingent exchange rate policy rule {Es}s.8 Capital controls

in this model are represented by the portfolio tax τB. The proceeds are then rebated to home

households through lump-sum transfers,

T0 = τBB. (7)

The monetary authority announces the monetary and tax policies at the beginning of time, before

agents engage in bond trading, and is assumed to be perfectly credible.

Goods and labor market clearing Replacing pro�ts, labor income and the t = 0 budget

constraint into the t = 1 budget constraint, I obtain

CTs = YTs + (RE−1
s − 1)B. (8)

The market clearing condition for nontradables is given by

CNs = ZsLs. (9)

Next, I formally de�ne a competitive equilibrium in this economy.

De�nition 1. Given a Central Bank policy ({Es}s,τB,T0), an allocation ({CTs}s,{CNs}s,{Ls}s,B)

together with prices ({PNs}s,{Ws}s,R) is a competitive equilibrium if and only if they solve

(2)−(9).
7I assume it is infeasible to have a state-contingent tax on the returns of �nancial assets by foreigners. Otherwise,

the planner would attain the �rst best: the planner completes markets by choosing the tax such that the home return
after taxes is equal to the desired transfer of wealth under complete markets.

8As is standard in the New Keynesian literature, I focus on the cashless limit (see e.g. Woodford, 2003).
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2.2 Planning problem

The planner in the economy is the central bank, which chooses a state-contingent exchange rate

{Es} and capital controls τB to maximize the utility of home households. Combining equations (2),

(5) and (9),

CNs =
1− α

α
EsCTs, (10)

Ls =
1− α

α
Z−1
s EsCTs. (11)

These equations show the allocations of labor and nontradable production that the planner can

attain with a policy {Es}s given {CTs}s. Furthermore, τB allows the planner to control the agents'

portfolio decision, so (4) can be dropped from the planning problem. Thus, the foreign no-arbitrage

condition (6) and the budget constraint (8) characterize the set of implementable allocations.

Lemma 1. An allocation for tradable consumption {CTs}s, an exchange-rate policy {Es}s, a port-

folio B and a home-currency yield R form part of an equilibrium if and only if they solve (6) and

(8).

Next, use equations (10) and (11) to substitute out CNs and Ls in home's utility function,

V (CTs, Es;Zs) = ln

(
α−1CTsE

1−α
s − 1− α

1 + φ

(
1− α

α
Z−1
s EsCTs

)1+φ
)

(12)

Problem 1. The planner's problem is choosing {CTs}s, {Es}s, and B to maximize

W =
∑
s

πsV (CTs, Es;Zs)

subject to

YTs + (RE−1
s − 1)B = CTs∑

s

πs

[
(RE−1

s − 1)
dU∗

dC∗ (s)

]
= 0.

Before tackling this problem, it is useful to study the problem with complete markets.

Problem 2. When markets are complete, the planner's problem is choosing {Ts}s, and {Es}s to
maximize

∑
s

πsV (YTs + Ts, Es;Zs)

subject to ∑
s

πs

[
Ts
dU∗

dC∗ (s)

]
= 0
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Under complete markets the transfer of wealth in each state of the world Ts is decoupled from

monetary policy Es. This implies the exchange rate has a single role in this economy: closing the

output gap, i.e. VE(s) = 0. This is the traditional demand-management role of monetary policy.

Transfers {Tcm,s}s are then chosen to equalize the marginal utility of tradables abroad and at home,
i.e. ∂V

∂CT
(s) ∝ dU∗

dC∗ (s).

By contrast, in problem 1 the exchange rate Es is tightly linked to the transfers Ts by the

relationship Ts = (RE−1
s − 1)B. As a result, the exchange rate plays an additional insurance role,

given by the desire to replicate the complete-markets transfers {Tcm,s}s. When prices are �exible, the

planner can perfectly replicate these transfers since the exchange rate plays no demand-management

role. When prices are sticky and #(S) > 2, there is a trade-o� between both objectives of monetary

policy.

2.3 An almost linear-quadratic approximation

In the literature on optimal monetary policy, a commonly used technique is to replace the original

nonlinear problem with a linear-quadratic (LQ) problem that is valid in a neighborhood of the

deterministic steady state. This technique can be applied under very general conditions and provides

a locally-valid characterization of the solution up to �rst order. Problems with a portfolio problem,

however, are an exception (Benigno and Woodford, 2012).9 In appendix A, I use a perturbation

approach based on a bifurcation theorem stated in Judd and Guu (2001) to show that one can

derive an almost LQ (ALQ) problem that provides a valid characterization of the solution around

the steady state. Here, I illustrate the approach by applying it to the current setting.

The �rst step is to derive a linear-quadratic objective around a steady state with an arbitrary

portfolio B̄. Let bars denote steady-state quantities and lowercase letters denote log deviations

from the steady state. I assume that at the steady state C̄∗ = 1, ȲT = α and Z̄ = 1 − α, which

then implies R̄ = Ē−1 = 1 and L̄ = 1. A second-order approximation of the objective yields

W =
∑
s

πs

{
(
1 + φ

α+ φ
)αcTs −

(1 + φ)(1− α)

2

(
es +

φ

α+ φ
cTs −

1 + φ

α+ φ
zs

)2
}

+ t.i.p.+O(ϵ3)

where t.i.p. stands for �terms independent of policy�. To evaluate the linear term in cTs, one needs

to know the behavior of cTs to second order. A second-order approximation of the budget constraint

9At the steady state, all assets are perfect substitutes so the optimal portfolio is indeterminate. Furthermore, since
agents are risk neutral to �rst order, the portfolio is also indeterminate to �rst order. Formally, this implies that the
Jacobian is singular at the steady state, so an implicit function theorem like the one used by Benigno and Woodford
(2012) cannot be applied to justify the validity of the LQ approach.
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and the foreign no-arbitrage condition yield

αcTs +
1

2
αc2Ts = αyTs +

1

2
αy2Ts + (r − es)B̄ +

1

2
(r − es)

2B̄ + (r − es)B̃ +O(ϵ3)∑
s

πs{(r − es) +
1

2
(r − es)

2} =
∑
s

πsγ
∗(r − es)c

∗
s +O(ϵ3)

where γ∗ ≡ −U∗′′

U∗′ , B̃ = B − B̄. Furthermore, note that∑
s

πs(r − es)B̃R̄Ē
−1 = O(ϵ3),

since only the �rst order behavior of r−es is required to evaluate this cross term, B̃ is predetermined,

and a �rst-order expansion of the foreign no-arbitrage condition yields
∑

s πs(r− es) = O(ϵ2). This

is an important observation, as it implies one does not need to know how B varies with risk to

characterize welfare to second order (Samuelson, 1970). Using these observations, the objective

becomes

W = −1

2
k0
∑
s

πs

{
χ
(
α2c2Ts − 2αγ∗(r − es)c

∗
sB̄
)
+

(
es +

φ

α+ φ
cTs −

1 + φ

α+ φ
zs

)2
}

+ t.i.p.+O(ϵ3)

(13)

where k0 = (1+φ)(1−α) > 0 and χ = (α+φ)−1(1−α)−1α−1 > 0. If B were not a choice variable,

then maximizing this objective subject to a �rst-order approximation of the budget constraint and

the foreign no-arbitrage condition,

αcTs = αyTs + B̄(r − es) +O(ϵ2) (14)∑
s

πs(r − es) = O(ϵ2) (15)

would be a proper LQ problem. My result is that solving this problem and maximizing also with

respect to the steady-state approximation point B̄ (a nonlinear but tractable problem) yields a

locally-valid approximation of the solution around the steady state. I show this by proving that the

�rst-order conditions of this approximate problem coincide with a perturbation of the �rst-order

conditions of the nonlinear problem. The main advantage of the approximate-problem approach

is that there are typically many local solutions to the �rst-order conditions, since the problem is

nonlinear in B̄. Keeping track of welfare allows me to check not only whether the solution is a local

maximum but also the best local maximum among the solutions that stay in a neighborhood of the

steady state. Of course, the usual caveats with respect to local approximation methods apply.

In appendix A, I show a general version of this result in the abstract setup of Benigno and

Woodford (2012) extended to allow for optimal portfolio choice, which nests the models used in this

paper. I prove that, as long as there is a single no arbitrage constraint per asset (i.e. the planner
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can control portfolios), the approach described above is correct.10

Proposition 1. (ALQ equivalence to perturbation) Maximizing (13) with respect to ({es, cTs}s, r)
and B̄ yields a linear approximation of a solution to the �rst order conditions of problem 1 around

ϵ = 0 for ({es, cTs}s∈S , r) and a bifurcation point of the system B̄.

Proof. This is a special case of proposition 17 (see appendix A.3).

3 Optimal policy

In this section, I study the optimal policy in the static model. I start by characterizing the solution

when the composite is linear in labor, i.e. φ = 0, in sections 3.1−3.5. This parametrization implies

that the exchange rate that closes the output is independent of the outstanding portfolio position.

This simpli�es the analysis and serves as a useful stepping stone to understand the main results of

the paper. The case φ > 0 is analyzed in section 3.6.

3.1 Monetary policy focuses on insurance when gross positions are large

Substituting in the constraints (14) and (15) and manipulating (13), the planning problem becomes11

max
{es}s,B̄

−1

2

∑
s

πs

 (es − edm,s)
2︸ ︷︷ ︸

demand management

+χB̄2 (es − ein,s(B̄))2︸ ︷︷ ︸
insurance

 (16)

where

edm,s =
1

α
zs, (17)

is the demand-management target, i.e. the exchange rate that closes the output gap, and

ein,s(B̄) = − 1

B̄
(−αyTs + αγ∗c∗s)︸ ︷︷ ︸

=Tcm,s

, (18)

is the insurance target, i.e. the exchange rate that would replicate complete-markets transfers Tcm,s.

The objective function is intuitive: It penalizes output gaps, i.e. wedges in production e�ciency

(the red term), and deviations from complete markets, i.e. wedges in risk sharing (the blue term).

Taking the �rst-order condition with respect to es, I obtain the following result.

10Suppose the planner could not tax home-currency bonds. Then, the planning problem would have an additional
constraint: the home no-arbitrage condition (4). Such a constraint, however, is to �rst-order identical to the foreign
no-arbitrage condition. In appendix A.4, I show that this implies that there is additional indeterminacy at the steady
state: the Lagrange multiplier on one of these no-arbitrage conditions. Thus, one needs to keep track of additional
quadratic constraint. Of course, if the optimal tax is 0 in the approximated model, those Lagrange multipliers would
be zero. This is the case in this paper when there is an in�nitely elastic demand of the home-currency bond by
foreigners (see section 3.5).

11To simplify the exposition, I assume w.l.o.g. that shocks are mean zero, which implies r = O(ϵ2).
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Lemma 2. (Optimal monetary policy) Consider an economy with small risks, i.e. ϵ→ 0. Then,

eop,s(B̄) =
(
1− ω(B̄)

)
edm,s + ω(B̄)ein,s(B̄) +O(ϵ2). (19)

where ω(B̄) = χB̄2

1+χB̄2 .

The optimal exchange rate is a weighted average of the two exchange-rate targets that re�ect

the goals of monetary policy. Crucially, the optimal weight ω has two components. First, there is

an exogenous component that depends on preferences and technology, controlled by the parameter

χ. In this simple example, χ depends on openness, α, since nominal rigidities only a�ect the

nontradable sector.12 More generally, it depends on the degree of price stickiness, risk aversion, and

the elasticity of labor supply, among others. More interestingly, there is an additional endogenous

component: the portfolio B̄. When gross positions |B̄| are large, the planner only needs a small

exchange rate movement and, hence, small changes in the output gap, to create a transfer Ts. This
follows from equation (18). In other words, providing insurance when |B̄| is large is cheap. On the

other hand, it becomes increasingly costly to close the output gap. Doing so requires moving the

exchange rate, which implies a large transfer of wealth across borders. Note that the sign of B̄ is

irrelevant for the argument.

Figure 1 shows the two exchange rate targets and the optimal policy for di�erent levels of B̄.

The left panel plots the response after a positive innovation to nontradable productivity Zs. Since

the price of nontradables is �xed, the demand management target depreciates to lower the relative

price of nontradables and close the output gap (dashed-red line).13 On the other hand, the insurance

target is a peg if B̄ ̸= 0.14 Any movement in es would create a transfer of wealth across borders

that is undesirable. The solid-green line plots the optimal exchange rate. The larger B̄ is, the

closer it is to the insurance target. When B̄ = 0, there is no insurance role so it coincides with the

demand-management target.

The right panel plots the response after a positive innovation to the tradable endowment. The

demand-management target is a peg, since the relative price of nontradables does not move in the

�exible-price allocation.15 On the other hand, the insurance target is a hyperbola: when B̄ > 0 the

exchange rate needs to depreciate to create a negative transfer that o�sets the tradable endowment

shock. The smaller B̄ is, the larger the required movement. Again, the optimal exchange rate lies

between both targets and is closer to the insurance target as |B̄| increases. The response after c∗s
shocks is analogous.

Lemma 2 is not a complete characterization of the exchange rate policy, since it depends on the

portfolio, which is endogenous. I tackle this next.

12Note that the relationship is non-monotonic. When α is very high, deviations from demand-management matter
little since the non-tradable sector is small. When α is very low, given B̄, a small exchange rate change creates a large
transfer relative to the size of the tradable sector. Note, however, that the desired transfer and, therefore, ein,s(B̄),
also become smaller as α→ 0.

13Note that the demand-management target is independent of B̄. This because of the unitary elasticity of substi-
tutions and φ = 0. I relax this in section 3.6.

14When B̄ = 0, there are no transfers of wealth so es is irrelevant for risk sharing.
15This is because of GHH preferences, unitary elasticities of substitution, and φ = 0.
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Figure 1: Optimal exchange rate conditional on B̄

(a) Nontradable productivity shock

B̄

es

edm,s ein,s eop,s

(b) Tradable endowment shock

B̄

es

edm,s ein,s eop,s

Note: Exchange rate response after a positive nontradable productivity shock (left) and a positive endowment shock

(right): demand-management target (dashed-red line), insurance target (dotted-blue line), and optimal policy (solid-

green line). I set α = 0.55 and φ = 0.

3.2 Optimal portfolio

Next, I characterize the optimal portfolio. Replacing (19) into (16) and rearranging, the planner's

problem becomes

max
B̄

−1

2

χk0
1 + χB̄2

 B̄2σ2edm︸ ︷︷ ︸
demand management

+ σ2Tcm︸︷︷︸
insurance

+2B̄σTcmedm︸ ︷︷ ︸
align targets

 (20)

where σ2Tcm is the volatility of transfers in the complete markets allocation, σ2edm is the volatility of

the demand-management target, and σTcmedm is their covariance, respectively. Solving this problem

yields the optimal steady-state portfolio B̄, which is one of the solutions to a quadratic equation

(in an interior optimum).

The optimal B̄ has two important properties, which I describe next.

3.2.1 The planner chooses portfolios to mitigate trade-o�s

Choosing the portfolio optimally allows the planner to mitigate the trade o�s between insurance and

demand management. This e�ect is captured by the third term in the objective (20). For example,

suppose the economy only receives nontradable productivity shocks zs. By choosing B̄ = 0, the

planner can allow the exchange rate to �oat freely without creating any undesirable transfers of
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wealth across borders. Thus, they replicate the behavior of the �rst-best economy to �rst order.16

When the economy faces more shocks, the planner exploits the correlation between the targets.

For example, suppose endowment shocks yTs and nontradable productivity shocks zs are positively

correlated (Tcm,s and edm,s are negatively correlated). When the country is long home-currency

assets (B̄ > 0), the targets align: An exchange rate depreciation when zs is high closes the output

gap and creates a negative transfer, which is desirable because the endowment yTs is high. Thus,

by choosing B̄ appropriately, the planner can replicate the �rst-best allocation to �rst order. When

the correlation is imperfect, the �rst best is unattainable but the same intuition goes through: the

planner chooses B̄ to align the targets on average.

Proposition 2. In an interior optimum, the optimal home-currency position B̄ has the opposite

sign to σTcmedm. If Tcm and edm are perfectly correlated, the planner attains the �rst-best allocation

to �rst order (provided K̄ is large enough so that the replicating portfolio is feasible).

3.2.2 When market incompleteness is pervasive, large gross positions are optimal

To the extent that the insurance and demand management motives are not perfectly correlated, the

planner needs to prioritize one objective. In section 3.1, I argued that the optimal weight depended

on the portfolio B̄. When gross positions |B̄| are large, it is relatively cheap to provide insurance

and relatively costly to close the output gap. By contrast, small gross positions |B̄| minimize the
losses from deviations from demand management σ2edm (the �rst term). This argument is re�ected

in the �rst and second terms of the objective (20).

This principle guides the optimal portfolio decision when trade-o�s are unavoidable: The more

important the insurance motive, captured by σ2Tcm/σ
2
edm

and χ, the larger the gross positions |B̄|.
In this example economy, σ2Tcm/σ

2
edm

would be large if yTs and c∗s are very volatile relative to zs.

Note that it is crucial that the proper hedges of yTs and c
∗
s are missing securities. If agents could

imperfectly hedge these shocks, the volatility of the transfers that need to be replicated σ2Tcm would

decrease and the planner would choose a smaller currency exposure (see section 4).

Proposition 3. In an interior optimum, gross positions |B̄| become larger when the insurance

motive becomes more important (i.e., when σ2Tcm/σ
2
edm

or χ increase). Furthermore, a decrease in

the covariance between the insurance and the demand-management targets - |σTcmedm |/σ2edm - makes

gross positions |B̄| smaller if and only if the demand-management motive is more important than

the insurance motive, i.e., if σ2edm > χσ2Tcm. Conversely, i.e., if σ2edm < χσ2Tcm, it makes gross

positions |B̄| larger.

3.3 Optimal monetary policy: Risk matters to �rst order

In standard models, the optimal monetary policy in any given state is independent from the relative

likelihood of that state. Here, that is no longer true. The optimal exchange rate response depends

16Suppose there are no restrictions on cross-border currency holdings, i.e. K̄ = ∞. When the economy receives
only tradable endowment shocks, the planner can approximate the �rst-best arbitrarily closely by choosing B̄ → ∞
and es → 0 such that B̄es = αyTs. This case is similar to the one studied by Korinek (2009).
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on B̄, which in turn depends on the distribution of shocks in the economy. Indeed, an important

feature of the solution is that optimal portfolio choice ampli�es the bias of optimal monetary policy

in favor of one objective. That is, suppose that insurance becomes more important (e.g. ↑ χ).

Proposition 3 implies that the planner chooses larger gross positions, i.e. a larger |B̄|. Lemma 2

implies that that both high χ and large gross positions B̄ lead to an increase on the optimal weight

on the insurance motive ω. In other words, there is not only a direct e�ect on the weight through

χ but also an indirect e�ect through the optimal B̄.

Proposition 4. The optimal insurance weight ω increases with the importance of the insurance

motive (i.e. when σ2Tcm/σ
2
edm

and χ increase).

3.4 Portfolio endogeneity is crucial for exchange rate volatility

Should the exchange rate be allowed to ��oat� to manage aggregate demand or should authorities

curb exchange rate volatility? With incomplete markets, letting the exchange rate �oat to close

the output gap is clearly suboptimal, since it may create undesirable transfers of wealth. This may

lead to �fear of �oating� in some states of the world (e.g. after nontradable productivity shocks Zs).

However, in other states, the planner may actually increase the volatility of the exchange rate to

provide insurance (e.g. after tradable endowment shocks YTs).

What e�ect dominates? Using equation (19), one can write exchange rate volatility as a function

of the weight on each target and the portfolio,

σ2e(ω, B̄) = (1− ω)2σ2edm + ω2σ2ein(B̄) + 2ω(1− ω)σedmein(B̄). (21)

The next lemma contains the key observation.

Lemma 3. In an interior optimum, the solution satis�es ∂σ2
e(ω,B̄)
∂ω = 0. If gross positions are already

at the upper bound, i.e. |B̄| = K̄, then ∂σ2
e(ω,B̄)
∂ω > 0.

Suppose that the importance of insurance increases (e.g. ↑ χ). The �rst e�ect on volatility

comes from the optimal weight ω, which increases (proposition 4). This gives rise to a �composition

e�ect�: the exchange rate reacts more to yTs shocks and less to zs shocks.

What shock dominates? Figure 2 plots the volatility of the exchange rate explained by zs shocks

(dashed-red line) and the volatility of the exchange rate explained by yTs shocks (dotted-blue line)

shocks as a function of χ. If gross positions |B̄| are already at the upper bound (panel a), i.e.

|B̄| = K̄, then overall volatility (solid-green line) increases. Intuitively, improving risk sharing

is important but large gross positions are infeasible. Thus, the planner must rely on substantial

exchange rate movements to create the desired transfers. By contrast, if B̄ is at an interior optimum,

the planner can also increase B̄ to provide insurance. Crucially, lemma 3 states that the planner

chooses B̄ such that a marginal increase in the weight ω leaves exchange rate volatility unchanged.

That is, the composition e�ect is exactly zero at the solution.

The second e�ect on volatility comes from the endogeneity of the portfolio. As insurance becomes

more important, gross positions |B̄| increase (proposition 2), which reduces the volatility of the
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Figure 2: Exchange rate volatility

(a) Fixed B̄

log(χ)

σ(es)

σe : zs σe : yTs σe : total

(b) Optimal B̄

log(χ)

σ(es)

σe : zs σe : yTs σe : total

Note: Variance decomposition of the exchange rate volatility σ(es) when the portfolio is �xed and too small (left

panel) and when the portfolio is optimal (right panel). More precisely, I compute the optimal policy for σyT = σz = 1,

σc∗ = 0, corr(yT , z) = 0.25, for logχ ∈ (1, 4), which can be rationalized by changing α. I plot exchange rate volatility

(i) with only z shocks (dashed-red line), (ii) with only yT shocks (dotted-blue line), (iii) with both shocks (solid-green

line). On the left panel, B̄ is �xed at the optimal level for log(χ) = 1.

insurance target (panel b). Since the composition e�ect in an interior optimum is zero, exchange

rate volatility unambiguously decreases when B̄ can adjust (panel b).

Proposition 5. (Optimal exchange rate volatility). Consider an economy with small risks (ϵ→ 0).

(i) Suppose gross positions are at the upper bound and, as a result, the optimal portfolio is

unresponsive to marginal changes in risks or parameter values (i.e. |B̄| = K̄). Then, exchange

rate volatility σ2e/σ
2
edm

increases with the importance of the insurance motive (i.e. when χ and

σ2Tcm/σ
2
edm

increase).

(ii) Suppose the optimum B̄ is interior. Then, exchange rate volatility σ2e/σ
2
edm

decreases with

the importance of the insurance motive (i.e. when χ and σ2Tcm/σ
2
edm

increase).

3.5 Portfolio decisions are asymptotically e�cient

Does the private sector over- or under-expose itself to home currency debt absent government

intervention? Optimality of the portfolio implies

∑
s

πs(RE
−1
s − 1)

∂V

∂CT
(s) = 0. (22)
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Combining a second-order approximation of (22) and (6),

∑
s

πs(r − es)

( ¯
(
∂V

∂CT
)−1 ∂V

∂CT
(s)−

¯
(
dU∗

dC∗ )
−1dU

∗

dC∗ (s)

)
= O(ϵ3). (23)

If the portfolio is socially optimal, home's marginal utility of tradables relative to foreign must

be uncorrelated with the realized return of the home-currency bond. Combining a second-order

approximation of (4) and (6),

∑
s

πs(r − es)

( ¯
(
∂V

∂CT
)−1 ∂U

∂CT
(s)−

¯
(
dU∗

dC∗ )
−1dU

∗

dC∗ (s)

)
= τB +O(ϵ3), (24)

where I used that, at the steady state, private and social marginal utilities coincide, and that in an

interior optimum the tax is zero at the steady state and to �rst order (otherwise agents would take

in�nite positions).

A �rst-order approximation of ∂V
∂CT

(s) and ∂U
∂CT

(s) yields:

∂V

∂CT
(s)︸ ︷︷ ︸

social marginal utility

=
∂U

∂CT
(s)︸ ︷︷ ︸

private marginal utility

− α−1(1− α)(es − edms )︸ ︷︷ ︸
aggregate demand externality

+O(ϵ2). (25)

The term in red is an aggregate-demand externality. Agents overvalue tradable consumption in

booms: if es > edm,s then
∂V
∂CT

(s) < ∂U
∂CT

(s). The opposite occurs in recessions. Since markets are

incomplete, the planner will typically deviate from demand management, i.e. es ̸= edm,s. Therefore,

taxes are generically necessary to implement the social optimum (Farhi and Werning, 2016).

Equation (25) illustrates the �rst crucial assumption behind the approximate zero-tax result: if

prices were �exible, there would be no wedges between private and social marginal utility. A common

reason why this assumption may be violated in New Keynesian open economy models is terms-of-

trade-manipulation motives. For example, in section 4 I show that the tax is not approximately

zero if there is a �nite elasticity of demand for home assets.

Whether agents over- or under-expose themselves to home-currency risk depends on the corre-

lation of asset returns and output gaps. The key observation is that output gaps in this economy

are purely endogenous. To understand this, consider a �rst-order approximation to the �rst-order

condition with respect to the exchange rate in problem 1:

es − edm,s ∝
¯

(
∂V

∂CT
)−1 ∂V

∂CT
(s)−

¯
(
dU∗

dC∗ )
−1dU

∗

dC∗ (s)− (η − η̄)η̄−1 +O(ϵ2), (26)

where η is the Lagrange multiplier on (6).17 The planner only allows booms and recessions because

they a�ect the return of the home-currency bond. The latter is valuable when home marginal

utility at home diverges from the one abroad, i.e. when risk sharing fails. In other words, if

markets were complete, the planner would close output gaps state-by-state. This is the second

17More precisely, η is the Lagrange multiplier after a normalization (I divide it by B̄).
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crucial assumption behind the zero-tax result. Appendix B.5 studies two reasons why standard

New Keynesian models may violate this assumption: economies with mark-up shocks and multiple

sources of nominal rigidities.18 In those cases, the optimal approximate tax is generically not zero,

even under complete markets.

Putting (26) together with the optimality of the portfolio (23), and using the fact that
∑

s πs(r−
es) = O(ϵ2) and η is predetermined, it follows that the value of output gaps and realized excess

returns must be uncorrelated in the approximate solution. That is,∑
s

πs(r − es)(es − edm,s) = O(ϵ3).

Thus, ∑
πs(r − es)

( ¯
(
∂V

∂CT
)−1 ∂U

∂CT
(s)−

¯
(
dU∗

dC∗ )
−1dU

∗

dC∗ (s)

)
= O(ϵ3) ⇔ τB = O(ϵ3).

The tax is of order ϵ3 or higher, i.e. it converges to zero faster than the risk premium. For any

�nite level of risk ϵ > 0, the private portfolio decision is ine�cient and taxes are generically nonzero

(Farhi and Werning, 2016). However, as risk vanishes ϵ → 0, the portfolio that the private sector

would choose absent taxes and the socially optimal portfolio converge to the same point. In other

words, the portfolio is asymptotically e�cient.

Proposition 6. (Asymptotic portfolio taxes) Consider an economy with small risks (ϵ→ 0). Then,

in an interior optimum optimal portfolio taxes τB are given by

τB = O(ϵ3). (27)

3.6 Wealth e�ects

Next, I consider the case of a composite with a strictly convex disutility of labor, i.e. φ > 0.

Following the same steps as in section 3.1, the planning problem becomes

max
{es}s,B̄

−1

2
k0(1− µB̄)2

∑
s

πs

(es − edm,s(B̄))2︸ ︷︷ ︸
demand management

+χf(B̄)2 (es − ein,s(B̄))2︸ ︷︷ ︸
insurance

 (28)

18Intuitively, these are cases where the dimension of the aggregate-demand externality is larger than the degrees of
freedom of monetary policy so that the planner can only stabilize a weighted average of the externalities. Perhaps
surprisingly, appendix B.5 shows that, even allowing for multiple sources of nominal rigidities and mark-up shocks,
economies with separable utility between tradables and nontradables feature a �divine coincidence�: the weighted
average that the planner stabilizes is also the weighted average that matters for the wedge between private and social
marginal utility. Therefore, the tax is still approximately zero.
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where

edm,s(B̄) =

wealth e�ect︷ ︸︸ ︷
1

1− µB̄

(
1 + φ

α+ φ
zs − µαyTs

)
ein,s(B̄) = − 1

B̄
(−αyTs + αγ∗c∗s︸ ︷︷ ︸

Tcm,s

)

f(B̄) = − B̄

1− µB̄︸ ︷︷ ︸
wealth e�ect

, with µ =
α−1φ

α+ φ
.

Comparing (16) and (28), it becomes clear that the crucial di�erence between this problem and

the one studied in sections 3.1 - 3.5 is that the two objectives of monetary policy are no longer

independent. When a transfer makes agents richer (Ts > 0), the exchange rate needs to appreciate

to prevent an ine�cient boom in the economy. Henceforth, I call this the wealth e�ect of exchange

rate movements, which is governed by the parameter µ.

The wealth e�ect introduces an asymmetry into the optimal weight. For any two positions of the

same size, the weight on the insurance objective is larger if agents are long home-currency assets.

To see why, suppose the planner wants to create a positive transfer. If agents are short the home

currency, the planner needs to depreciate the exchange rate. Since the depreciation makes agents

richer, the demand-management target moves in the opposite direction, i.e. it appreciates. This

makes the original transfer more costly. Equivalently, suppose the planner was willing to create

a deviation of a 1% depreciation with respect to the exchange rate that closes the output gap.19

If B̄ < 0, the actual exchange rate movement, and resulting transfer, would be smaller than 1%.

Indeed, the additional transfer would be f(B̄)%.

Lemma 4. (Optimal monetary policy) Consider an economy with small risks, i.e., ϵ→ 0. Then,

eops (B̄) =
(
1− ω(B̄)

)
edm,s(B̄) + ω(B̄)ein,s(B̄) +O(ϵ2). (29)

where ω(B̄) ≡ χf(B̄)2

1+χf(B̄)2
.

The preceding discussion suggests that the size of the portfolio is not the most adequate measure

of �exposure� to monetary policy in this generalized environment, but rather f(B̄). Indeed, lemma

2 and proposition 3 hold in terms of f(B̄). That is, a larger importance of insurance leads to a

larger balance-sheet exposure to monetary policy, f(B̄), and an increased weight on the insurance

target. Note that, as long as 1 − µB̄ > 0, a larger exposure |f(B̄)| is associated with larger gross

positions |B̄|.
Henceforth, it will also prove useful to a measure of portfolio returns using f(B̄) as a notion of

19For a given a transfer Ts, the exchange rate that closes the output gap is es(Ts) = −µTs + edm,s(0). For a
given deviation es − es(Ts), the planner gets an additional transfer of Ts − Tdm,s(B̄) = f(B̄)(es − es(Ts)), where
Tdm,s(B̄) = f(B̄)edm,s(B̄) is the implied transfer under demand management.
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the size of the portfolio, rrfs:

rrfs =
Ts
f(B̄)

. (30)

Proposition 5 holds in terms of rrfs.
20 Note that

rrfs
rrdm,s(0)

=
rrs

rrdm,s(B̄)
=

es
edm,s(B̄)

.

Thus, relative to a demand-management policy rrdm,s(B̄), the volatility of the home-currency re-

turns rrs decreases with the importance of the insurance objective.

Proposition 7. Lemma 2 and propositions 3 and 4 hold for f(B̄) = − B̄
1−µB̄

, σ2Tcm/σ
2
edm(0) and

σTcmedm(0) instead of B̄, σ2Tcm/σ
2
edm

, and σTcmedm, respectively. Proposition 2 holds in terms of f(B̄)

with the opposite sign, i.e. f(B̄) has the same sign as σTcmedm(0). Proposition 5 part (ii) holds for

σ2rrf /σ
2
rrdm(0) instead of σ2e/σ

2
edm(0), while part (i) holds as long as 1− µB̄ > 0.

One may wonder whether the results on f(B̄)-return volatility translate into the volatility of

the actual returns, i.e. the exchange rate. Note that the actual returns, rrs = −es, and the f(B̄)

returns, rrfs, are linked by

rrs = −(
1

1− µB̄
)rrfs. (31)

The wealth e�ect implies that the answer depends on the sign of the position. Suppose that there

is a positive nontradable productivity shock, which requires a depreciation to close the output gap.

When B̄ < 0, a depreciation makes the country richer, increasing nontradable demand. Thus, the

exchange rate needs to depreciate by less to close the output gap, i.e. it becomes less volatile. The

opposite is true when B̄ > 0. Therefore, when B̄ < 0, which is often the empirically relevant case,

this new e�ect reinforces the e�ects I characterized in section 3.4. By contrast, when B̄ > 0, it

operates in the opposite direction making the overall e�ect on volatility ambiguous.

Proposition 8. (Optimal exchange rate volatility). Consider an economy with small risks (ϵ→ 0).

(i) Suppose gross positions are at the upper bound and, as a result, the optimal portfolio is

unresponsive to marginal changes in risks or parameter values (i.e. |B̄| = K̄). Furthermore,

suppose that 1− µB̄ > 0. Then, exchange rate volatility σ2e/σ
2
edm(0) increases with the importance

of the insurance motive (i.e. when χ and σ2Tcm/σ
2
edm(0) increase keeping σT edm(0)constant).

(ii) Suppose the optimum B̄ is interior. Then, if B̄ < 0, exchange rate volatility σ2e/σ
2
edm(0)

decreases with the importance of the insurance motive (i.e. when χ and σ2T increase). If B̄ > 0,

the result is ambiguous.

Finally, proposition 6 also carries over to this environment. Interestingly, even if the plan-

ner focused on demand management, portfolio choices would be approximately e�cient. That is,

consider problem 1 with the additional constraint that output gaps are zero in every state, i.e.

20Note that I write the results relative to edm(0), which is a function of parameters and shocks, i.e. exogenous.

21



E−1
s = E−1

dm,s = Φ(CTs, Zs) ∀s, where Φ(·) is given by

Φ(CTs, Zs) ≡ α
− φ
α+φ (1− α)

1+φ
α+φZ

− 1+φ
α+φ

s C
φ

α+φ

Ts .

The �rst-order condition with respect to CTs yields

∂U

∂CT
(s)− η

dU∗

dC∗ (s) =

(
Λ(s)− η

dU∗

dC∗ (s)

)1− RB
∂Φ

∂CT
(s)︸ ︷︷ ︸

pecuniary externality

 , (32)

where I used the fact that ∂U
∂CT

(s) = ∂V
∂CT

(s) when the output gap is zero, i.e. there is no aggregate-

demand externality. Still, agents do not internalize that their portfolio decisions a�ect the return of

the asset and, as a result, a�ect its price. This is a standard pecuniary externality due to incomplete

markets (Geanokoplos and Polemarchakis, 1986).

A �rst-order approximation of (32) yields

∂U

∂CT
(s)− η̄

dU∗

dC∗ (s)− (η − η̄)
¯dU∗

dC∗ =

(
1− R̄B̄

∂̄Φ

∂CT

)(
∂U

∂CT
(s)− η̄

dU∗

dC∗ (s)− (η − η̄)
¯dU∗

dC∗

)
+O(ϵ2).

While agents do not internalize that consuming an extra unit in state s changes the realized excess

return of the bond by R̄ ∂̄ϕ
∂CT

, the social value of R̄B̄ ∂̄ϕ
∂CT

extra units of tradables is given by social

marginal utility. Hence, private and social marginal utilities (relative to foreigners') are still pro-

portional to one another. Using the same argument as before, it follows that pecuniary externalities

must also be uncorrelated with the realized excess return of the bond so portfolio decisions are

asymptotically e�cient. This result is critical to understand why the no-tax result generalizes to

arbitrary asset structures in section 4.

Proposition 9. (Asymptotic portfolio taxes) Consider an economy with small risks (ϵ→ 0). Then,

in an interior optimum optimal portfolio taxes τB are given by

τB = O(ϵ3).

Taxes are also approximately zero in any economy where the planner is restricted to set es = edms

and can only optimize over B.

4 Static model: General framework

The previous analysis makes several strong assumptions. An attractive feature of my methodology is

that it can easily accommodate more general environments. In this section, I exploit this tractability

to analytically prove the robustness of the previous results and derive additional insights. I defer the

analysis of a dynamic economy to section 5. For brevity, a formal de�nition and characterization of

the competitive equilibrium and planning problem are omitted here and included in appendix B.2.
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4.1 Set up

Preferences There is a representative agent with preferences over tradables, nontradables, and

labor, ∑
s

πsU(CTs, CNs, Ls; ξs). (33)

where ξs is a K × 1 vector of shocks. U is locally analytic around the steady state, increasing in

CT and CN , decreasing in L, and strictly concave. Each agent owns an endowment YT (ξs) of the

tradable good and �rm pro�ts, described below. I normalize P ∗
Ts ≡ 1.

Technology The nontradable good is a CES composite of a continuum of varieties

CNs = (

∫ 1

0
CNs(i)

η−1
η di)

η
η−1 .

For each variety, there is a �rm that produces it using labor,

CNs(i) = F (Ls(i); ξs).

F is locally analytic around the steady state, increasing and concave.21 Note that all varieties have

the same technology. Thus, in the �rst best all �rms produce equal amounts.

The only role of this special structure is to introduce nominal rigidities into the environment.22

More precisely, I assume that in each state of the world a random share ϕ of the �rms have a �xed

home-currency price of PNs(i) = 1 ∀s while the remaining share 1 − ϕ can reset their price. As

usual, I assume there is a constant production subsidy τL = 1 − η−1
η to correct the monopolistic

distortion.

Financial assets Agents have access to J + 1 ≤ K assets, {Θj}Jj=0. For ease of exposition, I

assume that one of these assets, labeled asset 0, is a risk-free asset in foreign currency. The payo�

{X̃js}s of asset j may depend on both aggregate endogenous variables, collected in Ys
23 and shocks

ξs,

X̃js = X̃j(Ys; ξs)

for some function X̃j that is positive and locally analytic around the steady state. For example, the

home-currency bond of the previous section would be X̃j(·) = E−1
s . Claims on a mutual fund of

nontradable good producers would be X̃j(·) =
∫ 1
0 ΠNs(i)di while claims on the tradable endowment

would be X̃j(·) = YT (ξs).

21To simplify the exposition, I assume production is separable across goods and introduce nonseparabilities (if any)
in the utility function. A model where tradables are used in the production of nontradables is similar to one with
nonseparable utility.

22It is straightforward to, instead, introduce nominal rigidities into retail (i.e. �rms that aggregate tradables and
nontradables to produce the �nal good) or wages. As discussed in section 3.5, what is important for the result on
taxes (proposition 12) is that if the planner chose to, they can fully undo nominal rigidities (see also appendix B.5).

23Here, Ys would potentially include tradable and non-tradable consumption, labor, nontradable-goods prices,
wages, aggregate pro�ts, and exchange rates. See appendix B.2.1 for a formal de�nition.

23



Large economy A measure m of foreigners with endowments {Y ∗(ξs)}s trades �nancial assets

with home agents. They give rise to a no-arbitrage equation that prices �nancial assets

∑
s

πs

(RjX̃j(Ys; ξs)− 1)
dU∗

(
Y ∗(ξs)− 1

m

∑
j(RjX̃j(Ys; ξs)− 1)Θj

)
dC∗

 = 0,

where Rj is the equilibrium foreign-currency yield of asset j relative to asset 0 (normalized to one)

and Θj is the position of the home agent in asset j (�nanced by issuing asset 0). The case in the

previous section is nested by letting m→ ∞.

Planner The planner chooses the exchange rate rule {Es}s and taxes on �nancial assets {τj}j to
maximize ∑

s

πs
{
U(CTs, CNs, Ls; ξs) +mλ̄U(C∗

s )
}

subject to all equilibrium conditions (see appendix B.2.2). λ̄ ≥ 0 is the relative Pareto weight on

foreigners. This formulation nests the case of a home (or non-cooperative) planner with λ̄ = 0 and

the case of a global planner (or cooperative) that does not want to redistribute wealth ex ante across

borders by setting λ̄ equal to the ratio of the marginal utility of tradables at the steady state.

4.2 Results

Lemma 8 in appendix B.2.6 shows that the approximate planning problem can be written as

max{es}s,{Θ̄j}j −
k0
2

(
1−

∑
j µjΘ̄j

1−
∑

j R̄jΘ̄j
∂Xj
∂CT

)2∑
s

πs

(es − edm,s(Θ̄))2︸ ︷︷ ︸
demand management

+χf(Θ̄)2 (es − ein,s(Θ̄))2︸ ︷︷ ︸
insurance


(34)

where k0 > 0, χ > 0 is the parameter that controls the relative importance of insurance vs. demand-

management, edm,s(Θ̄) is the demand-management target, which attains a zero output gap and zero

price dispersion when Θ = Θ̄, and ein,s(Θ̄) is the insurance target, which replicates the �exible-

prices complete-market transfers Tcm,s when Θ = Θ̄ (explicit expressions provided in the appendix).

The balance-sheet exposure to monetary policy f(Θ̄) is given by

f(Θ̄) =

direct e�ect︷ ︸︸ ︷∑
j

krrjeΘ̄j

1−
∑
j

µjΘ̄j︸ ︷︷ ︸
wealth e�ect

.

The numerator contains the direct e�ect: the change in the return of asset j when the exchange

rate changes, keeping wealth constant, given by krrje. In the model of section 2, krre = −1. The
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denominator contains the wealth e�ect: the change in the return of the portfolio because of a

transfer Ts, keeping the output gap constant, given by
∑

j µjΘ̄j . f(Θ̄) has the same interpretation

as f(B̄) in section 3.6: a depreciation of 1% with respect to the demand-management target creates

a transfer of f(Θ̄)%.

Written this way, it becomes clear that the optimal exchange rate is once more a weighted average

of both targets with an optimal weight that depends on f(Θ̄). However, Θ̄ is now multidimensional

and, hence, the optimal exchange rate depends on the entire portfolio Θ̄. To make progress, I divide

the optimal portfolio problem into two steps. First, I solve for the optimal portfolio Θ̄ that attains

a given level of balance-sheet exposure to monetery policy, f(Θ̄).

Proposition 10. Let Θ̃j =
Θ̄j

1−
∑
j µjΘ̄j

and suppose that krrje ̸= 0 for at least one asset j. Given

some balance-sheet exposure to monetary policy, f(Θ̄), the optimal portfolio solves

Θ̃ = kΘ0 + kΘff(Θ̄)

where

kΘ0 =

(
I − Var(rrdm(0))−1krrek

′
rre

k′rreVar(rrdm(0))−1krre

)
Var(rrdm(0))−1Cov(Tcm, rrdm(0))

kΘf =
Var(rrdm(0))−1krre

k′rreVar(rrdm(0))−1krre
,

Tcm are the desired transfers under complete markets, krre = {kkrrje}Jj=1 ∈ RJ×1, and rrdm(0) =

{rrj,dm(0)}Jj=1 ∈ RJ×1 are the realized excess returns when Θ̄ = 0 and es = edm,s(0). If krrje = 0

∀j, then f(Θ̄) = 0 and

Θ̃ = Var(rrdm(0))−1Cov(Tcm, rrdm(0)).

The �rst term in the optimal portfolio formula, kΘ0, captures two e�ects. First, the planner

uses assets with returns that are independent from monetary policy to diversify away some risk.

For example, consider the model of section 2 and suppose that the planner can sell claims to the

tradable endowment. In this case, the planner can hedge tradable endowment shocks without

using monetary policy, which is a costly source of insurance against these shocks. The second e�ect

appears when there is more than one asset that loads on monetary policy. For example, consider the

model of section 2 and suppose that the planner can trade an asset that loads on both the tradable

endowment shock and the exchange rate. The planner can hedge tradable endowment shocks using

this asset and then o�set the resulting exposure to monetary policy with an appropriate position

on the home-currency bond.

The second term in the optimal portfolio formula, kΘf , contains information on how the optimal

portfolio composition varies with balance-sheet exposure to monetary policy. Interestingly, even if

the return of an asset is una�ected by monetary policy, the planner may still vary their holdings of

such an asset depending on the desired exposure f(Θ̄). For example, consider the model of section

2 and suppose that the planner can sell claims to the nontradable productivity Zs. In the original
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model, if Zs is very volatile, the planner chooses home-currency bond positions close to 0 to avoid

undesirable transfers of wealth. In this example, by contrast, the planner can choose a large B to

insure against tradable endowment shocks and buy claims to Zs to o�set the undesirable transfers

created by the nominal asset in those states of the world.

This discussion suggests that in this generalized asset market structure, what matters is not

the transfers the planner wants to replicate from complete markets {Tcm,s}s or the returns under
demand management {rrdm,s(0)}s, but rather the transfers that cannot be hedged using instruments
other than monetary policy, {T̃cm,s}s, and the component of returns that depends on the exposure

to monetary policy after solving the optimal portfolio problem above, {r̃rdm,s(0)}s. For example,

consider the model of section 2. If the planner can trade claims on the tradable endowment, this

shock will not enter T̃cm,s. Similarly, if the planner can trade claims on non-tradable productivity,

the exchange rate movements (i.e, the return of the home-currency bond) explained by Zs will not

enter r̃rdm,s(0). Lemma 5 shows that, once one makes these corrections, the objective function

takes the same form as before.

Lemma 5. The optimal f(Θ̄) solves

max
f(Θ̄)

−1

2
k0

(
χ

1 + χf(Θ̄)2

)(
σ2T̃cm

+ σ2r̃rdm,s(0)f(Θ̄)2 − 2σT̃cmr̃rdm,s
(0)f(Θ̄)

)
+O(ϵ3)

where

T̃cm,s = Tcm,s − k′Θ0rrdm,s(0)

r̃rdm,s(0) = k′Θfrrdm,s(0).

It is then immediate that propositions 2, 3, and 4 carry over to this environment.24 Furthermore,

de�ne the f(Θ̄)-returns, rrfs, as

rrfs = f(Θ̄)−1T̃s, (35)

where T̃s = Ts−k′Θ0rrdm,s(0). Intuitively, this object is the transfer created by monetary policy, T̃s,
per unit of exposure f(Θ̄). I prove an analogous result to proposition 5 for the volatility of f(Θ̄)-

returns, rrfs. At this level of generality, however, there is no obvious mapping to the volatility of

the exchange rate, which needs to be checked on a case-by-case basis.

Proposition 11. Lemma 2 and propositions 3 and 4 hold for f(Θ̄) , σ2T̃cm
/σ2r̃rdm(0) and σT̃cmr̃rdm(0)

instead of B̄, σ2Tcm/σ
2
edm

, and σTcmedm, respectively. Proposition 2 holds in terms of f(Θ̄) with

the opposite sign, i.e. f(Θ̄) has the same sign as σT̃cmr̃rdm(0). Proposition 5 part (ii) holds for

σ2rrf /σ
2
r̃rdm(0) instead of σ2e/σ

2
edm(0).

Finally, proposition 12 characterizes the optimal tax for each asset j.

24One may think of r̃rdm,s(0) and T̃cm,s as functions of parameters and shocks that are �su�cient statistics� for the
comparative statics emphasized in proposition 11 (see appendix B.2 for details).
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Proposition 12. In an interior optimum, the optimal tax on asset j is given by

τj =
1

m

(
1−

dU∗

dC∗

∂U
∂CT

λ̄

)
γ∗Cov(Ts, rrjs) +O(ϵ3).

When the country is small, i.e. m → ∞, like in section 2, the tax is zero for every asset in the

approximate solution. The reason is that the two crucial assumptions discussed in section 3.5 are

satis�ed. That is, (i) if prices were �exible, private and social marginal utility would be proportional

to one another, and (ii), if markets were complete, the planner would eliminate output gaps. By

contrast, when the country is large and policy is non-cooperative, i.e. m < ∞ and λ̄ ̸= ∂U
∂CT

/dU
∗

dC∗ ,

the �rst assumption is violated. To see this, suppose the planner only cares about home agents, i.e.

λ̄ = 0. The planner realizes that, as the economy demands more insurance from abroad, it becomes

more expensive. Private agents do not internalize this negative terms-of-trade externality and over-

insure. That is, for any asset that provides insurance for the home country Cov(Ts, rrjs) > 0, the

private sector takes a position that is too long and the planner needs to tax this asset τj > 0. The

opposite is true when a positive position in the asset provides insurance to the rest of the world,

i.e. Cov(Ts, rrjs) < 0.25 This result is reminiscent of a result in Costinot, Lorenzoni and Werning

(2014). They show that in a dynamic endowment economy with two countries, a home planner

would induce procyclical consumption to manipulate the interest rate in their favor. My result

shares the same logic but across states instead of over time, i.e. lack of perfect insurance instead of

procyclicality.

5 Dynamic model

In this section, I study a dynamic economy. For ease of exposition, I focus the analysis in sections

5.1−5.4 on a three-period version of the simple model of section 2. Section 5.5 discusses an in�nite-

horizon version of the general model of section 4, which is studied in detail in appendix B.4.

5.1 Setup

All the uncertainty is still revealed at t = 1, but there is an additional period t = 2 after it. The

utility function is given by

W =
∑
s

πs
∑
t=1,2

ln

(
κCα

TstC
1−α
Nst − 1− α

1 + φ
L1+φ
st

)
(36)

At t = 1, agents can trade one-period home- and foreign-currency bonds that promise a �xed

payment at t = 2 in the corresponding currency, Rs and R∗
s, respectively. Since the model is

25In the special case where agents trade only home- and foreign-currency assets, Cov(Ts, rrjs) = B̄
∑
s πse

2
s. Thus,

the planner pushes positions towards zero, i.e. disincentivizes �nancial integration.
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deterministic between t = 1 and t = 2, no arbitrage implies

R∗
s = E−1

s2 Es1Rs(1 + Ψs), (37)

whereΨs is a convenience-yield shock, capturing in reduced form unmodelled changes in the liquidity

service or pledgeability of home-currency bonds relative to foreign-currency bonds (as in Lahiri and

Végh, 2003). When Ψs is high, holding the home asset becomes valuable and its price increases.

That is, Ψs creates a �rst-order uncovered interest rate parity (UIP) deviation, i.e. Ψs is a �UIP

shock�.26 I also allow for shocks to R∗, rationalized by �uctuations in foreigners' β∗.27

At t = 0, agents can trade a long home-currency bond that promises a �xed home-currency

coupon of δR0 at t = 1 and (1− δ)R0 units of the t = 1 home-currency bond. In addition, they can

trade a short foreign-currency bond that pays 1 unit of foreign currency at t = 1.28 The realized

excess return of home-currency bonds at t = 1 is given by

rrs =

δ (
R0E

−1
s1 − 1

)︸ ︷︷ ︸
a�ected by t = 1 policy

+(1− δ)
(
(1 + Ψs)R0E

−1
s2 R

∗−1
s − 1

)︸ ︷︷ ︸
a�ected by promised t = 2 policy

 . (38)

Equation (38) illustrates the key di�erence between the dynamic and the static model: the planner

has more tools. Before, the only way the planner could create transfers at t = 1 was to a�ect the

exchange rate at t = 1. Now, they can either move the exchange rate today (i.e. at t = 1), or

promise to move it tomorrow (i.e. at t = 2). The latter would a�ect the price of home-currency

bonds today, i.e. it would create valuation e�ects.

Consumer optimization yields the intratemporal equations (2) and (3) holding ∀s, t, a t = 0

no-arbitrage condition that is analogous to (4), and an Euler equation,

∂U

∂CT
(s, 1) = (1− τ savs )R∗

s

∂U

∂CT
(s, 2), (39)

where τ savs is a savings tax that is uniform across assets. The home country's budget constraint is

given by

CTs1 + nfas = YTs1 + rrsB0 (40)

CTs2 = YTs2 +R∗
snfas, (41)

where nfas = B∗
s +Bs is the net-foreign-asset position. Technology is given by CNst = ZstLst and

nontradables prices are fully rigid and equal to one PNs(t) = 1 ∀s, t. Finally, foreign optimization

26Note that Ψs is symmetric across agents: the liquidity value of the home bond goes up or down for everyone.
27The R∗ shock I consider has similar e�ects to what is often labeled �UIP� shock in the literature (Kollmann,

2001). However, in my model R∗ does not create a UIP deviation. Here, a positive R∗ shock makes all assets sold by
home agents to foreigners less attractive, regardless of the currency of denomination.

28As in section 2, agents only trade assets at t = 0 so I normalize w.l.o.g. the yield of the t = 0 foreign-currency
bond and the t = 0 exchange rate to 1.
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yields a no-arbitrage condition that is analogous to (6) (see appendix B.3.1 for details). This

completes the characterization of the competitive equilibrium.

5.2 Planning problem

The planning problem is to maximize (36) subject to all equilibrium conditions. Appendix B.3.2

shows that a second-order approximation of the objective function yields:29

W = −1

2
k̃0
∑
s

πs

(1− α)2
∑
t=1,2

x2st︸︷︷︸
output gap

+χ̃ (Ts − Tcm,s)
2︸ ︷︷ ︸

insurance

+4χ̃ ˜nfa
2
s︸ ︷︷ ︸

savings distortions

+ t.i.p.+O(ϵ3),

(42)

where k̃0 = (1 + φ)(1− α), χ̃ = 1
2

(
1

α+φ

)
(1− α)−1α−1, and

Tcm,s = −αys1 − αys2 + αr∗s + 2αγ∗c∗s

˜nfas = nfas −
1

2
(α(ys1 − y2s) + αr∗s + Ts)︸ ︷︷ ︸

=nfafbs (Ts)

.

There are three loss terms. The �rst two are the same as in the static model: they penalize

deviations from production e�ciency and perfect risk sharing, respectively. The additional loss term

in green re�ects that in a dynamic model the planner also cares about the distribution of wealth

over time. Let nfafbs (Ts) denote the �rst-best savings in an economy that receives an exogenous

transfer of Ts. For example, if the country receives a positive transfer of Ts, then under �exible

prices the planner would spend 1
2Ts in each period. Whenever savings deviate from this benchmark,

consumption smoothing is distorted and welfare decreases.

A �rst-order approximation of (38) yields

rrs = δ(r0 − es1) + (1− δ)(ψs + r0 − es2 − r∗s), (43)

where ψs = log(Ψs). Using the remaining equilibrium conditions, one can rewrite this expression

as a function of output gaps and savings distortions (see appendix B.3.3):

−(1− α)(δxs1 + (1− δ)xs2)− 2µ (δ − (1− δ)) ˜nfas =
(
1− µB̄

)
rrs − rrdm,s(0), (44)

29For ease of exposition, I assume that in the steady state both periods are identical and there is no initial wealth
so ¯nfa = 0. If ¯nfa ̸= 0, then the interest-rate shock has an additional income e�ect that may be positive or negative
depending on whether the country is a creditor or debtor in the original steady state.
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where µ = 1
2α

−1 φ
α+φ ≥ 0 is the wealth e�ect discussed in section 3.6 and30

rrdm,s(0) =
1

2

φ

α+ φ
(yTs1 + yTs2)−

1

2

φα−2 (δ − (1− δ))

α+ φ
r∗s −

1 + φ

α+ φ
(δzs1 + (1− δ)zs2) (45)

+ (1− δ)(ψs − r∗s)

are the realized excess returns of the home-currency bond when the planner stabilizes demand

(xs1 = xs2 = ˜nfas = 0) and B̄ = 0.

Next, imagine that the planner wants to increase the return of the home-currency bond relative

to a laissez-faire demand-management policy. They have three ways of achieving this. First, they

can use contractionary monetary policy at t = 1, appreciating the nominal exchange rate and

creating a recession at t = 1, x1s < 0. Second, they can rely on forward guidance, promising an

expected appreciation of the exchange rate and a future recession, x2s < 0. Such a promise would

increase the price of home-currency bonds and create a positive valuation e�ect at t = 1. Finally,

they can distort consumption. If δ > 1
2 , the return is more sensitive to the value of the exchange

rate today than tomorrow. Thus, by boosting consumption at t = 1, i.e. nfas < 0, they create a

positive return without distorting production.

The approximate planning problem is to maximize (42) subject to (44). I solve this problem in

two steps. First, I solve the t = 1 continuation problem, i.e. �nding the optimal combination of

output gaps and savings distortions that minimize the cost of a given transfer Ts. Then, I solve the
t = 0 problem of �nding the optimal distribution of realized returns {rrs}s and the portfolio B̄.

5.3 The continuation problem: Minimizing the cost of creating a transfer

Proposition 13 below describes the optimal combination of {xst}t=1,2 and ˜nfas. The results are

intuitive. First, since the costs of small output gaps and consumption-smoothing distortions are

negligible, the planner optimally distorts both margins. When bonds are short, the planner relies

more on contemporaneous output gaps and brings consumption forward whenever the goal is a

higher home-currency return. When bonds are long, the planner relies on forward guidance to

create valuation e�ects and postpones consumption whenever the goal is a higher home-currency

return.

Proposition 13. Suppose that the planner wants to increase the return of home-currency bonds,

i.e. rrs − (1− µB̄)−1rrdm,s(0) > 0 (the converse is analogous). Then:

(i) Output gaps are negative in both periods. The longer the bonds, the more the planner relies

on valuation e�ects, i.e. |xs1| increases with δ while |xs2| decreases with δ. When δ = 1
2 , output

gaps in both periods are equal.

(ii) Suppose φ > 0. Then, relative to the �rst-best savings, the planner increases consumption

at t = 1 if δ > 1
2 ( ˜nfas < 0) and decreases consumption at t = 1 if δ < 1

2 ( ˜nfas > 0). If φ = 0 or

30Note that the wealth e�ect is smaller in a dynamic economy since consumption increases less than the initial
transfer. In an in�nite horizon model, µdyn = (1− β)µstatic, as agents only spend the annuity value of the transfer.
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δ = 1
2 , the planner chooses the �rst-best savings.

What does this imply for savings taxes? A �rst-order approximation of the home Euler equation

(39) yields

cTs2 − (1− α)2xs2 = r∗s − τ savs + cTs1 − (1− α)2xs1 +O(ϵ2), (46)

where τ savs is a savings tax on home agents (i.e. a �nancial tax that is uniform across assets). Using

the country's budget constraint, (46) can be written as31

τ savs = (1− α)2(xs2 − xs1)︸ ︷︷ ︸
aggregate demand externality

− 2α−1 ˜nfas︸ ︷︷ ︸
pecuniary externality

+O(ϵ2) (47)

Consider �rst the case with φ = 0 and suppose that the planner wants to create a positive transfer.

When bonds are short (i.e. δ > 1/2), the recession at t = 1 is deeper than the one at t = 2. Seeing

relatively high prices of nontradables at t = 1, home agents mistakenly consume too little at t = 1.

The planner needs to tax savings to correct this aggregate-demand externality. The converse is true

if δ < 1/2.

Next, suppose that φ > 0. When bonds are short (i.e. δ > 1/2), the planner wants to consume

more at t = 1 than under �exible prices to appreciate the exchange rate, i.e. ˜nfas < 0. However,

agents do not internalize the e�ect of their decisions on the exchange rate. The planner needs to

tax savings to correct this pecuniary externality. The converse is true if δ < 1/2.

Proposition 14. Suppose that the planner wants to boost the return of home-currency bonds, i.e.

rrs − (1 − µB̄)−1rrdm,s(0) > 0 (the converse is analogous). If δ > 1
2 (shorter bonds), the planner

taxes savings τ savs > 0. If δ < 1
2 (longer bonds), the planner subsidizes savings τ savs > 0.

5.4 Time-zero problem

After replacing the solution of the continuation problem into (42),32 the objective becomes

W = −1

2
k0(1−µB̄)2

∑
s

πs

(rrs − rrdm,s(B̄)
)2︸ ︷︷ ︸

demand management

+χf(B̄)2
(
rrs − rrin,s(B̄)

)2︸ ︷︷ ︸
insurance

+t.i.p.+O(ϵ3). (48)

31In appendix B.4.15, I characterize these taxes in a dynamic version of the general model of section 4. I show
that one can still decompose them into the same two components. Interestingly, the sign of the aggregate-demand
externality term depends on the utility function. While GHH always predicts that agents overvalue tradables in
booms, even with non-unitary elasticities, when labor is separable the sign depends on whether goods are Edgeworth
substitutes (agents overvalue tradables in booms) or complements (agents undervalue tradables in booms). Relatedly,
Bianchi and Coulibaly, 2022 show that, when monetary policy is used to manipulate savings, whether it leans with
or against the wind also depends on whether goods are Edgeworth complements or substitutes.

32See appendix B.3.2 for the explicit solution.
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where k0 = (δ2 + (1− δ)2 + χ̃−1µ2(δ − (1− δ))2)−1k̃0, χ = (δ2 + (1− δ)2 + χ̃−1µ2(δ − (1− δ))2)χ̃,

and

rrdm,s(B̄) =
1

1− µB̄
rrdm,s(0)

rrin,s(B̄) =
1

B̄
Tcm,s.

This problem has exactly the same form as in (28) in terms of the realized returns rrs instead

of the exchange rate es. Therefore, it is straightforward to show that propositions 7 and 8 carry

over to this environment cast in terms of the returns of the home-currency bond. Perhaps more

surprisingly, proposition 9 also carries over. The key observation in the proof is that all distortions,

e.g. output gaps and savings distortions, are proportional to the required deviation from demand

management; this follows from the solution of the continuation problem. As a result, they are all

orthogonal to the return of the asset.

Why are portfolio decisions approximately e�cient while savings decisions are not? To establish

the asymptotic optimality of the private portfolio, it is enough to show that the relative strength

of the pecuniary and aggregate-demand externalities across states is proportional to the value of

improving insurance. By contrast, the relative strength of these externalities over time is driven

by technological features that determine the most cost-e�ective way of improving insurance, e.g. if

the bond is short, then it is better to create an output gap today than in the future. This is not

internalized by private agents and, hence, savings taxes are a useful additional tool.

In sum, the additional complexity of this model is encoded in the su�cient statistics {rrdm,s(0)}s
and {Tcm,s}s and the parameters χ and µ. For example, convenience-yield shocks ψs lead the

planner to use exchange rates to stabilize home-currency returns, i.e. they increase σ2rrdm(0) without

changing σ2Tcm . This pushes positions towards zero. On the other hand, interest rate shocks create a

demand for insurance, increasing σ2Tcm . Since they also a�ect returns, there is a natural covariance

σrrdm(0)Tcm that pushes the economy towards a particular level of B̄. Indeed, if bonds are not too

long, a positive interest rate shock r∗s > 0 creates a demand for insurance Tcm,s > 0 and lower

home-currency returns under demand management rrdm,s(0) < 0. This pushes the home economy

to be short home-currency bonds.

Proposition 15. Lemma 2 and propositions 2, 3 and 4 hold for f(B̄), σ2Tcm/σ
2
rrdm(0), and σTcmrrdm(0)

instead of B̄, σ2Tcm/σ
2
edm

, and σTcmedm, respectively. Let rrf = f(B̄)−1Ts. Proposition 5 part

(ii) holds for σ2rrf /σ
2
rrdm(0) instead of σ2e/σ

2
edm(0). Proposition 8 holds for σ2rrs/σ

2
rrdm(0) instead of

σ2e/σ
2
edm(0).

Proposition 16. Consider an economy with small risks (ϵ → 0). Then, in an interior optimum

optimal portfolio taxes τB are given by

τB = O(ϵ3).

Taxes are also approximately zero in any economy where the planner is restricted to set es = edms

and/or ˜nfas = 0.
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5.5 Evolving uncertainty and in�nite horizon

One may wonder whether the previous results were driven by the �nite horizon of our economy and

the fact that there was no further uncertainty after t = 1. In appendix B.4, I consider an in�nite-

horizon version of the model in section 4 with Calvo pricing. To keep the environment stationary, I

assume that each asset j pays a coupon that declines at a geometric rate δj , as in e.g. Hatchondo

and Martinez (2009).

Most results generalize to this environment (see appendixes B.4.11, B.4.12 and B.4.14 for formal

statements). The only caveat at this level of generality is that there is no one-dimensional su�cient

statistic f(Θ̄) when there are multiple assets with returns that are endogenous to policy. For

example, suppose there are two home-currency bonds traded at t = 0: one pays at t = 1 and the

other pays at t = 2. Then, �exposure� to monetary policy is a two-dimensional object. For this

reason, there is no analogue of proposition 11.33 By contrast, when there are multiple assets but

only one of them loads on monetary policy, e.g. a model with home-currency bonds and other assets

that load on shocks ξ, then this result also carries over. Finally, the result on optimal taxes is also

robust, regardless of the number of assets with returns that are endogenous to policy. Whenm→ ∞
or λ̄ = (∂U/∂CT )/(∂U/∂C

∗), the two crucial assumptions discussed in section 3.5 are satis�ed and,

therefore, the optimal tax is approximately zero. Otherwise, the planner taxes �nancial assets to

reduce cross-border insurance and manipulate the terms of trade.

Why are the results so general? The critical observation is that uncertainty more than one-

period ahead does not matter for decisions today because utility is quadratic in the approximate

model. That is, even though there is uncertainty for t ≥ t0 + 1, one can still write a deterministic

continuation problem for expectations conditional on t0 information, as in section 5.3. After solving

this, �nding the optimal distribution of realized returns at t0 and the t0 − 1 portfolio is a problem

that is isomorphic to the one in the static model.

6 Numerical illustration

In this section, I calibrate an in�nite-horizon version of the economy in section 5 with Calvo pricing

in the nontradable sector and �ow utility function

u(CTt, CNt, Lt) =
1

1− γ

((
α

1
ρC

ρ−1
ρ

Tt + (1− α)
1
ρC

ρ−1
ρ

Nt

) ρ
ρ−1

− 1− α

1 + φ
L1+φ
t

)1−γ

Table 1 presents the baseline calibration, based on data from Canada, which I take as a benchmark

advanced small open economy.

The top panel contains the parameter values that govern preferences, technology, and the be-

33The model is still easy to solve numerically, however. In appendix B.4.13, I provide a solution method for this
case.
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Table 1: Parameter values and shocks

Parameter Description Value Parameter Description Value

A. Structural parameters

β Discount factor 0.99 ϕ Probability of not adjusting prices 0.75
γ Home risk aversion 2 η Elasticity of substitution (varieties) 6
γ∗ Foreign risk aversion 2 δ Bond depreciation 0.042
α Tradable share 0.55 ϕπ Reaction to in�ation 2.77
φ−1 Frisch elasticity 0.5 ϕx Reaction to output gap 1.15
ρ Elasticity of substitution (T/NT) 0.74 ρi Smoothing coe�cient 0.87

B. Shocks

σz Productivity s.d. 0.71% ρψ Convenience yield persistence 0.85
σp∗ Terms-of-trade s.d. 0.2% corr(ϵzt , ϵ

p∗
t ) Correlation: z and p∗ 0.38

σr∗ World interest-rate s.d. 0.22% corr(ϵzt , ϵ
r∗
t ) Correlation: z and r∗ −0.18

σy∗ Foreigners' output s.d. 0.56% corr(ϵzt , ϵ
y∗
t ) Correlation: z and y∗ 0.56

σψ Convenience yield s.d. 1.05% corr(ϵp∗t , ϵ
r∗
t ) Correlation : p∗ and r∗ −0.50

ρz Productivity persistence 0.85 corr(ϵp∗t , ϵ
y∗
t ) Correlation: p∗ and y∗ 0.44

ρp∗ Terms-of-trade persistence 0.75 corr(ϵr∗t , ϵ
y∗
t ) Correlation: r∗ and y∗ −0.22

ρr∗ World interest-rate persistence 0.85 corr(ϵψt , ϵ
x
t ) Correlation: ψ and others 0

ρy∗ World output persistence 0.90

havior of the Central Bank in the competitive equilibrium, described by a standard Taylor rule,

it = ρiit−1 + (1− ρi)ϕππNt + (1− ρi)ϕπxt,

where πNt and xt are the welfare-relevant in�ation and output gap, respectively. Most of these

parameters take values that are standard in the literature. The tradable share α, the bond duration

δ, and the Taylor-rule parameters are speci�c to Canada (see appendix C.1 for details).

The bottom panel contains the parameter values that govern the stochastic processes of the

structural shocks. The tradable endowment shock YTt is decomposed into two parts: TFP ZTt and

the terms-of-trade P ∗
Tt so that YTt = P ∗

TtZTt. I assume productivity shocks ZTt and ZNt are perfectly

correlated across sectors due to lack of data on sectoral output at a quarterly frequency. In addition,

the economy faces foreign-interest-rate shocks R∗
t and foreign SDF shocks Y ∗

t . To match these, I �t

AR(1) processes to (log) labor productivity (z), the (log) terms of trade in Canada (p∗), (log) U.S.

real seasonally-adjusted output (y∗) and the U.S. 3 month treasury bill rate de�ated by the U.S.

CPI (r∗), using quarterly HP-�ltered data (except for r∗) over the sample period 1997 : 1−2019 : 4.

Since it matters for optimal portfolios, I take into account the contemporaneous correlation in the

innovations of these AR(1) processes. Finally, I assume that there are shocks to the convenience

yield of home bonds relative to foreign bonds, ψt, which I assume is independent from other shocks.

I choose the volatility of this shock to match the observed home-currency position against the

rest-of-the world (about 30% over yearly GDP - Bénétrix et al., 2019).34

34The persistence of this shock is irrelevant for the results (one can always o�set a higher persistence with smaller
innovations), so I assume it is the same as the interest-rate shock w.l.o.g.
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Table 2: Mapping to su�cient statistics

σ(Tcm) σ(rrdm(0)) corr(Tcm, rrdm(0))

Productivity (z) 3.02% 0.27% 1

Terms-of-trade
(p∗)

0.43% 0.01% −1

Foreign interest
rate (r∗)

43.50% 1.26% −1

Foreign SDF (y∗) 35.45% 0% unde�ned

Convenience-
yield shock (ψ)

0% 6.40% unde�ned

Total 49.02% 6.52% −0.15

Note: The volatility of transfers is measured as a % of GDP.

6.1 Main results

Table 2 shows how much each shock contributes to the variance of the two �su�cient statistics� - the

demand for insurance Tt - and the volatility of the realized excess returns without home-currency

bonds rrdm(0), as well as the correlation between them induced by each shock. The demand for

insurance is largely driven by the two foreign shocks, r∗ and y∗. Realized returns, on the other

hand, are mainly driven by the convenience-yield shock. Since the interest rate shock r∗ introduces

a negative correlation between returns and desired transfers, while ψ and y∗ do not introduce any

correlation, the optimal country portfolio is short home-currency assets.

Table 3 compares the behavior of the economy under four di�erent policies: (i) the competitive

equilibrium with a Taylor rule; (ii) a demand-management policy, i.e. setting ω = 0; (iii) the

optimal policy; (iv) the optimal monetary policy if the portfolio were �xed at the calibrated value.

The results suggest that even under the optimal policy stabilizing demand is the most important

role of monetary policy with an optimal weight of 89% (�rst row). However, monetary policy

still plays an important risk-sharing role: it signi�cantly improves the insurance properties of the

home-currency bond, more than doubling the optimal size of gross positions (second row). The

endogeneity of the portfolio is crucial: If the portfolio were �xed, the weight on the insurance

motive would be about seven times smaller. As argued in section 3.4, by increasing gross positions,

the optimal policy manages to improve insurance while lowering the volatility of realized returns

(third row). By contrast, with a �xed portfolio, return volatility increases. The second panel

computes the volatility of the returns induced by each type of shock. Here, one can appreciate

that the composition e�ect discussed in the theory is quantitatively important: returns move less

after convenience-yield shocks and productivity shocks, stabilizing asset returns at the expense of

�uctuations in aggregate demand, and move more when the demand for insurance arises (p∗, r∗ and

y∗ shocks).
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Table 3: Results in baseline model.

Taylor rule Demand
management

Optimal Optimal: �xed Θ

A. Optimal weight, optimal portfolio and volatility of the realized excess returns

ω 0% 11.37% 1.66%

Θ̄ −30.00% −28.97% −85.83% −30.00%

σ(rr) 6.40% 6.39% 5.91% 6.41%

B. Variance decomposition of realized excess returns

σ(rr) : z 0.07% 0.26% 0.12% 0.22%

σ(rr) : p∗ 0.01% 0.01% 0.02% 0.01%

σ(rr) : r∗ 1.33% 1.23% 2.49% 1.81%

σ(rr) : y∗ 0% 0% 1.17% 0.49%

σ(rr) : ψ 6.26% 6.27% 5.34% 6.16%

C. Welfare gains (% of �rst-best)

Welfare gains 1.32% 2.28% 6.49% 3.90%

Note: In column 4, the portfolio is �xed at −30.0% while the remaining columns it is optimally chosen by the planner.

The portfolio is normalized by annual gdp. Every other variable is expressed in quarterly units. Welfare gains are

measured by how much of the welfare gap between the �rst-best (a model with �exible prices) and an economy without

home bonds (B̄ = 0) economy is achieved by each policy: welfare(policy)−welfare(B̄=0)

welfare(first best)−welfare(B̄=0)
%.

How e�ective is the optimal policy in completing markets? To answer this question, I compute

the welfare gains (in consumption equivalents) of moving from an economy without home-currency

bonds to an economy with these bonds and �exible prices - an economy that may be called ��rst-

best� since it can deliver as much insurance as the planner desires at no e�ciency cost. I then

compute what share of these gains are attained in the economy with sticky prices under each

policy. The bottom panel shows the results. The optimal policy improves signi�cantly over the

demand-management policy, especially when the portfolio is allowed to adjust. In other words,

both optimal monetary policy and optimal portfolio choice are important to maximize the welfare

gains of �nancial integration.

6.2 Additional results

Appendix C uses the calibrated model to conduct additional exercises. First, I show that the quan-

titative relevance of the insurance channel is sensitive to the parameters that govern the importance

of the demand-management motive (ϕ, η, and φ). Second, I deviate from the assumption of small
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open economy by allowing for a �nite measure of foreigners m. I quantify the optimal tax that the

home planner sets, show that this signi�cantly decreases gross positions, and contrast the solution

with that of a cooperative planner. Third, I compute the optimal policy when the planner cannot

use capital controls (i.e. no taxes are allowed). I show that the savings taxes discussed in section 5

do not play a quantitatively relevant role in the baseline calibration, but that this result is sensitive

to the maturity of the home-currency bond. In particular, they become more important when bonds

are shorter. This is in line with proposition 14, which suggests that savings taxes are more e�ective

when the asset promises payments that are uneven over time.35 Furthermore, I show that it is easier

for the planner to provide insurance with long maturity bonds, since they can make promises farther

into the future when prices have had time to adjust. Finally, I show that the optimal insurance

weight, gross positions and the welfare gains of �nancial integration increase in the openness of the

economy (α), decrease with the elasticity of substitution between tradables and nontradables (ρ),

increase with risk aversion (γ), and the discount factor (β−1).

7 Conclusion

I developed a framework to study optimal monetary policy and capital controls in open economies

with incomplete markets and portfolio choice. Optimal monetary policy is a weighted average of two

targets: a demand-management target, concerned with the traditional role of �undoing� nominal

rigidities, and an insurance target, concerned with improving international risk sharing.

I showed three main results, which underscore the importance of modelling the portfolio decision.

First, I showed that the planner chooses optimal portfolios to minimize the ex-post trade-o� between

both objectives of monetary policy. When the trade-o� is unavoidable, the planner chooses larger

gross positions when insurance considerations become more important. Second, I showed that when

there is a larger need for insurance, the stochastic properties of the realized returns of home-currency

assets change via a composition e�ect (returns move more to improve insurance and less to stabilize

demand) and an endogenous portfolio e�ect (gross positions increase, which changes the volatility

of the targets). The importance of each channel and the overall e�ect on return volatility critically

depends on whether the portfolio is allowed to adjust. Finally, I showed that portfolio decisions

are approximately e�cient despite the presence of aggregate demand externalities (due to nominal

rigidities) and pecuniary externalities (due to incomplete markets), so no capital controls on the

composition of capital �ows are necessary in the approximate solution, as long as the country cannot

a�ect the foreigners' stochastic discount factor. By contrast, savings taxes, i.e. uniform taxes across

asset classes, are desirable.

In this paper, I focused on the trade-o� between insurance and demand-management, abstract-

ing from other relevant macroeconomic forces such as endogenous terms-of-trade movements in

product markets, investment, and �nancial frictions. However, the methodology I develop is widely

35In the simple model, the relevant benchmark was δ = 1
2
, but this was only because there were only two periods

and no discounting. In the in�nite horizon setting, as δ goes to zero, payments become more evenly spread out over
time.
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applicable and can be used to explore optimal policy with portfolio choice in those environments

as well. Furthermore, the tools developed in these paper could also be interesting to study closed

economies with heterogeneous agents that make portfolio choices with aggregate risk.
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Appendix (for online publication)

A An (almost) linear-quadratic (ALQ) approximate problem for

optimal policy in DSGE models with portfolio choice

Benigno and Woodford (2012) show how to derive approximate linear-quadratic (LQ) problems
that yield, as a solution, a correct linear approximation to the optimal policy in a large class
of dynamic-stochastic-general-equilibrium (DSGE) models. A notable exception in this class are
problems where agents make portfolio decisions.

In this appendix, I derive an approximate problem with (i) an objective that is quadratic in all
endogenous variables conditional on the portfolio, (ii) constraints that are linear in all endogenous
variables conditional on the portfolio, and (iii) nonlinear in the portfolio. I show that the solution
to this problem yields the optimal steady-state portfolio (i.e. the zero-order portfolio) and a linear
approximation to the optimal policy for all other endogenous variables that is locally correct if the
planner can control the portfolio, e.g. if she chooses it directly (e.g. public debt) or has access to
taxes on �nancial assets to manipulate the portfolio decision of private agents. I also show that,
whenever the planner cannot control the portfolio without restrictions, the solution to this problem
is generically an infeasible allocation around the steady state. Therefore, the approximate policy
that emerges from this �naive� approach is incorrect.

Section A.1 introduces a general class of dynamic optimization problems with forward-looking
constraints and portfolio choice in an environment where a planner can control the portfolio. Section
A.2 derives an �almost linear-quadratic� (ALQ) approximate problem associated with any problem
in this class. Section A.3 presents and proves my main result: that the �rst-order conditions of
the ALQ problem - including the steady-state portfolio as a control - coincide with a perturbation
of the �rst-order conditions (FOC) of the non-linear problem using a perturbation approach that
relies on a bifurcation theorem stated in Judd and Guu (2001). Section A.4 shows what fails
when the planner cannot perfectly control the portfolio and faces many no-arbitrage conditions as
constraints. I show that in this case the �indeterminacy� problem is of a higher dimension. I derive
a �generalized� ALQ problem that is valid in this case but requires one to keep track of an additional
quadratic constraint. Finally, Section A.5 presents a mapping of the model in the paper to this
general framework.

A.1 Set up

Throughout this section I follow Benigno and Woodford (2012) as closely as possible to ease the
comparison with a standard problem without portfolio choice. Like them, I consider an abstract
discrete-time dynamic optimal policy problem. The only di�erence is that I explicitly model (i)
a portfolio decision and (ii) the number of �agents� i = {0, 1, . . . , I}. To de�ne a useful class
of problems, I isolate some endogenous variables from the rest: the excess return on an asset
j = 1, . . . , J over a reference asset j = 0, rrjt+1, and the position on these assets θijt for agents
i ∈ {1, . . . , I}.36 Crucially, I assume that the portfolio by itself has no direct e�ect on utility or
the constraints: its only e�ect is indirect through the transfers Tit+1 =

∑J
j=1 θijtrrjt+1 it creates.

Otherwise, the portfolio would be determined at the steady state and risk would not play a �rst-order

36The position of the remaining agent is determined by asset-market clearing. Furthermore, the position on the
reference asset is also pinned down in a dynamic model by savings' considerations; not risk. Thus, the dimension of
the indeterminacy problem each period is J × I.
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role around the deterministic steady state.37 In such a case, I would not need the tools developed
in this paper; the results in Benigno and Woodford (2012) would apply directly. Henceforth, for
notational convenience I write θt ≡ {θijt}I,Ji=1,j=1, rrt ≡ {rrjt}Jj=1 and Tt ≡ {Tit}Ii=1.

The policy authority wishes to determine the evolution of an endogenous state vector {yt, rrt, θt}∞t=t0
for t ≥ t0 to maximize an objective of the form

Vt0 ≡ Et0

∞∑
t=t0

βt−t0π(yt; ξt), (49)

where 0 < β < 1 is a discount factor and ξt is a vector of exogenous disturbances. The evolution of
the endogenous states must satisfy a system of backward-looking structural relations for all t ≥ t0

F (yt, Tt, ξt; yt−1) = 0 (50)

Xj(yt, ξt; yt−1) = rrjt, (51)

where Xj(·) maps endogenous variables and shocks into the realized excess return of asset j rela-
tive to the reference asset 0. Compared to Benigno and Woodford (2012), I explicitly wrote the
backward-looking constraint (51) to re�ect the de�nition of the realized excess return and included
the transfers Tt as an explicit argument of the F backward looking constraints. Crucially, this is
the only place where θt appears.
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The evolution of the endogenous states must also satisfy a system of forward-looking structural
relations

Etg(yt, ξt; yt+1) = 0 (52)

Etrrjt+1m0(yt+1, ξt+1) = 0 j = 1, . . . , J. (53)

that must hold for each t ≥ t0, given the vector of initial conditions (yt0−1, θt0−1). Compared to
Benigno and Woodford (2012), I explicitly wrote the forward-looking constraint (53) to have the
interpretation of a �no-arbitrage� condition, involving the product of the realized excess return and
a stochastic discount factor m0. Crucially, there is only one of these constraints per asset; i.e. there
are J constraints per time period; not J × I. Essentially, this implies that the planner has J × I
extra degrees of freedom. Intuitively, one can think of the planner as choosing the portfolio of each
agent θit freely while asset prices (an element of yt) are determined by the constraint (53).

Henceforth, I assume that all functions are locally analytic around the deterministic steady state
(de�ned below) and that m0 > 0 is a positive function.39 To have a well-de�ned problem, I also
assume the number of backward-looking constraints nF + J plus the number of forward-looking
constraints ng + J is less or equal than the number ny + J of endogenous variables other than the
portfolio each period. When they are strictly less, such as the model in this paper, then there
is at least one dimension along which policy can vary other than the portfolio. When they are
equal, the planner can only choose the optimal portfolio, e.g. solving for optimal macro-prudential
policy in a real model. A t0-optimal commitment (the standard Ramsey policy problem) is then the
state-contingent evolution {yt, rrt, θt}∞t=t0 consistent with equations (50) - (53) for all t ≥ t0 that
maximizes (49).

37In my framework, risk determines the steady-state portfolio, which in turn determines the �rst-order behavior of
the remaining endogenous variables. In this sense, risk matters to �rst order.

38Note that it is without loss of generality that transfers only appear in F , since I can always include a constraint
in F that de�nes an element of yt to be equal to the transfers.

39Essentially, analytic functions are C∞ and locally equal to the power series created by their Taylor series expansion.
See Judd and Guu (2001) for a formal de�nition.

42



Assumption 1. All functions in the problem (π,{Fk}nFk=1,{Xj}Jj=1,{gk}
ng
k=1, m0) are locally analytic

at the deterministic steady state (i.e. for any θt). m0 is a positive function. The number of
backward-looking constraints nF + J plus the number of forward-looking constraints ng + J is equal
or less than the number ny + J of endogenous variables other than the portfolio each period.

Optimal policy from a �timeless� perspective I follow Benigno and Woodford (2012) to
obtain a problem with a recursive structure by adding initial precommitments:

g(yt0−1, ξt0−1; yt0) = ḡt0 (54)

rrjt0m0(yt0 , ξt0) = m̄jt0 j = 1, . . . , J. (55)

Compared to Benigno and Woodford (2012), there is an additional pre-commitment: agents are not
surprised by the value of the realized excess return of the asset.

Let V (ḡt0 , m̄t0 ; yt0−1, θt0−1, ξt0 , ξt0−1) be the maximum achievable value of the objective (49)
subject to (50) - (53) for all t ≥ t0, (54) and (55) where m̄t0 = {m̄jt0}Jj=1. Then, the in�nite-horizon
problem is equivalent to maximizing

π(yt, ξt) + βEtV (ḡt+1, m̄t+1; yt, θt, ξt+1, ξt)

subject to

F (yt, Tt, ξt; yt−1) = 0 (56)

Xj(yt, ξt; yt−1) = rrjt j = 1, . . . , J. (57)

g(yt−1, ξt−1; yt) = ḡt (58)

rrjtm0(yt, ξt) = m̄jt j = 1, . . . , J. (59)

Etḡt+1 = 0 (60)

Etm̄t+1 = 0 (61)

As pointed out by Benigno and Woodford (2012), in the presence of forward-looking constraints, one
needs suitably chosen initial conditions for the pre-commitments {ḡt0 , m̄t0} to have a deterministic-
steady-state solution to this problem.

The solution to the recursive problem yields policy functions:

yt = y∗ (ḡt, m̄t, yt−1, θt−1, ξt, ξt−1)

rrt = rr∗ (ḡt, m̄t, yt−1, θt−1, ξt, ξt−1)

θt = θ∗ (ḡt, m̄t, yt−1, θt−1, ξt, ξt−1)

ḡt+1 = ḡ∗ (ξt+1; ḡt, m̄t, yt−1, θt−1, ξt, ξt−1)

m̄t+1 = m̄∗ (ξt+1; ḡt, m̄t; yt−1, θt−1, ξt, ξt−1)

Following Benigno and Woodford (2012), I assume that there is an extended state vector that
depends only on the evolution of (yt, θt, rrt, ξt), de�ned recursively as

yt = ψ
(
ξt, yt, θt, rrt,yt−1

)
.

Plugging in the optimal decisions,

yt = ψ∗ (ḡt, m̄t, yt−1, θt−1, ξt, ξt−1,yt−1

)
.
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Next, write the initial pre-commitments (54) and (55) as functions of the current realization of
the shock and this extended state vector:

ḡt0 = ḡ(ξt0 ,yt0−1)

m̄t0 = m̄0(ξt0 ,yt0−1) j = 1, . . . , J.

for some functions ḡ, m̄0. These pre-commitments are self-consistent if:

ḡ∗
(
ξt+1; ḡ(ξt,yt−1), m̄(ξt,yt−1), yt−1, θt−1, ξt, ξt−1

)
= ḡ

(
ξt+1, ψ

∗ (ḡt, m̄t, yt−1, θt−1, ξt, ξt−1,yt−1

))
m̄∗ (ξt+1; ḡ(ξt,yt−1), m̄(ξt,yt−1), yt−1, θt−1, ξt, ξt−1

)
= m̄

(
ξt+1, ψ

∗ (ḡt, m̄t, yt−1, θt−1, ξt, ξt−1,yt−1

))
for all possible values of ξt+1, ξt and yt−1. In this case, the initial constraint is of a form that one
would optimally commit oneself to satisfy at all subsequent dates. The resulting policy is, in the
language of Benigno and Woodford (2012), optimal from a timeless perspective.

A.2 A correct ALQ local approximation

I assume an initial state (yt0−1, θt0−1) and pre-commitments (ḡt0 , m̄t0) such that the optimal policy
in the case of zero disturbances is a steady state. The Lagrangian of the nonlinear problem is given
by

Lt0 =Vt0 + Et0

∞∑
t=t0

βt−t0

{
nF∑
k=1

λktFk(yt, Tt, ξt; yt−1) +

J∑
j=1

µjt

(
Xj(yt, ξt; yt−1)− rrjt

)

+ β−1

ng∑
k=1

φkt−1gk(yt−1, ξt−1; yt) + β−1
J∑

j=1

η0jt−1rrjtm0(yt, ξt)

}

where λt ≡ {λkt}nFk=1, µt ≡ {µjt}Jj=1, φt ≡ {φkt}
ng
k=1, and η0t ≡ {η0jt}Jj=1 are the Lagrange mul-

tipliers associated with constraints (50) - (53) respectively, for all t ≥ t0, and I use the notation
β−1φt0−1 and β−1η0jt0−1 for the pre-commitment constraints (54) and (55). Again, note that the
only di�erence with Benigno and Woodford (2012) is that I explicitly separated the collection of
backward-looking and forward-looking constraints that are related to �nancial assets.
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Optimality requires that {yt, rrt, θt, λt, µt, φt, η0t}∞t=t0 satisfy

Dyπ(yt, ξt) +

nF∑
k=1

λktDyFk(yt, Tt, ξt; yt−1) + βEt

nF∑
k=1

λkt+1Dy̌Fk(yt+1, Tt+1, ξt+1; yt)

+
J∑

j=1

µjtDyXj(yt, ξt; yt−1) + βEt

J∑
j=1

µjt+1Dy̌Xj(yt+1, ξt+1; yt)

+β−1

ng∑
k=1

φkt−1Dŷg(yt−1, ξt−1; yt) + Et

ng∑
k=1

φktDyg(yt, ξt; yt+1) + β−1
J∑

j=1

η0jt−1rrjtDym0(yt, ξt) = 0

(62)

nF∑
k=1

I∑
i=1

θijt−1λktDTiFk(yt, Tt, ξt; yt−1)− µjt + β−1η0jt−1m0(yt, ξt) = 0

(63)

Etrrjt+1

(
nF∑
k=1

λkt+1DTiFk(yt+1, Tt+1, ξt+1; yt)

)
= 0,

(64)

which are the FOC with respect to yt, rrjt, and θijt, respectively. I adopt the notation in Benigno
and Woodford (2012) such that Dy, Dŷ and Dy̌ denote the row vector of partial derivatives of any
of the functions with respect to the elements of yt, yt+1 and yt−1, respectively. As usual, I suppose
that the vector of exogenous disturbances {ξt} can be written as

ξt = ϵut

∀t, where {ut} is a bounded-vector stochastic process and ϵ > 0 is a scalar. I am interested in
approximations that become accurate as ϵ→ 0.

Note that, since m0 is a positive function, an optimal steady state must satisfy:

r̄rj = 0 (65)

Thus, at the optimal steady-state (ȳ, λ̄, µ̄, φ̄) must satisfy

Dyπ(ȳ, 0) +

nF∑
k=1

λ̄kDyFk(ȳ, 0, 0; ȳ) + β

nF∑
k=1

λ̄kDy̌Fk(ȳ, 0, 0; ȳ)

+

J∑
j=1

µ̄jDyXj(ȳ, 0; ȳ) + β

J∑
j=1

µ̄jDy̌Xj(ȳ, 0; ȳ)

+β−1

ng∑
k=1

φ̄kDŷgk(ȳ, 0; ȳ) +

ng∑
k=1

φ̄kDygk(ȳ, 0; ȳ) = 0 (66)

F (ȳ, 0, 0; ȳ) = 0 (67)

X(ȳ, 0; ȳ) = 0 (68)

g(ȳ, 0; ȳ) = 0 (69)
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which is exactly the same as in Benigno and Woodford (2012).4041 This re�ects the fact that having
access to more than one �nancial asset is irrelevant at the steady state. This also implies that, given
that r̄rj = 0, the �rst-order condition with respect to θijt automatically holds (equation 64). Thus,
there is the well-known issue that any portfolio solves the problem at the deterministic steady state.
Henceforth, I assume that this steady state (ȳ, λ̄, µ̄, φ̄) exists. Given a portfolio θ̄t, η̄0t is then given
by:

η̄0jt = −βm0(ȳ, 0)
−1

(
nF∑
k=1

I∑
i=1

θ̄ijtλ̄kDTiFk(ȳ, 0, 0; ȳ)− µ̄j

)
.

A second-order Taylor-series expansion of the objective function π around (ȳ, 0) yields

π(y, ξ) = Dyπ · ỹ + 1

2
ỹ′D2

yyπ · ỹ + ỹ′D2
yξπ · ξ + t.i.p.+O(ϵ3), (70)

where ỹ ≡ yt − ȳ and �t.i.p.� refers to terms that are independent of policy. Substituting (70) into
(49),

Vt0 = Et0

∞∑
t=t0

βt−t0

{
Dyπ · ỹt +

1

2
ỹ′tD

2
yyπ · ỹt + ỹ′tD

2
yξπ · ξt

}
+ t.i.p.+O(ϵ3). (71)

Using a second-order Taylor approximation of each Fk constraint around (ȳ, 0, 0, {θ̄t}∞t=t0) for an
arbitrary {θ̄t}∞t=t0 ,

42 premultiplying by the Lagrange multiplier λ̄k and computing the discounted
sum yields

Et0

∞∑
t=t0

βt−t0 λ̄kFk(yt, Tt, ξt; yt−1) = Et0

∞∑
t=t0

βt−t0 λ̄k

{
(DyFk + βDy̌Fk) · ỹt +

J∑
j=1

I∑
i=1

DTiFk ·
(
θ̄ijt−1rrjt

)
(72)

+
1

2
ỹ′t
(
D2

yyFk + βD2
y̌y̌Fk

)
· ỹt +

J∑
j=1

I∑
i=1

ỹ′tD
2
yTiFk ·

(
θ̄ijt−1rrjt

)
+ ỹ′tD

2
yy̌Fk · ỹt−1 + ỹ′tD

2
yξFk · ξt + βỹ′tD

2
y̌ξFk · ξt+1

+
1

2

J∑
j=1

J∑
j′=1

I∑
i=1

I∑
i′=1

(
θ̄ijt−1rrjt

)
D2

TiT ′
i
Fk ·

(
θ̄i′j′t−1rrj′t

)
+

J∑
j=1

I∑
i=1

DTiFk ·
(
θ̃ijt−1rrjt

)
+

J∑
j=1

I∑
i=1

ỹ′t−1D
2
y̌TiFk ·

(
θ̄ijt−1rrjt

)
+

J∑
j=1

I∑
i=1

(
θ̄ijt−1rrjt

)
D2

TiξFk · ξt

}
+ t.i.p.+O(ϵ3).

where θ̃t = θt − θ̄t and I used that realized excess returns at the steady state are zero, i.e. r̄r = 0.
A �rst-order approximation of the no-arbitrage constraint (53) yields Et−1rrjt = O(ϵ2) ∀j. Noting
that θ̃it−1 and ỹt−1 are predetermined at t and using the law of iterated expectations, (72) simpli�es

40Recall that constraints {Xj} are a special case of a backwards constraint.
41I assume an initial pre-commitment ḡt0 near zero in the absence of shocks.
42Here, I am abusing notation; {θ̄t}∞t=t0 is a full contingent plan. That is, let s

t = {ξ0, . . . , ξt} denote the history until
st and St the set of possible histories at t. I am formally approximating around an arbitrary plan {θ̄(st)}st∈St,t≥t0 .
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Et0

∞∑
t=t0

βt−t0 λ̄kFk(yt, Tt, ξt; yt−1) = Et0

∞∑
t=t0

βt−t0 λ̄k

{
(DyFk + βDy̌Fk) · ỹt +

J∑
j=1

I∑
i=1

DTiFk ·
(
θ̄ijt−1rrjt

)
+

1

2
ỹ′t
(
D2

yyFk + βD2
y̌y̌Fk

)
· ỹt +

J∑
j=1

I∑
i=1

ỹ′tD
2
yTiFk ·

(
θ̄ijt−1rrjt

)
+ ỹ′tD

2
yy̌Fk · ỹt−1 + ỹ′tD

2
yξFk · ξt + βỹ′tD

2
y̌ξFk · ξt+1

+
1

2

J∑
j=1

J∑
j′=1

I∑
i=1

I∑
i′=1

(
θ̄ijt−1rrjt

)
D2

TiT ′
i
Fk ·

(
θ̄i′j′t−1rrj′t

)
+

J∑
j=1

I∑
i=1

(
θ̄ijt−1rrjt

)
D2

TiξFk · ξt

}
+ t.i.p.+O(ϵ3).

Note that, compared to Benigno and Woodford (2012), there are additional terms that explicitly
consider the transfers implied by the portfolio decision.

I proceed in the same way to approximate each {Xj = rrj}Jj=1 constraint,

Et0

∞∑
t=t0

βt−t0 µ̄j(Xj(yt, ξt; yt−1)− rrjt) = Et0

∞∑
t=t0

βt−t0 µ̄j

{
(DyXj + βDy̌Xj) · ỹt − rrjt+ (73)

+
1

2
ỹ′t
(
D2

yyXj + βD2
y̌y̌Xj

)
· ỹt + ỹ′tD

2
yy̌Xj · ỹt−1

+ ỹ′tD
2
yξXj · ξt + βỹ′tD

2
y̌ξXj · ξt+1

}
+ t.i.p.+O(ϵ3).

The approximation of each gk constraint is identical to Benigno and Woodford (2012),

Et0

∞∑
t=t0

βt−t0−1φ̄kgk(yt−1, ξt−1; yt) = Et0

∞∑
t=t0

βt−t0φ̄k

{(
Dygk + β−1Dŷgk

)
· ỹt

+
1

2
ỹ′t
(
D2

yygk + β−1D2
ŷŷgk

)
· ỹt + ỹ′tD

2
yξgk · ξt

+ β−1ỹ′tD
2
ŷξgk · ξt−1 + β−1ỹ′tD

2
yŷgk · ỹt−1

}
+ t.i.p.+O(ϵ3).

43Since r̄r = 0, the promise-keeping constraint at t = t0 is, to �rst order,

rrjt0 = m̄jt0 j = 1, . . . , J.

This implies that the terms θ̃ijt0−1rrjt0and ỹ
′
t0−1D

2
y̌Ti
Fk ·

(
θ̄ijt0−1rrjt0

)
are independent of policy.
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Putting everything together, I obtain

β−1

ng∑
k=1

φ̄kḡkt0 = Et0

∞∑
t=t0

βt−t0

{
Φyỹt +

1

2
ỹ′tHỹt + ỹ′tRỹt−1 + ỹ′tZ(L)ξt+1

+

J∑
j=1

(
nF∑
k=1

λ̄k

I∑
i=1

DTiFk · θ̄ijt−1 − µ̄j

)
rrjt

+

nF∑
k=1

λ̄k

J∑
j=1

I∑
i=1

ỹ′tD
2
yTiFk ·

(
θ̄ijt−1rrjt

)
+

1

2

nF∑
k=1

λ̄k

J∑
j=1

J∑
j′=1

I∑
i=1

I∑
i′=1

(
θ̄ijt−1rrjt

)
D2

TiT ′
i
Fk ·

(
θ̄i′j′t−1rrj′t

)
+

nF∑
k=1

λ̄k

J∑
j=1

I∑
i=1

(
θ̄ijt−1rrjt

)
D2

TiξFk · ξt

}
+ t.i.p.+O(ϵ3). (74)

where

Φy ≡
nF∑
k=1

λ̄k (DyFk + βDy̌Fk) +
J∑

j=1

µ̄j (DyXj + βDy̌Xj) +

ng∑
k=1

φ̄k

(
Dygk + β−1Dŷgk

)
H ≡

nF∑
k=1

λ̄k
(
D2

yyFk + βD2
y̌y̌Fk

)
+

J∑
j=1

µ̄j
(
D2

yyXj + βD2
y̌y̌Xj

)
+

ng∑
k=1

φ̄k

(
D2

yygk + β−1D2
ŷŷgk

)
R ≡

nF∑
k=1

λ̄kD
2
yy̌Fk +

J∑
j=1

µ̄jD
2
yy̌Xj +

ng∑
k=1

φ̄kβ
−1D2

ŷygk

Z(L) ≡
nF∑
k=1

λ̄k
(
βD2

y̌ξFk +D2
yξFk · L

)
+

J∑
j=1

µ̄j
(
βD2

y̌ξXj +D2
yξXj · L

)
+

ng∑
k=1

φ̄k

(
D2

yξgk · L+ β−1D2
ŷξgk · L2

)
.

At the steady state,

Φy = −Dyπ

Similar to Benigno and Woodford (2012), I can use these relationships to obtain an alternative
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quadratic approximation to (49),

Vt0 = Et0

∞∑
t=t0

βt−t0

{
1

2
ỹ′tQ · ỹt + ỹ′tR · ỹt−1 + 2ỹtB(L)ξt+1 (75)

+
J∑

j=1

(
nF∑
k=1

λ̄k

I∑
i=1

DTiFk · θ̄ijt−1 − µ̄j

)
rrjt

+

nF∑
k=1

λ̄k

J∑
j=1

I∑
i=1

ỹ′tD
2
yTiFk ·

(
θ̄ijt−1rrjt

)
+

1

2

nF∑
k=1

λ̄k

J∑
j=1

J∑
j′=1

I∑
i=1

I∑
i′=1

(
θ̄ijt−1rrjt

)
D2

TiT ′
i
Fk ·

(
θ̄i′j′t−1rrj′t

)
+

nF∑
k=1

λ̄k

J∑
j=1

I∑
i=1

(
θ̄ijt−1rrjt

)
D2

TiξFk · ξt

}
+ t.i.p.+O(ϵ3).

where

Q ≡ D2
yyπ +H

B(L) ≡ D2
yξπ · L+ Z(L)

Unlike Benigno and Woodford (2012), however, I am not done: I still have a linear term, dealing
with the realized excess return rrt. Approximating the no-arbitrage constraints (53) to second-order
yields

Etrrjt+1m0 + Etrrjt+1Dym0 · ỹt+1 + Etrrjt+1Dξm0 · ξt+1 = O(ϵ3) (76)

where I used that r̄rj = 0. Solving for Etrrjt+1 and replacing back in (75),44

Vt0 = Et0

∞∑
t=t0

βt−t0{1
2
ỹ′tQ · ỹt + ỹ′tR · ỹt−1 + ỹtB(L) · ξt+1 (77)

+
J∑

j=1

m−1
0 µ̄jrrjt (Dym0 · ỹt +Dξm0 · ξt)

+
J∑

j=1

I∑
i=1

ỹ′tM
y
ij ·
(
θ̄ijt−1rrjt

)
+

J∑
j=1

I∑
i=1

ξ′tM
ξ
ij ·
(
θ̄ijt−1rrjt

)
+

1

2

J∑
j=1

J∑
j′=1

I∑
i=1

I∑
i′=1

(
θ̄ijt−1rrjt

)
DTiT ′

i
Fk ·

(
θ̄i′j′t−1rrj′t

)
+ t.i.p.+O(ϵ3)

44When t = t0, I have a similar expression coming from the promise-keeping constraint,

rrjt0m0 + rrjt0Dym0 · ỹt0 + rrjt0Dξm0 · ξt0 = m̄t0 +O(ϵ3).
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where

My
ij ≡

nF∑
k=1

λ̄k
(
D2

yTiFk −DTiFkm
−1
0 Dym0

)
Mξ

ij ≡
nF∑
k=1

λ̄k
(
D2

ξTiFk −DTiFkm
−1
0 Dξm0

)
.

A linear-approximation of the constraints yields

DyF · ỹt +Dy̌F · ỹt−1 +

I∑
i=1

J∑
j=1

DTiF · (θ̄ijt−1rrjt) +DξF · ξt = O(ϵ2) (78)

DyXj · ỹt +Dy̌Xj · ỹt−1 +DξXj · ξt − rrt = O(ϵ2) (79)

Dyg · ỹt +Dξg · ξt +Dŷg · Etỹt+1 = O(ϵ2) (80)

Etrrt+1 = O(ϵ2). (81)

and the additional initial constraints

Dyg · ỹt0−1 +Dξg · ξt0−1 +Dŷg · ỹt0 = ḡt0 (82)

rrt0 = r̄r0 (83)

Now, I am ready to de�ne the �almost� linear quadratic problem.

De�nition 2. The �almost� linear-quadratic problem is to choose {ỹt, rrt, θ̄t}∞t=t0 to maximize (77)
subject to (78) - (83).

If it were not for the portfolio, one could maximize this approximate function with respect to
a �rst-order approximation of the constraints. In the language of Benigno and Woodford (2012),
the objective is �purely quadratic� in (yt, rrt) conditional on {θ̄t}∞t=t0 so knowing their �rst-order
behavior would su�ce. The issue is, of course, that I do not know what {θt}∞t=t0 is optimal. The
�almost� linear-quadratic problem de�ned above suggests maximizing also with respect to {θ̄t}∞t=t0
- a nonlinear problem. Next, I show that such an approach correctly identi�es a portfolio that is a
local maximizer around the deterministic steady state. As argued above, it is critical for the validity
of the approach that the planner has the degrees of freedom to choose portfolios independently. In
section A.4, I show that in environments where the portfolio is determined by agents' optimization
given the other policy variables, such an approach would violate feasibility in a neighborhood of
the steady state. In this case, I show that keeping track of an additional quadratic constraint is
unavoidable.

A.3 Equivalence to a linearization of the nonlinear FOC using a bifurcation

theorem

In typical models without portfolio choice, one can apply the implicit function theorem to the system
of FOC (54) - (64) to determine the existence of functions e.g. {yt(ϵ)}∞t=t0 and characterize their
�rst-order behavior with respect to ϵ by di�erentiation. In the class of problems treated in this
appendix, however, the regularity condition fails: the Jacobian is singular. This is easily seen by
noting that the no-arbitrage constraint (53) and the planner's FOC with respect to the portfolios
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(64) are equivalent to �rst-order and equal to

Etrrt+1 = O(ϵ2),

which implies that the Jacobian drops rank. In other words, the FOCs with respect to the portfolio
do not add any restrictions to �rst-order and the system is underidenti�ed.

I tackle this problem in two steps. First, I consider the system of FOC plus the constraints
except for the FOC with respect to the portfolio (64) and apply the implicit function theo-
rem to establish the existence of analytic functions yt(ϵ, {θt}∞t=t0), rrt(ϵ, {θt}

∞
t=t0), λt(ϵ, {θt}

∞
t=t0),

φt(ϵ, {θt}∞t=t0), µt(ϵ, {θt}
∞
t=t0), and ηt(ϵ, {θt}

∞
t=t0) around ϵ = 0 and an arbitrary {θt}∞t=t0 .

45 Hence-
forth, I assume this system is exactly identi�ed, i.e. the only equations that drop rank are the FOCs
related to the portfolio. This yields:

E [J(L)ỹt+1] + Et [B(L)ξt+1] +

nF∑
k=1

Et

[
Mλ

k (L)λ̃kt+1

]
+

J∑
j=1

Et

[
Mµ

j (L)µ̃jt+1

]

+

ng∑
k=1

Mφ
k (L)φ̃kt +

I∑
i=1

J∑
j=1

My
ij ·
(
θ̄ijt−1rrjt

)
+

J∑
j=1

m−1
0 (Dym0)

′µ̄jrrjt = O(ϵ2)

(84)

I∑
i=1

θ̄ijt−1

(
My

ij

)′
· ỹt +

I∑
i=1

θ̄ijt−1

(
Mξ

ij

)′
· ξt +m−1

0 µ̄jDym0 · ỹt +m−1
0 µ̄jDξm0 · ξt

+
J∑

j′=1

nF∑
k=1

I∑
i=1

I∑
i′=1

θ̄ijt−1θ̄i′j′t−1λ̄kD
2
Ti′TiFkrrj′t +

I∑
i=1

nF∑
k=1

θ̄ijt−1DTiFk · λ̃kt + ˜̃η0jt−1 − µ̃jt = O(ϵ2)

(85)

where

J(L) =Q · L+R · L2 + βR′

Mλ
k (L) =

(
nF∑
k=1

(DyFk)
′

)
· L+ β

nF∑
k=1

(DFy̌)
′

Mµ
j (L) =

 J∑
j=1

(DyXj)
′

 · L+ β

J∑
j=1

(Dy̌Xj)
′

Mφ
k (L) =

(
β−1

ng∑
i=1

(Dŷgk)
′

)
· L+

ng∑
k=1

(Dygk)
′

˜̃η0jt−1 =β
−1m0η̃0jt−1 +

I∑
i=1

nF∑
k=1

θ̄ijt−1λ̄kD
2
Tiy̌F · ỹt−1 +

I∑
i=1

λ̄kDTiFk · θ̃ijt−1

where I used that r̄r = 0 and Etrrt+1 = O(ϵ2). Note that ˜̃ηt−1 is just a translation of the Lagrange
multiplier associated with the constraint (53), which will prove convenient later (all the terms in

45The derivative, product and sum of analytic functions is analytic. Thus, I can apply the analytic version of
the implicit function theorem (stated as Theorem 3 in Judd and Guu (2001)) to establish that the implied implicit
functions are also analytic.
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the de�nition are predetermined at t).
This system of equations holds given an arbitrary {θ̄t}∞t=t0 but I do not know whether {θ̄t}∞t=t0

is a solution to the �rst-order conditions of the non-linear problem as ϵ → 0. I solve the problem
forward, e.g. I solve for θt0 taking {θt}t>t0 as parameters of the problem. For this, I need to use
the set of equations I have not used yet: the FOC with respect to the portfolio given by (64), which
can written as

Hijt0

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
= 0 (86)

where I used the result from the implicit function theorem in the �rst step to de�ne

Hijt0

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
≡ Etrrjt0+1

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
×

nF∑
k=1

(
λkt0+1

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
DTiFk

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

))
.

(I abuse notation in the argument of Fk). Note that, since I assumed that ξt was a bounded-vector
stochastic process and that all functions are analytic, Hijt is also an analytic function.46

I am interested in �nding functions θijt0(ϵ; {θ̄t}∞t>t0) that are valid as ϵ → 0. That is, I want
to �nd a bifurcation point. To do so, I use a bifurcation theorem stated in Judd and Guu (2001)
(Theorem 5), reproduced below for convenience.

Theorem 1. Suppose H: Rn × R → Rn is analytic near (x0, 0) and H(x, 0) = 0 ∀x ∈ Rn.
Furthermore, suppose that

DxH(x0, 0) = 0n×n

DϵH(x0, 0) = 0n

det(D2
xϵ(x0, 0)) ̸= 0.

Then, there is an open neighborhood N of (x0, 0) and an analytic function h(ϵ) : R → Rn such that
h(ϵ) ̸= 0 for ϵ ̸= 0 and H(h(ϵ), ϵ) = 0 for (h(ϵ), ϵ) ∈ N .

Consider the optimal portfolio choice at t = t0. Clearly, Dθt0
Ht0

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
= 0 since

r̄rj = 0; i.e. the portfolio is irrelevant at the steady state. Typically, one �nds the bifurca-

tion point by looking for x0 such that Hϵ(x0, 0) = 0. Since Et
∂rrjt+1

∂ϵ = 0, however, I have that
DϵHt0

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
= 0 ∀(θ̄t0 , 0; {θ̄t}∞t>t0). Thus, this approach does not work. Indeed, the theo-

rem's regularity condition is not satis�ed: I have that D2
xϵH = 0 ∀(θ̄t0 , 0; {θ̄t}∞t>t0). To see this, �rst

compute Hxϵ to obtain

∂Hijt0

∂ϵ∂θi′j′t0
=

nF∑
k=1

λ̄kDTiFk

(
Et
∂rrjt0+1

∂ϵ∂θi′j′t0

)
.

Next, note that di�erentiating the no-arbitrage condition (53) with respect to ϵ and θ around ϵ = 0
and {θ̄t}∞t=t0 yields:

Et
rrjt0+1

∂ϵ∂θij′t0
= 0,

which implies the result. Intuitively, no matter what portfolio agents hold, they are always risk-
neutral to �rst-order. Thus, on average the excess return must be zero - for any portfolio.

To make progress, I use the �divide by epsilon� trick (see e.g. Judd and Guu (2001)) and de�ne

46The composition of analytic functions is an analytic function.
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a new function Ĥijt0 given by

Ĥijt0

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
=

{
Hijt0

(
θ̄t0 ,ϵ;{θ̄t}

∞
t>t0

)
ϵ if ϵ ̸= 0

DϵHijt0

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
if ϵ = 0

}
.

Since Hijt0

(
θ̄t0 , 0; {θ̄t}∞t>t0

)
= 0 ∀{θ̄t}∞t=t0 , I have that Hijt0 = ϵĤijt0 . Thus, I can rewrite (86)

as
Ĥijt0

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
= 0.

First, note that

∂Ĥijt0

∂θijt0
|({θ̄t}∞t=t0 ,ϵ=0) =

∂Hijt0

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
∂ϵ∂θijt0

|({θ̄t}∞t=t0 ,ϵ=0) = 0.

The condition det(D2
θt0ϵ

H) ̸= 0 is a regularity condition that I henceforth assume to hold. Note

that this will typically be the case in well-behaved portfolio problems: the elements in the diagonal
are non-zero as they re�ect how the portfolio varies with the risk-premium, i.e.

∂Ĥijt0

∂θijt0∂ϵ
|({θ̄t}∞t=t0 ,ϵ=0) =

∂Hijt0

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
∂ϵ∂ϵ∂θ

̸= 0.

To �nd the bifurcation point, thus, I set

∂Ĥijt0

∂ϵ
|({θ̄t}∞t=t0 ,ϵ=0) =

∂Hijt0

(
θ̄t0 , ϵ; {θ̄t}∞t>t0

)
∂ϵ∂ϵ

= 0.

Note that this is, essentially, a second order approximation of the planner's portfolio optimality
condition. Thus, the procedure is analogous to that of Devereux and Sutherland (2007) who use
these second-order approximations to solve for a bifurcation point in the system of equations that
describe a competitive equilibrium.

A second-order expansion of Hijt0 yields

Et0rrjt0+1

nF∑
k=1

λ̄kDTiFk + Et0rrjt0+1

nF∑
k=1

λ̄k
(
D2

TiyFk · ỹt0+1 +D2
TiξFk · ξt0+1 +D2

Tiy̌Fk · ỹt0
)

+Et0rrjt0+1

J∑
j′=1

I∑
i′=1

D2
TiTi′Fk · θ̄i′j′t0rrj′t0+1 + Et0rrjt0+1

nF∑
k=1

λ̃kt0+1DTiF = O(ϵ3)

The system of equations (84) - (85) together with the linearized constraints (78) - (81) characterize
only the �rst-order behavior of rrjt0+1. Crucially, note that {θ̄s}∞t>t0 are irrelevant to determine the
solution - a consequence of certainty equivalence. Since I have a linear term in rrjt0+1, I need to
use the second-order approximation of the no-arbitrage constraint. Using (76) to replace the linear
term and that Et0rrjt0+1 = O(ϵ2),

Et0rrjt0+1

(
My

hj · ỹt0+1 +Mξ
hj · ξt0+1

)
+Et0rrjt0+1

J∑
j′=1

I∑
i′=1

D2
TiTi′Fk · θ̄i′j′trrj′t0+1 + Et0rrjt0+1

nF∑
k=1

λ̃kt0+1DTiF = O(ϵ3) (87)
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Now all terms are purely quadratic. Thus, I can evaluate this expression using only the �rst-order
behavior of rrjt0+1, ỹt0+1, and λ̃t0+1, which can be found from (84) - (85) together with the linearized
constraints (78) - (81). Crucially, this �rst-order behavior is independent of {θ̄t}∞t>t0 due to certainty
equivalence. To see this, simply take time-t+1 expectations in the system comprised by (84) - (85)
and (78) - (81) and note that the porfolio drops out. Thus, {θ̄t}∞t>t0 is irrelevant to determine θ̄t0 .
This a system of J × I equations that I can solve to �nd the J × I bifurcation points at t = t0; i.e.
solutions {θ̄t}∞t=t0 to the nonlinear system of equations that are valid as ϵ→ 0. In a non-stationary
environment, I could then use the solution at t = t0 to do the same trick for t = t0 + 1 and so on.
Here, the problem is stationary so the solution is the same in every period, i.e. θ̄t = θ̄t0 ∀t.
Remark 1. Because of the certainty equivalence property, optimal portfolio decisions are separable
over time. That is, to zero-order, {θ̄s}∞s>t0 is irrelevant for the optimal portfolio decision at t0, θ̄t0 .

Now I am ready for my main result. Note that: (i) the FOC with respect to ỹt yields (84);
(ii) the FOC with respect to rrjt yields (85); and, �nally, the FOC with respect to θ̄ijt yields (87).
Thus, the �rst-order conditions of the ALQ problem coincide with a perturbation of the non-linear
FOC.

Proposition 17. The �rst-order conditions of the ALQ problem (de�nition 2) coincide with the
system of equations (84) - (85), (87) and (78) - (81), which are a perturbation of the �rst-order
conditions of the non-linear problem around the deterministic steady state.

Remark 2. There are typically many solutions to (87). Thus, keeping track of an approximate
welfare function not only allows us to check whether the solution is a local optimum, but also �nd
the best local optimum.

A.4 The case with multiple no-arbitrage restrictions

Next, I consider a case with I × J additional constraints per period,

Etrrjt+1mi(yt+1, ξt+1) = 0 j = 1, . . . , J ; i = 1, . . . , I, (88)

where mi are positive functions. These constraints have the natural intepretation of being no-
arbitrage conditions for agent i between assets j and 0 (the reference asset). The new problem is,
thus, to maximize the objective (49) subject to (50) - (53) and (88).

Consider the new FOC the non-linear problem, where the new terms are highlighted in red:
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Dyπ(yt, ξt) +

nF∑
k=1

λktDyFk(yt, Tt, ξt; yt−1) + βEt

nF∑
k=1

λkt+1Dy̌Fk(yt+1, Tt+1, ξt+1; yt)

+βEt

J∑
j=1

µjt+1Dy̌Xj(yt+1, ξt+1; yt) +
J∑

j=1

µjtDyXj(yt, ξt; yt−1)

+β−1

ng∑
k=1

φkt−1Dŷg(yt−1, ξt−1; yt) + Et

ng∑
k=1

φktDyg(yt, ξt; yt+1) + β−1
I∑

i=0

J∑
j=1

ηijt−1rrjtDymi(yt, ξt) = 0

(89)

nF∑
k=1

I∑
i=1

θijt−1λktDTiFk(yt, Tt, ξt; yt−1)− µjt + β−1
I∑

i=0

ηijt−1mi(yt, ξt) = 0

(90)

Etrrjt+1

(
nF∑
k=1

λkt+1DTiFk(yt+1, Tt+1, ξt+1; yt)

)
= 0,

(91)

Like before, a steady state satis�es µ̄j = r̄rj = 0, and (ȳ, λ̄, φ̄) solve (66) - (69). Crucially, however,
a portfolio only pins down a linear combination of the Lagrange multipliers {η̄i}Ii=0:

β−1η̄0jtm0(ȳ, 0) = −
I∑

i=1

θ̄ijtλ̄kDTiFk(ȳ, 0, 0; ȳ) + µ̄j − β−1
I∑

i=1

η̄ijtmi(ȳ, 0)

In other words, the dimensionality of the �indeterminacy� problem is no longer J×I per period, but
rather 2×J×I. Intuitively, the Lagrange multipliers added in this extension are also indeterminate.

Following the same steps as before, it is straightforward to see that (77) is still a valid expansion
of the objective function (49). However, maximizing (77) subject to (78) - (83) no longer yields a
portfolio that solves the problem as ϵ → 0. The reason is that such a portfolio typically violates
(88). To see this, note that while the FOC of the ALQ problem are still the same, perturbing the
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FOC of the nonlinear problem yields47

E [J(L)ỹt+1] + Et [B(L)ξt+1] +

nF∑
k=1

Et

[
Mλ

k (L)λ̃kt+1

]
+

J∑
j=1

Et

[
Mµ

j (L)µ̃jt+1

]

+

ng∑
k=1

Mφ
k (L)φ̃kt +

I∑
i=1

J∑
j=1

My
ij ·
(
θ̄ijt−1rrjt

)
−

J∑
j=1

m−1
0 (Dym0)

′µ̄jrrjt

+β−1
I∑

i=1

J∑
j=1

(
Dymi −m−1

0 miDym0

)
η̄ijt−1rrjt = O(ϵ2)

(92)

I∑
i=1

θ̄ijt−1

(
My

ij

)′
· ỹt +

I∑
I=1

θ̄ijt−1

(
Mξ

ij

)′
· ξt +

I∑
i=1

nF∑
k=1

θ̄ijt−1DTiFk · λ̃k

J∑
j′=1

nF∑
k=1

I∑
i=1

I∑
i′=1

θ̄ijt−1θ̄i′j′t−1λ̄kDTiTi′Fkrrj′t + ˜̃η0jt−1 − µ̃jt

+β−1
I∑

i=1

η̄ijt−1

(
Dymi −m−1

0 miDym0

)
· ỹt + β−1

I∑
i=1

η̄ijt−1

(
Dξmi −m−1

0 miDξm0

)
· ξt = O(ϵ2)

(93)

where

˜̃η0jt−1 ≡ β−1
I∑

i=0

miη̃ijt−1 +
I∑

i=1

θ̃ijt−1λ̄kDTiFk +
I∑

i=1

nF∑
k=1

θ̄ijt−1λ̄kD
2
Tiy̌F · ỹt−1 +

I∑
i=1

θ̃ijt−1λ̄kDTiFk.

The terms in red represent the di�erence between this sytem of equations and the ones from the
ALQ problem. Note that, unless all the Lagrange multipliers of the other no-arbitrage conditions
{η̄it}∞i=1 are zero as ϵ→ 0, the systems will di�er. This would be the case if the private agents and
the planner made the same decision, e.g. the model in this paper when there is an in�nite mass of
foreign arbitrageurs.

One can still solve this problem using a perturbation approach to identify bifurcation points of
the system of non-linear equations, which now include the multipliers. Using the same arguments
as before, one can show that this involves approximating the no arbitrage equations (88) to second
order:

Etrrjt+1mi + Etrrjt+1 (Dymi · ỹt+1 +Dξmi · ξt+1) = O(ϵ3)

and then using the agent 0 no-arbitrage condition to eliminate the linear term:

Etrrjt+1

(
(Dymi −m−1

0 miDym0) · ỹt+1 + (Dymi −m−1
0 miDξmi) · ξt+1

)
= O(ϵ3). (94)

This adds the necessary J×I equations required to pin down the J×I Lagrange multipliers {η̄i}Ii=1.
Furthermore, note that if one amends the ALQ problem to include (94) as a constraint, one obtains
once again the same system of equations.

47In this new ��rst step�, the parameters are not only {θt}∞t=t0 and ϵ but also the new Lagrange multipliers

{ηit}I,∞i=1,t=t0
.
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Proposition 18. The generalized �almost� linear-quadratic problem (GALQ) is to choose {ỹt, rrt, θ̄t}∞t=t0
to maximize (77) subject to (78) - (83), and (94). The �rst-order conditions of the GALQ prob-
lem coincide with the system of equations (92) - (93), (87), (78) - (81) and (94), which are a
perturbation of the �rst-order conditions of the non-linear problem around the deterministic steady
state.

Remark 3. This problem is signi�cantly less tractable: It has twice as many degrees of indeterminacy
and, as a result, twice as many nonlinear equations. This makes showing properties analytically
substantially harder. However, it is fairly easy in a computer and the approach can still be used
to check the conditions for local maxima and pick the �best� solution whenever there is more than
one.

A.5 Mapping to the model

Consider an in�nite-horizon version of the model in section 2 (nested in the general framework
of appendix B.4) extended to allow for long home-currency bonds that decay at rate δ ∈ (0, 1],
international interest-rate shocks R∗ and a convenience-yield shock Ψ, as in section 5.48 The controls
are yt = {CTt, Et, nfat, Rt}, the portfolio is B, and the shocks are (YTt, Zt, C

∗
t , R

∗
t ,Ψt, R

∗
t−1,Ψt−1).

ξt is de�ned as the deviation of these shocks with respect to their steady-state values.49 The
objective function comes from the planner's problem

π(yt, ξt) = V (CTt, Et, Zt).

There is just one F constraint, the budget constraint:

F1(yt, Tt, ξt; yt−1) = nfat + CTt − Tt − YTt −R∗
t−1nfat−1, (95)

where Tt = rrtBt−1 and nfat = Bt +B∗
t . The realized excess return of the home-currency bond is

X(yt, yt−1, ξt) =
Rt−1Et−1

Et

(
Ψt−1 + δ + (1− δ)R−1

t

)
−R∗

t−1.

There are no forward looking constraints g; the only forward-looking constraint is the foreign no-
arbitrage equation,

Etrrt+1 U ′(C∗
t+1)︸ ︷︷ ︸

=m0(yt+1,ξt+1)

= 0.

This completes the mapping.
Next, suppose that the foreign agents that trade the home-currency bonds are not large relative

to home, i.e. C∗
t cannot be taken as given. Instead, assume that foreigners have an endowment

{Y ∗
t } and they can also borrow at gross rate β−1, as in section 4 and appendix B.4. In this

case, the controls are yt = {CTt, C
∗
t , Et, nfat, nfa

∗
t , Rt}, the portfolio is B, and the shocks ξt are

(YTt, Zt, Y
∗
t , R

∗
t ,Ψt, R

∗
t−1,Ψt−1). In addition to (95), there is another F constraint:

F2(yt, Tt, ξt; yt−1) = nfa∗t + C∗
Tt + Tt − Y ∗

Tt −R∗
t−1nfa

∗
t−1,

48The static model is not strictly nested in the abstract in�nite horizon model I presented in this section, but it is
straightforward to construct an analogous proof for this case or, more generally, a case with a �nite horizon.

49I stack the lag of R∗
t and Ψt inside ξt to save notation in the general framework and keep it similar to Benigno

and Woodford (2012). Equivalently, one can allow ξt−1 to enter directly the X function. Extending the proof to that
case is straightforward.
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which already imposes market clearing in the home-currency bond. In addition, there is an addi-
tional forward looking constraint, the Euler equation of foreigners:

g(yt, ξt; yt+1) = βR∗
tU

∗′(C∗
t+1)− U ′(C∗

t ).

In section B.4, I also analyze a model with sticky prices à la Calvo. In this case, there is
an additional F constraint, which de�nes the in�ation rate, and two forward-looking constraints
that capture the �rms' optimal pricing decision. This system of three equations simpli�es after
linearization to the Phillips' curve.

B Proofs and extensions

This appendix is organized into �ve sections. Sections B.1, B.2, and B.3 prove the results in sections
3, 4 and 5, respectively. Section B.4 presents an in�nite-horizon version of the model of section 4
with Calvo pricing and formal results that prove robustness in this extended setup. Section B.5
extends the model of section 4 in two di�erent directions: (i) mark-up shocks and (ii) multiple
non-tradable sectors, each with their own nominal rigidity. I formally characterize the conditions
that lead to a non-zero approximate tax in this environment.

B.1 Proofs for section 3

B.1.1 Proof of lemma 2

The FOC of (16) with respect to es yields

es − edm,s(B̄) + χB̄2(es − ein,s(B̄)) = 0.

Rearranging yields the desired result.

B.1.2 Proof of proposition 2

I start by deriving the optimal portfolio. LetW(B̄) denote the objective in (20). After some algebra,
the FOC with respect to B̄ yields

∂W(B̄)

∂B̄
=

χk0(
1 + χB̄2

)2 {χB̄2σedmTcm + B̄
(
χσ2Tcm − σ2edm

)
− σedmTcm} (96)

Since the term inside brackets is a quadratic in B̄ there are two solutions to ∂W(B)
∂B̄

= 0. However,
the only one of them that is a maximum is

B̄ = −

(χσ2Tcm − σ2edm
)
+
√(

χσ2Tcm − σ2edm
)2

+ 4χ (σedmTcm)
2

2χσedmTcm

 , (97)

which has the opposite sign as σedmTcm . To see this, note that in an interior optimum, the second-
order condition becomes

∂2W(B̄)

∂B̄2
=

χk0(
1 + χB̄2

)2 {2χB̄σedmTcm +
(
χσ2Tcm − σ2edm

)}
. (98)
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Using the �rst-order condition (96) holding with equality, this becomes

∂2W(B̄)

∂B̄2
= (

χk0
1 + χB̄2

)
σedmTcm
B̄

.

Thus, in an interior optimum the portfolio must be of the opposite sign as σedmTcm to be a maximum.
This proves the �rst part of proposition 2.

To see that with perfect correlation one can attain the �rst-best, one only needs to show that
there exists a B̄ such that

edm,s = ein,s(B̄) +O(ϵ2) ∀s

Since shocks are perfectly correlated,

edm,s = kdmϵ

ein,s(B̄) = − 1

B̄
kcmϵ

for some constants kdm, kcm where ϵ is the only source of uncertainty in this economy, i.e. zs = kzϵ,
ys = kyϵ, c

∗
s = kc∗ϵ for some constants kz, ky, kc∗ . Thus,

B̄ = −kcm
kdm

attains the �rst-best by closing both gaps in the welfare function. One can then check that this
coincides with (97) in the case of perfect correlation.

B.1.3 Proof of proposition 3

This follows directly from (96). In an interior optimum,

∂2W(B̄)

∂χ∂B̄
=

χk0(
1 + χB̄2

)2 B̄{B̄σedmTcm + σ2Tcm}.

Note that (97) implies
σedmTcmB̄ + σ2Tcm ≥ 0.

Thus, ∂2W(B̄)
∂χ∂B̄

has the same sign as B̄ and, by the implicit function theorem, B̄ increases with χ if

B̄ > 0 and vice versa.
Using the implicit function theorem on (96) immediately implies that |B̄| increases with σ2Tcm/σ

2
edm

.
Next, note that

∂W(B̄)

∂B̄∂(σedmTcm/σ
2
edm

)
=

χk0σ
2
edm(

1 + χB̄2
)2 (χB̄2 − 1).

Using the �rst-order condition (96) holding with equality, this becomes

∂W(B̄)

∂B̄∂(σedmTcm/σ
2
edm

)
=

χk0σ
2
edm(

1 + χB̄2
)2 (− B̄

σedmTcm

)(
χσ2Tcm − σ2edm

)
.

Thus, by the implicit function theorem, χσ2Tcm − σ2edm > 0 implies that increases in the covariance
between both targets (an increase in σedmTcm when σedmTcm > 0 or a decrease in σedmTcm when
σedmTcm < 0) implies |B̄| decreases. The converse is true when χσ2Tcm − σ2edm < 0.
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B.1.4 Proof of lemma 3

The derivative of (21) with respect to ω yields

∂σ2e
∂ω

= −2(1− ω)σ2edm + 2ωσ2ein(B̄) + 2(1− 2ω)σedmein(B̄)

In terms of Tcm and edm,

∂σ2e
∂ω

= −2(1− ω)σ2edm + 2ω
1

B̄2
σ2Tcm − 2

1

B̄
(1− 2ω)σTcmedm .

Replacing the optimal ω = χB̄2

1+χB̄2 and rearranging,

∂σ2e
∂ω

=
2

B̄

1

1 + χB̄2

(
χB̄2σTcmedm +

(
χσ2Tcm − σ2edm

)
B̄ − σTcmedm

)
.

Note that the parenthesis coincides with the term in brackets in (96). Thus, if B̄ is an interior

optimum, ∂σ2
e

∂ω = 0.
Next, suppose that the solution is at a corner. Consider �rst the case B̄ = K. Since B̄ cannot

be increased further, optimality of B̄ implies that the parenthesis is positive. Thus, ∂σ2
e

∂ω > 0. Next,
consider the case B̄ = −K. Since B̄ cannot be decreased further, optimality of B̄ implies that the

parenthesis is negative. Thus, ∂σ2
e

∂ω > 0.

B.1.5 Proof of proposition 5

For this proof, note that

σ2e
σ2edm

=(1− ω)2 + ω2 1

B̄2

σ2Tcm
σ2edm

− 2ω(1− ω)
1

B̄

σedmTcm
σ2edm

. (99)

Part i

The e�ect of χ is given by:
dσ2e
dχ

=
∂σ2e
∂ω

∂ω

∂χ

The proof of lemma 3 established that ∂σ2
e

∂ω > 0. Noting that the optimal weight is given by

ω = χB̄2

1+χB̄2 , it follows that
∂ω
∂χ > 0. Thus, dσ2

e
dχ > 0. The e�ect of σ2Tcm/σ

2
edm

is given by:

dσ2e
d(σTcm/σ

2
edm

)
= ω2 1

B̄2
> 0.
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Part ii The e�ect of χ is given by

dσ2e
dχ

=
∂σ2e
∂ω︸︷︷︸
=0

(
∂ω

∂χ
+
∂ω

∂B̄

dB̄

dχ
) +

−ω2 2

B̄2

σ2Tcm
σ2edm

+ 2ω(1− ω)
1

B̄

σedmTcm
σ2edm︸ ︷︷ ︸
−


︸ ︷︷ ︸

−

1

B̄

dB̄

dχ︸ ︷︷ ︸
+

< 0.

The �rst e�ect is the composition e�ect, which by lemma 3 is zero. The second e�ect is the change in
volatility coming from the insurance target when B̄ changes. This term is unambiguously negative.
Thus, the total e�ect is negative.

The e�ect of σ2Tcm/σ
2
edm

is given by

dσ2e
dσ2Tcm/σ

2
edm

=
∂σ2e
∂ω︸︷︷︸
=0

(
∂ω

∂σ2Tcm/σ
2
edm

+
∂ω

∂B̄

dB̄

dσ2Tcm/σ
2
edm

)

+

(
−ω2 2

B̄3

σ2Tcm
σ2edm

+ 2ω(1− ω)
1

B̄2

σedmTcm
σ2edm

)
dB̄

dσ2Tcm/σ
2
edm

+ ω2 1

B̄2

In this case, there is an additional direct e�ect given by the last term. After some algebra, using
(96) and the optimal ω, one can show that:(

−ω2 2

B̄3

σ2Tcm
σ2edm

+ 2ω(1− ω)
1

B̄2

σedmTcm
σ2edm

)
dB̄

dσ2Tcm/σ
2
edm

+ ω2 1

B̄2
=

χ2B̄2

(
1 + χ

σ2Tcm
σ2edm

)(
1 + χB̄2

)−2

(
2χB̄

σedmTcm
σ2edm

+ χ
σ2Tcm
σ2edm

− 1

)−1

< 0,

where the last inequality follows from the fact that the second-order condition (98) implies that the
last term in parenthesis is negative. Thus, the e�ect of the insurance target always dominates the
direct e�ect on volatility. It follows that volatility decreases when σ2Tcm/σ

2
edm

increases.

B.1.6 Proof of proposition 6

In the main text. This is also a special case of proposition 12 (see section B.2.10 for a proof).

B.1.7 Proof of lemma 4

This is immediate from the approximate objective (28).

B.1.8 Proof of proposition 7

Replacing the optimal exchange rate into (28) yields

W = −1

2

χk0
1 + χf(B̄)2

 f(B̄)2σ2edm(0)︸ ︷︷ ︸
demand-management

+ σ2Tcm︸︷︷︸
insurance

− 2f(B̄)σTcmedm(0)︸ ︷︷ ︸
align targets

+ t.i.p.+O(ϵ3) (100)
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Since (100) is identical to (20) with f(B̄) = −B̄ and σ2edm(0) instead of σ2edm , it is immediate that

propositions 3, and 4 hold with f(B̄) = − B̄
1−µB̄

instead of B̄ and edm(0) instead of edm. Proposition

2 holds in terms of f(B̄) with the opposite sign, i.e. f(B̄) has the same sign as σTcmedm(0).
Rewriting the optimal exchange rate rule (29) in terms of rrfs,

rrfs = (1− ω)edm,s(0) +
1

f(B̄)
ωTcm,s +O(ϵ2). (101)

Following steps analogous to the proof of lemma 3,

∂σ2e
∂ω

=
2

f(B̄)

1

1 + χf(B̄)2

(
−χf(B̄)2σTcmedm(0) +

(
χσ2Tcm − σ2edm(0)

)
f(B̄) + σTcmedm(0)

)
.

The term inside the parenthesis has the same sign as the FOC with respect to f(B̄). Suppose
B̄ = −K. Then, f(K) = K/(1−µK) > 0. Optimality of f(B̄) implies that the term in parenthesis
is positive and thus the whole term is positive. Suppose B̄ = K and 1 − µK > 0. Then, f(K) =
−K/(1 − µK) < 0. Optimality of f(B̄) implies that the term in parenthesis is negative and thus
the whole term is positive. To see why the condition 1 − µB̄ < 0 is required, suppose B̄ = K and
1 − µK < 0. Then, f(K) = −K/(1 − µK) > 0. Note that, in this region, the planner cannot
increase B̄ which implies it cannot decrease f(B̄). Thus, optimality of f(B̄) implies that the term
in parenthesis is negative and thus the whole term is negative.

The proof of part (ii) of proposition 5 is identical with σ2rrf /σ
2
edm(0) instead of σ2e/σ

2
edm

.

B.1.9 Proof of proposition 8

Note that

es = (
1

1− µB̄
)rrfs.

Thus, for x ∈ {χ, σ2
Tcm

σ2
edm(0)

},

∂σ2e
∂x

=
1

(1− µB̄)2

∂σ2rrf
∂x

+
2µ

1− µB̄
σ2e
∂B̄

∂x
.

The result in part (i) assumes |B̄| = K so ∂B̄
∂x = 0. Thus, sign(∂σ

2
e

∂x ) = sign(
∂σ2
rrfs

∂x ). Proposition
7 then implies the result. For part (ii), note that when B̄ < 0, a larger importance of insurance

implies both
∂σ2
rrf

∂x < 0 and ∂B̄
∂x < 0 (since f(B̄) increases). Since 1−µB̄ > 0, ∂σ2

e
∂x < 0. By contrast,

when B̄ > 0 and 1 − µB̄ > 0, the second term in the parenthesis is positive so the overall sign is
ambiguous.

B.1.10 Proof of proposition 9

This is a special case of proposition 12 (see section B.2.10 for a proof).

B.2 Static model: General framework

I present the general static model in detail and prove all the results in section 4. Section B.2.1
describes the set up and characterizes the competitive equilibrium. Section B.2.2 presents the
planning problem. Section B.2.3 describes the deterministic steady state. Section B.2.4 derives

62



a second-order approximation of home's �ow utility. Section B.2.5 presents and proves lemma 7,
which approximates the objective function of the planning problem as a function of three loss terms:
lack of insurance, output gaps, and price dispersion. Section B.2.6 presents and proves lemma 8,
which writes the objective function in terms of the deviation of exchange rates with respect to two
exchange-rate targets, as in the baseline model of section 2. Sections B.2.7, B.2.8, B.2.9, and B.2.10
prove proposition 10, lemma 5 and propositions 11 and 12, respectively.

B.2.1 Set up and competitive equilibrium

Consumers Consumers solve

max
{CTs,CNs,Ls}s,{Θj}j

∑
s

πsU(CTs, CNs, Ls; ξs) (102)

subject to ∑
j

(1 + τj)Θj +Θ0 = T0 (103)

EsCTs + PNsCNs = EsYT (ξs) +WsLs +

∫ 1

0
ΠNs(i)di (104)

+
∑
j>0

RjEsX̃j(Ys, ξs)Θj + EsΘ0 + Ts.

where ΠNs(i) are pro�ts from �rm i, and

Ys =

{
CTs, CNs, Ls, E

−1
s PNs, E

−1
s Ws, E

−1
s

∫ 1

0
ΠNs(i)di, Es

}
are the aggregate ex-post endogenous variables of the model in foreign-currency (taken as given
by the representative agent). Optimization over labor and tradable and nontradable consumption
yields

∂U

∂CNs
(s)/

∂U

∂CTs
(s) =

PNs

Es
(105)

(− ∂U

∂Ls
(s))/

∂U

∂CTs
(s) =

Ws

Es
(106)

Optimization across varieties gives rise to the standard CES demand,

CNs(i) =

(
PNs(i)

PNs

)−η

CNs, (107)

where PNs is the ideal price index of nontradable goods,

PNs =

(∫ 1

0
PNs(i)

1−ηdi

) 1
1−η

. (108)

Asset optimization yields a no-arbitrage condition,∑
s

πs

(
(1 + τj)

−1RjX̃j(Ys; ξs)− 1
) ∂U

∂CTs
(s) = 0. (109)
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Foreigners Foreigner optimization, together with the asset market clearing condition, yields

∑
s

πs

(RjX̃j(Ys; ξs)− 1)
dU∗

(
Y ∗(ξs)− 1

m

∑
j(RjX̃j(Ys; ξs)− 1)Θj

)
dC∗

 = 0 (110)

Intermediate good producers Firms have access to a neoclassical technology

CNs(i) = F (Ls(i); ξs). (111)

Note that technology is identical across �rms and there are no idiosyncratic technology shocks. A
set ϕ of �rms i ∈ {�x} cannot reset their price:

PNs(i) = 1 for i ∈ {�x}. (112)

A set of �rms 1− ϕ i ∈ {�ex} can reset their price. I assume that there is a labor subsidy τL that
o�sets these �rms' desired mark up, i.e. 1− τL = η−1

η . Optimality gives rise to the condition,

PNs(i) =
1

∂F
∂L (s)

Ws for i ∈ {�ex}. (113)

Taxes The central government rebates the proceeds of the �nancial taxes {τj} lump-sum at
t = 0 and the cost of the labor subsidy τL lump sum at t = 1:

T0 =
∑
j

τjΘj

Ts = −τLWsLs.

Goods and labor market clearing Solving for Θ0 using (103), replacing Θ0, �rms' pro�ts
and the lump sum taxes into (104), and using nontradable market clearing yields the country's
budget constraint:

CTs = YT (ξs) +
∑
j

(RjX̃j(Ys, ξs)− 1)Θj . (114)

The market clearing condition for labor is given by

Ls =

∫ 1

0
Ls(i)di. (115)

Competitive equilibrium Next, I formally de�ne a competitive equilibrium in this economy.

De�nition 3. Given a Central Bank policy ({Es}s,{τj}j), an allocation ({CTs}s,{CNs}s,{Ls}s,
{CNs(i)}i,s,{Ls(i)}i,s,{Θj}j) together with prices ({PNs}s,{Ws},{PNs(i)}i,s,{Rj}j) is a competi-

tive equilibrium if and only if they solve (105)−(115).
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B.2.2 Planning problem

As in Farhi and Werning (2016), I de�ne the following indirect utility function:

V (CTs, Es; ξs) = max
{CNs,Ls,PNs,Ws}s,{CNs(i),Ls(i),PNs(i)}i,s}

u(CTs, CNs,

∫ 1

0
Ls(i)di; ξs) (116)

subject to(105)− (108), (111)− (113), (115).

Since {τj}j is a policy variable, it can always be chosen to make (109) hold.50

Similarly, using the solution to this problem one can write a �reduced-form� return of �nancial
assets:

Xj(CTs, Es; ξs) = X̃j(Y∗(CTs, Es; ξs); ξs)

where Y∗ are the endogenous variables, e.g. nontradable consumption, as a function of the two
remaining endogenous variables (CTs, Es) and shocks ξs.

Using these two objects, I can write the problem in a similar way to the one in the main text.

Problem 3. The planner's problem is to choose {CTs, C
∗
s , Es, {Θj}j} to maximize

W =
∑
s

πs
{
V (CTs, Es; ξs) +mλ̄U∗(C∗

s )
}

subject to

YT (ξs) +
∑
j

(RjXj(CTs, Es; ξs)− 1)Θj = CTs

∑
s

πs

(RjXj(CTs, Es; ξs)− 1)
dU∗

(
Y ∗(ξs)− 1

m

∑
j(RjXj(CTs, Es; ξs)− 1)Θj

)
dC∗

 = 0.

B.2.3 Steady state

Suppose there is no risk. The �rst best involves no ine�cient �uctuations of consumption

CTs = C̄T = ȲT ,

all intermediate-input �rms producing the same amount since they are all ex ante identical

CNs(i) = CNs = C̄N

C̄N = F (L̄; 0),

and the equalization of marginal rates of substitution and transformation between non-tradable
goods and labor

∂U

∂CN

∂F

∂L
= −∂U

∂L
,

which determines the steady-state L̄.

50This system of equations typically has a unique solution so there is no real maximization involved. This is the
case, for example, in the baseline model where Ls and CNs are determined by (10) and (11).
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Since monetary policy does not play an insurance role at the steady state, it can attain this
allocation by ensuring that �exible-price �rms would like to set their prices in home currency equal
to the �xed-price �rms, i.e.

P̄N = P̄N (i) = 1 ∀i.

Then,

Ē =

∂U
∂CT
∂U
∂CN

P̄N

W̄ =
∂F

∂L
P̄N

ensure that (105), (106), and (113) hold. Finally, R̄jĒ
−1 = 1 ∀j. As usual, {Θ̄j}j is indeterminate

at the deterministic steady state.

B.2.4 Second-order approximation to home's �ow utility

In this section, I derive a second-order approximation to the general �ow utility function (102).

Lemma 6. Around the deterministic steady state, home's �ow utility is approximately given by

U(CTs, CNs, Ls; ξs) =
∂U

∂CT
C̄T

(
cTs +

1

2
c2Ts

)
− 1

2
App

(∫ 1

0
(pNs(i)− pNs)

2di

)
+

1

2

∂2U

∂C2
T

C̄2
T c

2
Ts

(117)

+ C̄T cTsAcξ · ξs +AclC̄T cTsL̄ls −
1

2
AllL̄

2l2s + L̄lsAlξ · ξs + t.i.p.+O(ϵ3)

where

App =
∂U

∂CN
C̄N

(
1−

C̄N
∂2F
∂L2 η

(∂F∂L )
2

)
η > 0 (118)

Acl = (
∂2U

∂CT∂CN
)
∂F

∂L
+

∂2U

∂CT∂L
(119)

Acξ =
∂2U

∂CT∂CN
DξF +D2

cT ξ
U (120)

All = −
(
∂U

∂CN

∂2F

∂L2
+
∂2U

∂C2
N

(
∂F

∂L
)2 + 2(

∂2U

∂CN∂L
)
∂F

∂L
+
∂2U

∂L2

)
> 0 (121)

Alξ =
∂U

∂CN
D2

LξF +
∂2U

∂C2
N

∂F

∂L
DξF + (

∂2U

∂CN∂L
)DξF +

∂F

∂L
D2

CN ξU +D2
LξU. (122)

I use the following notation: DxG = { ∂G
∂xi

}i denotes the gradient of function G with respect to x (a

row vector), and D2
xyG is the Hessian of G with respect to x and y, i.e. a matrix where element

(i, j) denotes ∂2G
∂xi∂yj

. Note that, in the expressions above, D2
CN ξ and D2

Lξ are row vectors since CN

and L are scalars. Thus, Acξ, Alξ ∈ R1×K .

A second-order approximation of U(CTs, CNs, Ls; ξs) yields
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U(CTs, CNs, Ls; ξs) =
∂U

∂CT
C̄T cTs +

∂U

∂CN
C̄NcNs +

∂U

∂L
L̄ls +

1

2
(
∂U

∂CT
+
∂2U

∂C2
T

C̄T )C̄T c
2
Ts (123)

+ (
∂2U

∂CT∂CN
)C̄T C̄NcTscNs + (

∂2U

∂CT∂L
)C̄T L̄cTsls + C̄T cTsD

2
CT ξ

U · ξs

+
1

2
(
∂U

∂CN
+
∂2U

∂C2
N

C̄N )C̄Nc
2
Ns + (

∂2U

∂CN∂L
)C̄N L̄cNsls + C̄NcNsD

2
CN ξU · ξs

+
1

2
(
∂U

∂L
+
∂2U

∂L2
L̄)L̄l2s + L̄lsD

2
LξU · ξs + t.i.p.+O(ϵ3).

Let ∆s be de�ned as

∆s =
F (Ls; ξs)(∫ 1

0 (F (Ls(i); ξs))
η−1
η

) η
η−1

,

which is a measure of output dispersion across variety producers, and rewrite the de�nition of the
composite nontradable good as follows,

CNs = ∆−1
s F (Ls; ξs).

A second-order approximation yields

C̄N

(
cNs +

1

2
c2Ns

)
=−∆sC̄N +

∂F

∂L
L̄(ls +

1

2
l2s) +

1

2

∂2F

∂L2
L̄2l2s + L̄lsDLξF · ξs + t.i.p.+O(ϵ3)

(124)

where I used the fact that there is no dispersion to �rst order, i.e. ∆s = O(ϵ2). A second-order
approximation of ∆s yields

∆s =
1

2

(
1−

C̄N
∂2F
∂L2 η

(∂F∂L )
2

)
η

(∫ 1

0
(pNs(i)− pNs)

2di

)
+O(ϵ3).

Replacing back in (124),

C̄N

(
cNs +

1

2
c2Ns

)
=− 1

2

(
1−

C̄N
∂2F
∂L2 η

(∂F∂L )
2

)
ηC̄N

(∫ 1

0
(pNs(i)− pNs)

2di

)
(125)

+
∂F

∂L
L̄(ls +

1

2
l2s) +

1

2

∂2F

∂L2
L̄2l2s + L̄lsD

2
LξF · ξks + t.i.p.+O(ϵ3)

Replacing (125) into (123), discarding higher-order terms and simplifying yields the desired expres-
sion.

B.2.5 Approximate problem: Three loss terms (lemma 7)

In this section, I derive an approximation to the objective function with three loss terms: deviations
from complete markets, price dispersion, and output gaps. I also show that the only di�erence
between the global and the home planner is how much they care about insurance and the transfers
that they desire. The proof uses lemma 6, which is presented in section B.2.4.
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Lemma 7. Around the deterministic steady state, the planner's objective function is approximately
given by

W =− 1

2

∑
s

πs

{(
AT T + γ∗

1

m

(
∂U

∂CT
− λ̄

dU∗

dC∗

))
(Ts − Tcm,s)

2 +
1

2
λπp

2
Ns + λxx

2
s

}
+ t.i.p.+O(ϵ3)

(126)

where Ts =
∑

j Θ̄jrrjs is the total transfer received by the home country from abroad in state s (rrjs
is the realized excess return of asset j relative to asset 0 in state s), Tcm,s are the transfers the
planner would choose under complete markets and �exible prices given by:

Tcm,s =

(
AT T + γ∗

1

m

(
∂U

∂CT
− λ̄

dU∗

dC∗

))−1

AT ξξs (127)

xs is the output gap, and pNs is the non-tradable price index. The constants are given by:

AT T =
∂U

∂C

(
γT +

1

m
γ∗
)
> 0 (128)

AT ξ = Acξ +A−1
ll AclAlξ +

∂U

∂CT
(−γTDξYT + γ∗DξY

∗) (129)

λx = C̄2
N (
∂F

∂L
)−2All > 0 (130)

λπ =

(
ϕ

1− ϕ

)
App > 0 (131)

γT = −
(
∂U

∂C

)−1(∂2U
∂C2

T

+A−1
ll A

2
cl

)
> 0 (132)

γ∗ = −
(
dU∗

dC∗

)−1 d2U

dC∗2
T

> 0. (133)

Note that a global planner (
∂U
∂CT
dU∗
dC∗

= λ̄) would put a smaller weight on the insurance term and choose

larger transfers under complete markets than a home planner (λ̄ = 0).

If prices were �exible, then
∫ 1
0 (pNs(i) − pNs)

2di = 0 and maximizing (117) with respect to ls
would yield the �exible-price allocation given some cTs,

L̄l�exs = A−1
ll AclC̄T cTs +A−1

ll Alξ · ξs +O(ϵ2). (134)

Using this, I can rewrite (117) in terms of the output gap, xs = C̄−1
N (C�ex

Ns −CNs) (given cTs), which
is to �rst order given by

xs = C̄−1
N

∂F

∂L
L̄(ls − l�exs ) +O(ϵ2). (135)
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This yields

U(CTs, CNs, Ls; ξs) =
∂U

∂CT
C̄T (cTs +

1

2
c2Ts) +

1

2

(
∂2U

∂C2
T

+
A2

cl

All

)
C̄2
T c

2
Ts + C̄T cTs

(
Acξ +

Acl

All
Alξ

)
· ξs

(136)

− 1

2
App

(∫ 1

0
(pNs(i)− pNs)

2di

)
− 1

2
λxx

2
s + t.i.p.+O(ϵ3),

where λx is given by (130).
A �rst-order expansion of the price index (108) yields

pNs(i) =
1

1− ϕ
pNs +O(ϵ2) for i ∈ {�ex}. (137)

Using this, I can rewrite (136) as

U(CTs, CNs, Ls; ξs) =
∂U

∂CT
C̄T (cTs +

1

2
c2Ts) +

1

2

(
∂2U

∂C2
T

+
A2

cl

All

)
C̄2
T c

2
Ts (138)

− 1

2
λπp

2
Ns −

1

2
λxx

2
s + C̄T cTs

(
Acξ +

Acl

All
Alξ

)
· ξs + t.i.p.+O(ϵ3),

where λπ is given by (131).
A second-order approximation of the country's budget constraint (114) yields

C̄T cTs +
1

2
C̄T c

2
Ts = DξYT · ξs +

1

2
ξ′sD

2
ξξYT · ξs + Ts +O(ϵ3) (139)

Adding (138) over states, using (139), and discarding higher-order terms yields

∑
s

πsU(CTs, CNs, Ls; ξs) =
∑
s

πs

{
∂U

∂CT
Ts +

1

2

(
∂2U

∂C2
T

+
A2

cl

All

)
T 2
s − 1

2
λπp

2
Ns −

1

2
λxx

2
s

+ Ts
(
Acξ +

Acl

All
Alξ +

(
∂2U

∂C2
T

+
A2

cl

All

)
DξYT

)
· ξs

}
+ t.i.p.+O(ϵ3)

Next, add a second-order approximation of foreigners' �ow utility with weight mλ̄:

W =
∑
s

πs

{
∂U

∂CT
Ts +

1

2

(
∂2U

∂C2
T

+
A2

cl

All

)
T 2
s + Ts

(
Acξ +

Acl

All
Alξ +

(
∂2U

∂C2
T

+
A2

cl

All

)
DξYT

)
· ξs

− 1

2
λπp

2
Ns −

1

2
λxx

2
s +mλ̄

dU∗

dC∗ C̄
∗
(
c∗s +

1

2
c∗2s

)
+

1

2
mλ̄

d2U

dC∗2
T

C̄∗2c∗2s

}
+ t.i.p.+O(ϵ3)

A second-order approximation to foreigners' budget constraint yields

C̄∗c∗s +
1

2
C̄∗c∗2s = DξY

∗ · ξs + ξ′sD
2
ξξY

∗ · ξs −
1

m
Ts +O(ϵ3).
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Replacing back and discarding higher-order terms,

W =
∑
s

πs

{(
∂U
∂CT
dU∗

dC∗
− λ̄

)
dU∗

dC∗Ts −
1

2
AT T T 2

s + TsAT ξ · ξs −
1

2
λπp

2
Ns −

1

2
λxx

2
s

+

(
λ̄−

∂U
∂CT
dU∗

dC∗

)
d2U

dC∗2

(
1

2

1

m
T 2
s − TsDξY

∗ · ξs
)}

+ t.i.p.+O(ϵ3)

where AT T and AT ξ are given by (128) and (129), respectively. A second-order approximation to
the foreign no-arbitrage condition yields,∑

s

πsTs
dU∗

dC∗ +
∑
s

πsTs
d2U∗

dC∗2

(
DξY

∗ · ξs −
1

m
Ts
)

= O(ϵ3).

Thus,

W =
∑
s

πs

{
− 1

2

(
AT T +

1

m
γ∗
(
∂U

∂CT
− dU∗

dC∗ λ̄

))
T 2
s + TsAT ξ · ξs (140)

− 1

2
λπp

2
Ns −

1

2
λxx

2
s

}
+ t.i.p.+O(ϵ3)

When prices are �exible and markets are complete, the optimal transfer maximizes (140). Solving
this problem yields (127). Using the expression for Tcm,s, one can rewrite (140) as desired.

B.2.6 Approximate problem: Two exchange rate targets (lemma 8)

Next, I prove that the objective function can be written as in the baseline model with two loss terms
and two targets: a demand-management target, and an insurance target. The proof uses lemma 7,
which is presented in section B.2.5.

Lemma 8. Around the deterministic steady state, the planner's objective function is approximately
given by

W = −1

2
k0

(
1−

∑
j µjΘ̄j

1−
∑

j R̄jΘ̄j
∂Xj
∂CT

)2∑
s

πs

{(
es − edm,s(Θ̄)

)2
+ χf(Θ̄)2

(
es − ein,s(Θ̄)

)2}
+t.i.p.+O(ϵ3)

(141)
where

edm,s(Θ̄) =
1−

∑
j R̄jΘ̄j

∂Xj
∂CT

1−
∑

j µjR̄jΘ̄j

kek + kecDξYT + kec

∑
j R̄jΘ̄j

(
DξXj +

∂Xj
∂CT

DξYT

)
1−

∑
j R̄jΘ̄j

∂Xj
∂CT

 · ξs (142)

is the demand-management target, which attains a zero output gap and zero price dispersion when
Θ = Θ̄,

ein,s(Θ̄) =

(
1−

∑
j R̄jΘ̄j

∂Xj
∂CT∑

j R̄jΘ̄j
∂Xj
∂E Ē

)
Tcm,s −

∑
j R̄jΘ̄j

(
DξXj +

∂Xj
∂CT

DξYT

)
∑

j R̄jΘ̄j
∂Xj
∂E Ē

· ξs (143)

is the insurance target, which replicates the complete-market transfers when Θ = Θ̄, the balance-sheet
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exposure to monetary policy f(Θ̄) is given by

f(Θ̄) =

∑
j krrjeΘ̄j

1−
∑

j µjΘ̄j
,

where krrje = R̄j
∂Xj
∂Ej

Ē is the response of the return of asset j when the exchange rate changes, and

k0 = (κ2λπ + λx)(κ+ kex)
−2 > 0

χ =

(
AT T +

1

m
γ∗
(
∂U

∂CT
− dU∗

dC∗ λ̄

))
(κ2λπ + λx)

−1(κ+ kex)
2 > 0

κ =

(
1− ηC̄N (

∂F

∂L
)−2∂

2F

∂L2

)−1
1− ϕ

ϕ
(
∂F

∂L
)−2(

∂U

∂CN
)−1C̄NAll > 0 (144)

µj = R̄j

(
∂Xj

∂CT
+ kec

∂Xj

∂E
Ē

)
, (145)

where kec and kex are given by (147) and (148), respectively.

A �rst-order approximation of (105) yields

es = pNs + k1cC̄T cTs + k1lL̄ls + k1ξ · ξs +O(ϵ2)

where

k1c ≡ −(
∂U

∂CN
)−1 ∂2U

∂CN∂CT
+ (

∂U

∂CT
)−1 ∂

2U

∂C2
T

k1l ≡ −(
∂U

∂CN
)−1 ∂

2U

∂C2
N

∂F

∂L
− (

∂U

∂CN
)−1 ∂2U

∂CN∂L
+ (

∂U

∂CT
)−1 ∂2U

∂CT∂CN

∂F

∂L
+ (

∂U

∂CT
)−1 ∂2U

∂CT∂L

k1ξ ≡ −(
∂U

∂CN
)−1 ∂

2U

∂C2
N

DξF − (
∂U

∂CN
)−1D2

CN ξU + (
∂U

∂CT
)−1 ∂2U

∂CT∂CN
DξF + (

∂U

∂CT
)−1D2

CT ξ
U.

Using (134), I can rewrite this in terms of output gap deviations (given cTs):

es = pNs + kecC̄T cTs + keξ · ξs + kexxs +O(ϵ2) (146)

where

kec ≡ k1c + k1lA
−1
ll Acl (147)

keξ ≡ k1ξ + k1lA
−1
ll Alξ

kex ≡ C̄N (
∂F

∂L
)−1k1l. (148)

A �rst-order expansion of the de�nition of realized excess returns of asset j relative to asset 0
in state s yields:

rrjs = R̄jX̄jrj + R̄j
∂Xj

∂CTs
C̄T cTs + R̄j

∂Xj

∂Es
Ēes + R̄jDξXj · ξs +O(ϵ2). (149)

Assuming all shocks are mean zero and noting that the planner would never deviate in expectation
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from demand-management,51

rrjs = R̄j
∂Xj

∂CTs
C̄T cTs + R̄j

∂Xj

∂Es
Ēes + R̄jDξXj · ξs +O(ϵ2).

Next, multiply each equation j by the steady-state position Θ̄j and add over j to obtain∑
j

rrjsΘ̄j︸ ︷︷ ︸
=Ts

=
∑
j

R̄jΘ̄j
∂Xj

∂CTs
C̄T cTs + R̄jΘ̄j

∂Xj

∂Es
Ēes + R̄jΘ̄jDξXj · ξks +O(ϵ2).

Using a �rst-order approximation of the country's budget constraint (114) and solving for Ts yields

Ts =
1

1−
∑

j R̄jΘ̄j
∂Xj
∂CT

∑
j

(
R̄jΘ̄j

∂Xj

∂E
Ēes + R̄jΘ̄j

(
DξXj +

∂Xj

∂CT
DξYT

)
· ξs
)
+O(ϵ2) (150)

Replacing this expression into (146) and solving for es when pNs = 0 and xs = 0 yields the demand-
management target (142).

Using this, (146) can be rewritten as

es =
(1−

∑
j R̄jΘ̄j

∂Xj
∂CT

)

1−
∑

j µjΘ̄j
(pNs + kexxs) + edm,s(Θ̄) +O(ϵ2). (151)

Combining (105) and (106),

(− ∂U

∂Ls
(s))/

∂U

∂CNs
(s) =

Ws

PNs
.

Approximate this to �rst-order to obtain:

pNs − ws = k2cC̄T cTs + k2lL̄ls + k2ξ · ξs +O(ϵ2) (152)

where

k2c ≡ (
∂U

∂CN
)−1 ∂2U

∂CN∂CT
+ (

∂U

∂CN
)−1(

∂F

∂L
)−1 ∂2U

∂L∂CT

k2l ≡ (
∂U

∂CN
)−1 ∂

2U

∂C2
N

∂F

∂L
+ 2(

∂U

∂CN
)−1 ∂2U

∂CN∂L
+ (

∂U

∂CN
)−1(

∂F

∂L
)−1∂

2U

∂L2

k2ξ ≡ (
∂U

∂CN
)−1 ∂

2U

∂C2
N

DξF + (
∂U

∂CN
)−1D2

CN ξU + (
∂U

∂CN
)−1(

∂F

∂L
)−1 ∂2U

∂CN∂L
DξF + (

∂U

∂CN
)−1(

∂F

∂L
)−1D2

LξU.

A �rst-order approximation of (113) yields for i ∈ �ex,

pNs(i) + (
∂F

∂L
)−1∂

2F

∂L2
L̄ls(i) + (

∂F

∂L
)−1D2

LξF · ξs = ws +O(ϵ2).

51If shocks were not mean zero, then the following expressions would hold in terms of the innovations, i.e. ỹs =
ys − Eys for any variable y. The remainder would be unchanged. See appendix B.4 for an example with in�nite
horizon where shocks at t+1 conditional on the time-t information set are not mean zero and, hence, innovations are
considered explicitly.
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Next, use (152) to get rid of ws,

pNs(i)− pNs + (
∂F

∂L
)−1∂

2F

∂L2
L̄ (ls(i)− ls) + (

∂U

∂CN
)−1(

∂F

∂L
)−1

(
AclC̄T cTs −AllL̄ls +Alξ · ξs

)
= O(ϵ2)

In terms of the output gap xs,

pNs(i)− pNs + (
∂F

∂L
)−1∂

2F

∂L2
L̄ (ls(i)− ls)− (

∂F

∂L
)−2(

∂U

∂CN
)−1C̄NAllxs = O(ϵ2).

A �rst-order approximation of demand (107), and production (111),

C̄−1
N L̄

∂F

∂L
ls(i) = −η(pNs(i)− pNs) + C̄−1

N L̄
∂F

∂L
ls

Using the �rst-order expansion of the price index (137) and replacing,

pNs = κxs (153)

where κ is given by (144). Using (153), I can solve for xs from (151):

xs =

(
1

κ+ kex

)(
1−

∑
j µjΘ̄j

1−
∑

j R̄j
∂Xj
∂CT

Θ̄j

)(
es − edm,s(Θ̄)

)
+O(ϵ2). (154)

When the planner cares only about insurance, it chooses ein,s such that (150) is equal to Tcm,s:

ein,s(Θ̄) =

(
1−

∑
j R̄j

∂Xj
∂CT

Θ̄j

)
Tcm,s −

∑
j R̄j

(
DξXj +

∂Xj
∂CT

DξYT

)
Θ̄j · ξs∑

j R̄j
∂Xj
∂E Θ̄jĒ

+O(ϵ2).

Using this, the insurance loss term can be written as

Ts − Tcm,s =
1

1−
∑

j R̄j
∂Xj
∂CT

Θ̄j

∑
j

R̄j
∂Xj

∂E
Θ̄jĒ

(
es − ein,s(Θ̄)

)
+O(ϵ2). (155)

Putting (154) and (155) together and rearranging yields (141).

B.2.7 Proof of proposition 10

The optimal exchange rate is still given by

es =
χf(Θ̄)2

1 + χf(Θ̄)2
ein,s(Θ̄) +

1

1 + χf(Θ̄)2
edm,s(Θ̄). (156)

Replacing this expression into (141) yields after some algebra,

W = −1

2
k0

(
χ

1 + χf(Θ̄)2

)( ∑
j R̄j

∂Xj
∂E Θ̄jĒ

1−
∑

j R̄j
∂Xj
∂CT

Θ̄j

)2∑
s

πs

{(
ein,s(Θ̄)− edm,s(Θ̄)

)2}
+ t.i.p.+O(ϵ3)
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Using (150) and (146) evaluated at pNs = xs = 0, one can show that

Tdm,s(Θ̄) =
1

1−
∑

j µjΘ̄j

∑
j

Θ̄jrrdm,js(0)

where Tdm,s(Θ̄) is the equilibrium transfer when e = edm,s(Θ̄) and Θ = Θ̄ and rrdm,js are the
realized excess returns under demand management when Θ̄ = 0,

rrdm,js(0) = R̄j
∂Xj

∂E
Ēedm,s(0) + R̄j

(
DξXj +

∂Xj

∂CT
DξYT

)
· ξs.

Using (150) evaluated at es = ein,s(Θ̄) and subtracting,

ein,s(Θ̄)− edm,s(Θ̄) =

(
1−

∑
j R̄j

∂Xj
∂CT

Θ̄j∑
j R̄j

∂Xj
∂E Θ̄jĒ

)Tcm,s −
1

1−
∑

j µjΘ̄j

∑
j

Θ̄jrrdm,js(0)

 .

De�ne Θ̃j =
(

1
1−

∑
j µjΘ̄j

)
Θ̄j . The objective becomes

−1

2
k0

(
χ

1 + χf(Θ̄)2

)(
σ2Tcm + Θ̃′Var(rrdm(0))Θ̃− 2Θ̃′Cov(Tcm, rrdm(0))

)
. (157)

First, I solve for the optimal portfolio {Θ̃j}j given some balance-sheet exposure to monetary policy

f(Θ̄). Let krre = {R̄j
∂Xj
∂E Ē}j ∈ RJ and η denote the multiplier of the constraint Θ̃′krre = f(Θ̄).

The FOC with respect to Θ̃j yields

Θ̃ = Var(rrdm(0))−1 {ηkrre + Cov(Tcm, rrdm(0))} .

Replacing in the constraint and solving,

η =
1

k′rreVar(rrdm(0))−1krre

{
f(Θ̄)− k′rreVar(rrdm(0))−1Cov(Tcm, rrdm(0))

}
.

Replacing back,
Θ̃ = kΘ0 + kΘff(Θ̄) (158)

where

kΘ0 =

(
I − Var(rrdm(0))−1krrek

′
rre

k′rreVar(rrdm(0))−1krre

)
Var(rrdm(0))−1Cov(Tcm, rrdm(0))

kΘf =
Var(rrdm(0))−1krre

k′rreVar(rrdm(0))−1krre
.

Next, suppose that krrje = 0 ∀j. Then, only f(Θ̄) = 0 is feasible. The FOC without the f(Θ̄)
constraint yields the desired result.

Note that one can recover the original portfolios Θ̄j by solving the �xed point in the de�nition
of Θ̃j ,

Θ̄j =
1

1 +
∑

j µj
(
kΘj0 + kΘjff(Θ̄)

) (kΘj0 + kΘjff(Θ̄)
)
.
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B.2.8 Proof of lemma 5

Replacing (158) into (157) yields this result.

B.2.9 Proof of proposition 11

The robustness of propositions 2, 3, and 4 in terms of f(Θ̄) is immediate from lemma 5. Furthermore,
note that using the de�nitions of Tdm,s and Tcm,s, the optimal exchange rate rule (156) can be written
as

Ts =
χf(Θ̄)2

1 + χf(Θ̄)2
Tcm,s +

1

1 + χf(Θ̄)2

∑
j

Θ̃jrrdm,js(0).

Replacing the optimal portfolios Θ̃j , given by (158), and rrfs, given by (35),

rrfs =
χf(Θ̄)2

1 + χf(Θ̄)2
f(Θ̄)−1T̃cm,s +

1

1 + χf(Θ̄)2
r̃rdm,s(0).

The proof of the result for the volatility of rrfs is identical to that in proposition 7.

B.2.10 Proof of proposition 12

Using equations (146) and (153) to replace es and pNs in the expansion of realized returns (149),

rrjs = krrjT Ts + krrjxxs + krrjξ · ξs +O(ϵ2)

where

krrjT = R̄j
∂Xj

∂CTs
+ R̄jkec

∂Xj

∂Es
Ē

krrjx = R̄j (κ+ kex)
∂Xj

∂Es
Ē

krrjξ = R̄j

(
DξXj +

∂Xj

∂CTs
DξYT + (kek + kecDξYT )

∂Xj

∂Es
Ē

)
.

Using lemma 7, the planner problem can be written as

max
{Ts,{rrjs}j ,xs}s

−
∑
s

πs

{
1

2

(
AT T +

1

m
γ∗
(
∂U

∂CT
− λ̄

dU∗

dC∗

))
(Ts − Tcm,s)

2 (159)

+
1

2
(κλπ + λx)x

2
s

}
+ t.i.p.+O(ϵ3)

subject to

Ts =
∑
j

Θ̄jrrjs

rrjs = krrjT Ts + krrjxxs + krrjξ · ξs.
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The �rst-order conditions yield

−
(
AT T +

1

m
γ∗
(
∂U

∂CT
− λ̄

dU∗

dC∗

))
(Ts − Tcm,s) + λs +

∑
j

ζjskrrjT = 0 (160)

−(κλπ + λx)xs +
∑
j

ζjskrrjx = 0 (161)

−Θ̄jλs + ζjs = 0 (162)∑
s

πsλsrrjs = 0 (163)

Replacing (162) into (161),

(κλπ + λx)xs =

∑
j

Θ̄jkrrjx

λs.

Thus, using the portfolio optimality condition (163),∑
s

πsxsrrjs = 0. (164)

This shows that the planner always chooses output gaps such that they are uncorrelated with the
returns of the assets.

Replacing (162) into (160),

(
AT T +

1

m
γ∗
(
∂U

∂CT
− λ̄

dU∗

dC∗

))
(Ts − Tcm,s) =

1 +
∑
j

Θ̄jkrrjT

λs.

Then, using the portfolio optimality condition (163),∑
s

πs(Ts − Tcm,s)rrjs = 0.

This shows that the planner always chooses transfers such that they are uncorrelated with the
returns of the assets. Using the de�nition of Tcm,s provided in lemma 7, one may rewrite this as

−
(
AT T +

1

m
γ∗
(
∂U

∂CT
− λ̄

dU∗

dC∗

))∑
s

πsTsrrjs +
∑
s

πsrrjsAT ξ · ξs = 0. (165)

Next, consider the home and foreign no-arbitrage conditions,∑
s

πs
∂U

∂CT
(s)(rrjs − τj) = 0

∑
s

πs
dU∗

dC∗ (s)rrjs = 0,

where rrjs = RjXj − 1 is the excess realized return before taxes. Approximating both equations to
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second-order and combining them to get rid of the linear term in rrjs yields

−
∑
s

πsAT T Tsrrjs +
∑
s

πs

(
∂F

∂L

)−1

C̄NAclrrjsxs︸ ︷︷ ︸
=0

+
∑
s

πsrrjsAT ξ · ξs =
∂U

∂CT
τj +O(ϵ3).

Equation (164) implies the second term is zero. Using (165) and rearranging yields the desired
result.

B.3 Dynamic model: Three period model

This appendix contains details of the three-period model of sections 5.1−5.2. Section B.3.1 formally
de�nes the competitive equilibrium and the planning problem. Section B.3.2 derives a second-order
approximation of the objective function (equation 42). Section B.3.2 derives a �rst-order approxi-
mation of the constraint (equation 44.). Sections B.3.4, B.3.5, B.3.6, and B.3.7 prove propositions
13, 14, 15, and 16 respectively.

B.3.1 Competitive equilibrium and planning problem

As argued in the main text, optimization yields conditions analogous to the ones in the static model.
These hold for all s, t:

α

1− α

CNst

CTst
= Est/PNst (166)

κ−1Lφ
s

Cα
Nst

Cα
Tst

=
Wst

PNst
(167)

CNst = ZstLst (168)

PNst = 1. (169)

The home and foreign no-arbitrage equations, coming from asset optimization at t = 0, are∑
s

πs (rrs − τB)
∂U

∂CT
(s, 1) = 0 (170)

∑
s

πsrrs
∂U∗

∂C∗
T

(s, 1) = 0 (171)

Next, I formally de�ne the competitive equilibrium and the planner's problem.

De�nition 4. Given a Central Bank policy ({Es1, Es2}s,τB, {τ savs }s), an allocation ({CTst}s,t,{CNst}s,t,
{Ls,t}s,t,{nfas},B) together with prices ({PNst}s,{Wst}s,R0, Rs) and realized excess returns {rrs}s,
is a competitive equilibrium if and only if they solve (37) − (41) and (166)−(171).
Problem 4. The planner's problem is to choose ({Es1, Es2}s,τB) to maximize (36) subject to (37)
− (41) and (166)−(171).

B.3.2 Approximate welfare

A second-order approximation to �ow utility yields

U(s, t) = (
1 + φ

α+ φ
)αcTst −

1

2
(1 + φ)(1− α)

(
est +

φ

α+ φ
cTst −

1 + φ

α+ φ
zst

)2

+ t.i.p.+O(ϵ3)
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Using a �rst-order approximation of (11) and the de�nition of the output gap (135), this can be
rewritten as

U(s, t) = (
1 + φ

α+ φ
)αcTst −

1

2
(1 + φ)(1− α)3x2st + t.i.p.+O(ϵ3). (172)

Approximating (40) and (41) to second order yields,52

αcTs1 +
1

2
αc2Ts1 + nfas = αyTs1 +

1

2
αy2Ts1 + Ts +O(ϵ3)

αcTs2 +
1

2
αc2Ts2 = αyTs2 +

1

2
αy2Ts2 + nfas + nfasr

∗
s +O(ϵ3)

Replacing in (172), adding both time periods and discarding higher-order terms yields

W =
∑
s

πs

{(
1 + φ

α+ φ

)(
Ts −

1

2
α−1T 2

s − α−1nfa2s − y1sTs + nfas
(
yT1s − yT2s + α−1Ts + r∗s

))

− 1

2
(1 + φ)(1− α)3

∑
t=1,2

x2st

}
+ t.i.p.+O(ϵ3)

Using a second-order approximation of the foreign no-arbitrage condition (171) and replacing,

W =
∑
s

πs

{(
1 + φ

α+ φ

)(
γ∗Tsc∗s −

1

2
α−1T 2

s − α−1nfa2s − y1sTs + nfas
(
yT1s − yT2s + α−1Ts + r∗s

))

− 1

2
(1 + φ)(1− α)3

∑
t=1,2

x2st

}
+ t.i.p.+O(ϵ3)

If prices were �exible, maximizing over nfas would yield the optimal savings conditional on some
transfer Ts,

nfafbs (Ts) =
1

2
(α(y1s − y2s) + αr∗s + Ts) .

Using this and de�ning ˜nfas = nfas − nfafbs (Ts), the objective function can be rewritten as

W =
∑
s

πs

{(
1 + φ

α+ φ

)(
−1

4
α−1T 2

s − α−1 ˜nfa
2
s +

(
−1

2
(yTs1 + yTs2) +

1

2
r∗s + γ∗c∗s

)
Ts
)

− 1

2
(1 + φ)(1− α)3

∑
t=1,2

x2st

}
+ t.i.p.+O(ϵ3)

If prices were �exible, setting ˜nfas = xst = 0 ∀s, t and maximizing over Ts would yield the complete-
markets transfers:

Tcm,s = −α(ys1 + ys2) + αr∗s + 2αγ∗c∗s.

Armed with this, the objective function becomes

W =−
∑
s

πs


(
1 + φ

α+ φ

)
α−1

(
1

4
(Ts − Tcm,s)

2 + ˜nfa
2
s

)
+

1

2
(1 + φ)(1− α)3

∑
t=1,2

x2st

+ t.i.p.+O(ϵ3)

52Recall that, for ease of exposition, I assumed ¯nfa = 0.
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Rearranging yields (42).

B.3.3 Approximate constraint

Using a �rst-order approximation of the budget constraints (40) and (41) to substitute out cTs in
the de�nition of the output gap yields

(1− α)xs1 = es1 +
φ

α+ φ

(
yTs1 + α−1B̄rrs − α−1nfas

)
− 1 + φ

α+ φ
zs1

(1− α)xs2 = es2 +
φ

α+ φ

(
yTs2 + α−1nfas

)
− 1 + φ

α+ φ
zs2.

Assuming w.l.o.g. that shocks are mean zero and replacing into (43),

rrs = δ

(
φ

α+ φ

(
yTs1 + α−1B̄rrs − α−1nfas

)
− 1 + φ

α+ φ
zs1 − (1− α)xs1

)
(173)

+ (1− δ)

(
φ

α+ φ

(
yTs2 + α−1nfas

)
− 1 + φ

α+ φ
zs2 − (1− α)xs2

)
+ (1− δ)(ψs − r∗s).

After some algebra, I can rewrite this in terms of ˜nfas = nfas − nfafbs (0)− 1
2B̄rrs,

rrs = rrdm,s(0)− (1− α)(δxs1 + (1− δ)xs2) +
α−1φ

α+ φ
(−δ + (1− δ)) ˜nfas +

1

2

α−1φ

α+ φ
B̄rrs,

where rrdm,s(0) is the solution to (173) when B̄ = 0, nfas = nfafbs (0), and xs1 = xs2 = 0 (equation
45). Rearranging yields (44).

B.3.4 Proof of proposition 13

The planner chooses {xs1, xs2, ˜nfas} to maximize (42) subject to (44). The solution is given by

˜nfas = −
(
δ − 1

2

)(
χ̃−1µ

δ2 + (1− δ)2 + χ̃−1µ2 (δ − (1− δ))2

)((
1− µB̄

)
rrs − rrdm,s(0)

)
(174)

xs1 = − 1

1− α

(
δ

δ2 + (1− δ)2 + χ̃−1µ2 (δ − (1− δ))2

)((
1− µB̄

)
rrs − rrdm,s(0)

)
(175)

xs2 = − 1

1− α

(
1− δ

δ2 + (1− δ)2 + χ̃−1µ2 (δ − (1− δ))2

)((
1− µB̄

)
rrs − rrdm,s(0)

)
. (176)

The results are immediate from these expressions.

B.3.5 Proof of proposition 14

Replacing (174) − (176) into (47) and solving for τ savs yields

τ savs = 2

(
δ − 1

2

)(
1− α+ α−1χ̃−1µ

δ2 + (1− δ)2 + χ̃−1µ2(δ − (1− δ))2

)((
1− µB̄

)
rrs − rrdm,s(0)

)
.

The results are immediate from this expression.
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B.3.6 Proof of proposition 15

The fact that lemma 2 carries over in terms of f(B̄) is immediate from the approximate objective
(48). Replacing the optimal realized excess returns into (48) yields

W = −1

2

χk0
1 + χf(B̄)2

 f(B̄)2σ2rrdm(0)︸ ︷︷ ︸
demand-management

+ σ2Tcm︸︷︷︸
insurance

+2f(B̄)σTcmrrdm(0)︸ ︷︷ ︸
align targets

+ t.i.p.+O(ϵ3) (177)

Since (177) is identical to (20) with f(B̄), σ2edm(0), and σTcmrrdm(0) instead of B̄, σ
2
edm

, and σTcmrrdm(0),
respectively, the extension of propositions 2, 3 and 4 is immediate.

Rewriting the optimal returns (29) in terms of rrfs,

rrfs = (1− ω)rrdm,s(0) +
1

f(B̄)
ωTcm,s +O(ϵ2). (178)

Following steps analogous to the proof of lemma 3 (see appendix B.1.4),

∂σ2rrf
∂ω

=
2

f(B̄)

1

1 + χf(B̄)2

(
χf(B̄)2σTcmrrdm(0) +

(
χσ2Tcm − σ2rrdm(0)

)
f(B̄)− σTcmrrdm(0)

)
.

The proof is then analogous to the proof of proposition 7 (see appendix B.1.8).
Finally, note that

rrfs = −(1− µB̄)rrs

is identical to (31). Thus, proposition 8 carries over.

B.3.7 Proof of proposition 16

See the proof of the general model with in�nite horizon in section B.4.3. While this case is not
strictly nested within that case, it is straightforward to construct an analogous proof.

B.4 Dynamic model: General framework

In this section, I extend the analysis of section 4 to an in�nite-horizon setting with Calvo pricing.
Section B.4.1 presents the formal setup in detail. Section B.4.2 presents the planning problem.
Section B.4.3 describes the steady state of the dynamic model. Section B.4.4 derives a quadratic
approximation of the objective function (up to the portfolio) with four loss terms: lack of insurance,
output gaps, in�ation, and savings distortions. Section B.4.5 derives a �rst-order approximation
of the constraints. Section B.4.6 presents the approximate problem and discusses the additional
constraints one needs to add to make the solution optimal from the �timeless perspective�, as
discussed in section A.1. Section B.4.7 solves for the optimal path of variables in expectation in
the periods after the shock hits. Section B.4.8 solves for the optimal innovations in the period
when a shock hits. Sections B.4.9 and B.4.10 describe the optimal realized returns the planner
promises and the optimal transfer from the rest of the world, respectively. Section B.4.11 presents
proposition 19 and lemma 11, which describe the optimal portfolio choice, extending proposition
10 and lemma 5 in the main text, respectively, to a dynamic setting. Section B.4.12 presents
proposition 20, which extends proposition 11 when there is a single �endogenous� asset, i.e. an asset
whose return depends on policy - see section B.4.6 for a formal de�nition. Section B.4.13 shows
how to solve the model when there are more endogenous assets. Section B.4.14 presents proposition
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21, which extends proposition 12 without any quali�cations. Finally, section B.4.15 shows how to
back out the optimal time-varying capital controls (savings taxes) and how to solve the problem if
only time-invariant capital controls are available.

B.4.1 Set up and competitive equilibrium

Financial assets Home agents can trade J + 1 ≤ K assets with the rest of the world. For
ease of exposition, I assume that one of these assets, labeled asset 0, is a short risk-free asset in
foreign-currency with yield R∗(ξt). The remaining assets may be of two categories: nominal assets,
Θj ∈ JN , which have payo�s denominated in home currency, and real assets, Θj ∈ JR, which have
payo�s denominated in foreign currency (i.e., tradable units). That is, let

Yt =

{
CTt, CNt, Lt, E

−1
t PNt, E

−1
t Wt, E

−1
t

∫ 1

0
ΠNt(i)di

}
denote the real value of aggregate equilibrium variables (i.e., in foreign currency). Real assets
have foreign-currency payo�s given by X̃(Yt; ξt), where X̃(·) is a positive function. For example, a
claim on the tradable endowment would be X̃(Yt; ξt) = YT (ξt). Nominal assets have home-currency
payo�s given by X̃(Yt; ξt), so that their foreign-currency payo� is E−1

t X̃(Yt; ξt). For example, a
short home-currency bond would be X̃(Yt, ξt) = 1. Accordingly, the yields Rj for real and nominal
assets are denominated in foreign and home currency, respectively. Note that the return of a real
asset may still be endogenous to monetary policy. For example, claims on the dollar value of
nontradable �rms would be X̃(Yt; ξt) = E−1

t

∫ 1
0 ΠNt(i)di.

In addition, I assume an asset j bought at t pays a coupon δjX̃(Yt; ξt) at t+ 1 and 1− δj units
of the asset at t + 1. Furthermore, each unit of asset j pays a convenience yield Ψj(ξt), which is
zero at the steady state, i.e. Ψj(ξ̄) = 0 (the convenience yield of asset 0 is normalized to 0). In
sum, the realized excess return with respect to the short risk-free asset is given by

rrjt+1 = Rjt

{
Ψ(ξt) + X̃(Yt+1; ξt+1)δj + (1− δj)R

−1
jt+1

}
−R∗(ξt) for j ∈ JR (179)

rrjt+1 = RjtEtE
−1
t+1

{
Ψ(ξt) + X̃(Yt+1; ξt+1)δj + (1− δj)R

−1
jt+1

}
−R∗(ξt) for j ∈ JN . (180)

Consumers Consumers solve

max
{CTt,CNt,Lt,nfat,Θt}∞t=0

E0

∞∑
t=0

βtU(CTt, CNt, Lt; ξt)

subject to

CTt + E−1
t PNtCNt +R∗(ξt)

−1nfat(1 + τ0t) +
∑
j>0

Θjt(τjt − τ0t) = (181)

YT (ξt) + E−1
t WtLt + E−1

t

∫ 1

0
ΠNt(i)di+ nfat−1 +

∑
j>0

rrjtΘjt−1 + Tt.

where ΠNt(i) are pro�ts from nontradable �rm i and nfat = R∗(ξt)
∑J

j=0Θjt is the country's net-
foreign-asset position multiplied by the foreign-currency short interest rate (a convenient normaliza-
tion). Note that agents take as given rrjt. Optimization over labor and tradable and nontradable
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consumption yields

∂U

∂CN
(t)/

∂U

∂CT
(t) =

PNt

Et
(182)

(−∂U
∂L

(t))/
∂U

∂CT
(t) =

Wt

Et
(183)

As in the general static model of section 4, I assume is a CN is a CES composite of a continuum
of varieties CNt(i) with elasticity of substitution η. Optimization across varieties gives rise to the
standard CES demand,

CNt(i) =

(
PNt(i)

PNt

)−η

CNt, (184)

where PNt is the ideal price index of nontradable goods,

PNt =

(∫ 1

0
PNt(i)

1−ηdi

) 1
1−η

. (185)

Asset optimization yields a no-arbitrage condition,

βEtrrjt+1
∂U

∂CT
(t+ 1) =

∂U

∂CT
(t)(τjt − τ0t) (186)

and an Euler equation,

βR∗
tEt

∂U

∂CT
(t+ 1) = (1 + τ0t)

∂U

∂CT
(t). (187)

The country's assets satisfy a no-Ponzi condition,

lim
t→∞

t∏
s=0

R∗−1
s nfat = 0 a.s. (188)

Foreigners I assume there are two types of foreigners. First, there is a large set of unso-
phisticated investors that provide an in�nitely-elastic supply of the short risk-free asset in foreign
currency at rate R∗

t . Their consumption is una�ected by policy at home. Second, there is a �nite set
of measure m of sophisticated investors that are willing to trade any asset with the home country
and can also trade the risk-free asset with the unsophisticated investors. Asset optimization by the
sophisticated investors yields

Et

[
rrjt+1

dU∗

dC∗ (t+ 1)

]
= 0. (189)

for assets j > 0. Since they can save and borrow in the risk-free bond

dU∗

dC∗ (t) = β∗(ξt)R
∗(ξt)Et

dU∗

dC∗ (t+ 1). (190)

I assume that, at the steady state β = β∗. Using asset market clearing, their budget constraint is

C∗
t +R∗(ξt)

−1nfa∗t = Y ∗(ξt)−m−1
∑
j>0

rrjtΘjt−1 + nfa∗t−1, (191)
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where nfa∗t is the (normalized) net-foreign-asset position of the sophisticated investors, which also
satis�es a no-Ponzi condition:

lim
t→∞

t∏
s=0

R∗−1
s nfa∗t = 0 a.s. (192)

I assume that if {C∗
t }t = {Y ∗(ξt)}t foreigners are indi�erent between lending and borrowing, i.e.

equation (190) holds. Thus, given some path for output, interest rate shocks R∗
t are rationalized by

β∗ shocks. Note that, since there is an in�nitely elastic supply of the foreign-currency bond by the
unsophisticated investors, nfat + nfa∗t ̸= 0.

Intermediate good producers Firms have access to a neoclassical technology

CNt(i) = F (Lt(i); ξt). (193)

Note that technology is identical across �rms and there are no idiosyncratic technology shocks.
Thus, from the perspective of production e�ciency, all �rms should produce the same amounts. A
set ϕ of �rms i ∈ {�x} cannot reset their price:

PNt(i) = PNt−1(i) for i ∈ {�x}. (194)

A set of �rms 1 − ϕ i ∈ {�ex} can reset their price. The probability of belonging to this set is
i.i.d. over time and across �rms (i.e., Calvo pricing). I assume that there is a labor subsidy τL that
o�sets �rms' desired mark up, i.e. 1− τL = η−1

η . Optimality gives rise to the condition

Et

∞∑
s=0

(βϕ)sΛt+s

{
PNt(i)−

1
∂F
∂L (Lt+s(i); ξt+s)

Wt+s

}(
PNt(i)

PNt+s

)−η

CNt+s = 0 for i ∈ {�ex}, (195)

where Λt+s is the �rms' stochastic discount factor.
53

Taxes The central government rebates the proceeds of the �nancial taxes {τj} lump-sum and
the cost of the labor subsidy τL,

Tt = τ0tR
∗(ξt)

−1nfat +
∑
j>0

(τjt − τ0t)Θjt − τLWtLt.

Goods and labor market clearing Replacing �rms' pro�ts and taxes into (181), and using
nontradable market clearing yields the country's budget constraint:

CTt +R∗(ξt)
−1nfat = YT (ξt) + nfat−1 +

∑
j>0

rrjtΘjt−1. (196)

The market-clearing condition for labor is given by

Lt =

∫ 1

0
Lt(i)di. (197)

53It would be natural to assume that this discount factor is that of home households. In any event, since the
deterministic steady state is e�cient, the choice of Λt+s is inconsequential in the approximate model.
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Shocks Shocks follow a �rst-order Markov process,

ξt = Vξξt−1 + ϵt,

where Vξ is a matrix with eigenvalues of absolute value strictly less than one and ϵt is a compact-
valued random variable.

Competitive equilibrium Next, I formally de�ne a competitive equilibrium in this economy.

De�nition 5. Given a Central Bank policy ({Et}t,{τjt}jt), an allocation ({CTt}t,{CNt}t,{Lt}t,{nfat}t,
{CNt(i)}i,t,{Lt(i)},{C∗

Tt}t,{nfa∗t }t,{Θjt}j>0,t) together with prices ({PNt}t,{Wt},{PNt(i)}i,t,{Rjt}j>0,t)
is a competitive equilibrium if and only if they solve (182)−(197).

B.4.2 Planning problem

The planning problem is to choose ({Et}t, {τjt}jt), an allocation, and prices to maximize

E0

∞∑
t=0

βt{U(CTt, CNt, Lt; ξt) +mλ̄U∗(C∗
Tt; ξt)}

subject to (182)−(197). In section B.4.6 below, I add �promise-keeping� constraints to the problem
so that the resulting policy is optimal from the �timeless� perspective in the sense of Benigno and
Woodford (2012). To arrive at a recursive formulation of the problem, it will prove convenient to
de�ne the value function,

Vt0 =
∞∑

t=t0

βt−t0{U(CTt, CNt, Lt; ξt) +mλ̄U∗(C∗
Tt; ξt)}.

B.4.3 Steady state

I study the solution around a deterministic steady state, which solves the planning problem in the
absence of shocks once I add the relevant promise-keeping constraints in section B.4.6.54 At the
steady state, R∗ = β−1. Tradable consumption consumption is given by

C̄T = ȲT + (1− β) ¯nfa.

I assume ¯nfa∗ = 0 so C̄∗ = Ȳ ∗. The steady-state price of asset j is given by

R̄j =
1− β(1− δj)

βδjX̃(Ȳ, ξ̄)
.

The remaining steady-state variables
(
C̄N , L̄,

P̄N
Ē
, W̄
P̄N

)
solve the same equations as in appendix

B.2.3.

54Without these constraints, the solution would not be stationary: In the �rst period, the planner could �surprise�
markets and engineer realized returns in favor of the home country (if λ̄ = 0). The models in Chang and Velasco
(2006) and Du, P�ueger and Schreger (2020) feature this mechanism. To study the problem without the initial
promise-keeping constraints, one would �rst need to derive the appropriate non-stationary solution in the model
without shocks and then approximate around this point. This would mostly a�ect the results in the �rst period; the
analysis for subsequent periods would be essentially the same as the one I characterize in this appendix.
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B.4.4 Approximate problem: Four loss terms

In this section, I derive an approximation to the objective function with four loss terms: deviations of
the transfers from the �rst-best, deviations of savings from the �rst-best given transfers (henceforth,
�savings gap�), output gaps, and in�ation.

Lemma 9. Around the deterministic steady state, the planner's objective function satis�es

Vt0 =At0 −
1

2
Et0

∑
t=t0

βt−t0

{(
AT T +

(
1− β

m

)
γ∗
(
∂U

∂CT
− ∂U∗

∂CT
λ̄

))
(Tt − Tcm,t)

2 (198)

+ λxx
2
t + λππ

2
Nt +

∂U

∂CT
γT

(
˜nfat−1 − β ˜nfat

)2}
+ t.i.p.+O(ϵ3)

where Tt =
∑

j>0 Θ̄jrrjt is the transfer received by the home country from abroad at t, Tcm,t are the
transfers the planner would choose under complete markets and �exible prices,

Tcm,t =

(
AT T +

(
1− β

m

)
γ∗
(
∂U

∂CT
− ∂U∗

∂CT
λ̄

))−1

AT ξϵt, (199)

xt is the output gap, πNt is non-tradable price in�ation, and ˜nfat is the �savings gap�, i.e. the
di�erence between the actual nfa position nfat and the one that the planner would choose given
some exogenous transfers {Tt}, nfafbt , which satis�es

nfafbt = nfafbt−1 + Tt + k̃ξξt, (200)

and At0 collects terms that, given a Tt0 promise at t0 − 1, are taken as given at t0,

At0 = AHt0 +AFt0 +

(
∂U

∂CT
− λ̄

∂U∗

∂CT

)(
Tt0 − γ∗Tt0DξY

∗ · ξt0 + γ∗
1

m
(1− β)T 2

t0

)
.
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The remaining constants are given by

AT T = (1− β)
∂U

∂CT

(
γT + γ∗

1

m

)
> 0 (201)

AT ξ =
∂U

∂CT

(
γ∗DξY

∗ + βγT k̃ξ + kξ

)
(202)

k̃ξ = γ−1
T (kξVξ − kLξ) (I − βVξ)

−1 (203)

kξ = −γT
(
DξYT + β ¯nfaDξ lnR

∗)+ ( ∂U

∂CT

)−1 (
Acξ +A−1

ll AclAlξ

)
. (204)

kLξ = kξ −Dξ lnR
∗ (205)

λπ =
ϕ

(1− βϕ)(1− ϕ)
App > 0 (206)

AHt0 =
∂U

∂CT
nfat0−1

{
1− (1− β)γTTt0 +

(
kξ + βγT k̃ξ

)
· ξt0

}
(207)

− 1

2

∂U

∂CT
(1− β)γT

(
nfa2t0−1 − ˜nfa

2
t0−1

)
AFt0 =

dU∗

dC∗nfa
∗
t0−1

(
1 + (1− β)γ∗m−1Tt0 − γ∗DξY

∗ · ξt0
)
− 1

2

dU∗

dC∗ (1− β)γ∗m−1
(
nfa∗t0−1

)2
(208)

The constants App, Acl, Acξ, All, Alξ, λx, γT and γ∗ are still given by (118), (119), (120), (121),

(122), (130), (132) and (133), respectively. Note that a global planner (
∂U
∂CT
dU∗
dC∗

= λ̄) would put a

smaller weight on the insurance term and choose larger transfers under complete markets than a
home planner (λ̄ = 0).

First, note that the approximation to �ow utility given by lemma 6 is still valid. Adding (117)
over time and taking expectations at t = t0:

Ut0 = Et0

∞∑
t=t0

βt−t0

{
∂U

∂CT
C̄T

(
cTt +

1

2
c2Tt

)
− 1

2
App

(∫ 1

0
(pNt(i)− pNt)

2di

)
(209)

+
1

2

(
∂2U

∂C2
T

+
A2

cl

All

)
C̄2
T c

2
Tt + C̄T cTt

(
Acξ +

Acl

All
Alξ

)
· ξt −

1

2
λxx

2
t

}
+ t.i.p.+O(ϵ3),

where, as in equation (136), I have rewritten �ow utility in terms of the output gap. Using a
second-order approximation of the country's budget constraint (196), adding over time, using the
no-Ponzi condition (188), and taking expectations at t = t0, yields

Et0

∞∑
t=t0

βt−t0C̄T

(
ct +

1

2
c2t

)
= nfat0−1 + Et0

∞∑
t=t0

βt−t0 (Tt + βnfatDξ lnR
∗ · ξt) +O(ϵ3) (210)

In addition, I use the following result from Woodford (2003),

∞∑
t=0

βt
(∫ 1

0
(pNt(i)− pNt)

2di

)
=

ϕ

(1− βϕ)(1− ϕ)

∞∑
t=0

βtπ2Nt. (211)
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Using (210) and (211), one may rewrite (209),

Ut0 =
∂U

∂CT
nfat0−1 + Et0

∞∑
t=t0

βt−t0

{
∂U

∂CT
(Tt + βnfatDξ lnR

∗ · ξt)−
1

2
λππ

2
Nt (212)

+
1

2

(
∂2U

∂C2
T

+
A2

cl

All

)
C̄2
T c

2
Tt + C̄T cTt

(
Acξ +

Acl

All
Alξ

)
· ξt −

1

2
λxx

2
t

}
+ t.i.p.+O(ϵ3).

Next, I use a �rst-order approximation of the budget constraint,

C̄T cTt + βnfat − β ¯nfaDξ lnR
∗ · ξt = DξYT · ξt + Tt + nfat−1 +O(ϵ2),

to rewrite (212) as

Ut0 =
∂U

∂CT
nfat0−1 {1− γTTt0 + kξ · ξt0} (213)

+ Et0

∞∑
t=t0

βt−t0

{
∂U

∂CT

(
Tt −

1

2
γTT 2

t − 1

2
γT (nfat−1 − βnfat)

2 + βγTnfatTt

+ Ttkξξt + β (kξ · ξt+1 − kLξ · ξt)nfat
)
− 1

2
λππ

2
Nt −

1

2
λxx

2
t

}
+ t.i.p.+O(ϵ3).

Next, I use the following lemma to de�ne the �savings gap�: the deviation of the actual savings rate
nfat from the one that would emerge if transfers were independent of the monetary and savings
policy, nfafbt .

Lemma 10. Given some exogenous path for transfers {Tt}∞t=t0 and initial foreign position nfafbt0−1,
maximizing (213) without constraints yields xt = πNt = 0 ∀t and (200).

Proof. The FOC of (213) with respect to nfat yields

−βEtnfa
fb
t+1 + (1 + β)nfafbt − nfafbt−1 = Tt − γ−1

T kLξ · ξt + γ−1
T kξ · Etξt+1.

Using the law of iterated expectations for s > 0,

−βEtnfa
fb
t+s+1 + (1 + β)Etnfa

fb
t+s − Etnfa

fb
t+s−1 = −γ−1

T kLξ · Etξt+s + γ−1
T kξ · Etξt+s+1.

This can be written as a system of di�erence equations with a root outside the unit circle, a unit root,
andK stationary roots corresponding to the shocks. Picking the initial condition nfat appropriately
so that the system does not diverge, I obtain (200).

After some algebra, one may rewrite (213) in terms of �gaps�, ˜nfat = nfat − nfafbt ,

Ut0 = AHt0 + Et0

∞∑
t=t0

βt−t0

{
∂U

∂CT

(
Tt −

1

2
(1− β)γTT 2

t − 1

2
γT

(
˜nfat−1 − β ˜nfat

)2
(214)

+ Tt
(
kξ + βγT k̃ξ

)
ξt

)
− 1

2
λππ

2
Nt −

1

2
λxx

2
t

}
+ t.i.p.+O(ϵ3).

where AHt0 is given by (207).
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Next, I approximate foreign utility, U∗
t0 =

∑∞
t=t0

∏t−1
s=t0

β∗(ξs)U(C∗
Tt),

55

U∗
t0 = Et0

∞∑
t=t0

βt−t0

{
dU∗

dC∗ C̄
∗(c∗t +

1

2
c∗2t ) +

d2U∗

dC∗2C
∗2c∗2Tt (215)

+ β (Dξ lnβ
∗ · ξt)

( ∞∑
s=0

βs
dU∗

dC∗ C̄
∗c∗t+1+s

)}
+ t.i.p.+O(ϵ3).

A second-order approximation of the foreign budget constraint yields

Et0

∞∑
t=t0

βt−t0

(
C̄∗c∗t +

1

2
C̄∗c∗2t

)
= nfa∗t0−1+Et0

∞∑
t=t0

βt−t0
(
−m−1Tt + βnfa∗tDξ lnR

∗ · ξt
)
+t.i.p.+O(ϵ3)

(216)
Using (216), one may rewrite (215),

U∗
t0 =

dU∗

dC∗nfa
∗
t0−1 + Et0

∞∑
t=t0

βt−t0

{
− dU∗

dC∗m
−1Tt +

dU∗

dC∗βnfa
∗
tDξ lnR

∗ · ξt (217)

+
d2U∗

dC∗2C
∗2c∗2Tt + β (Dξ lnβ

∗ · ξt)

( ∞∑
s=0

βs
dU∗

dC∗ C̄
∗c∗t+1+s

)}
+ t.i.p.+O(ϵ3).

Next, I use a �rst-order approximation of the foreign budget constraint,56

C̄∗c∗t + βnfa∗t = DξY
∗ · ξt −m−1Tt + nfa∗t−1 +O(ϵ2)

and, iterating forward this equation and using that Et−1Tt = O(ϵ2),

Et

( ∞∑
s=0

βsC̄∗c∗t+1+s

)
= nfat + Et

∞∑
s=0

βs (DξY
∗ · ξt+1+s) +O(ϵ3),

to rewrite (217) as follows,

U∗
t0 =

dU∗

dC∗nfa
∗
t0−1

(
1 +m−1γ∗Tt0

)
+ Et0

∞∑
t=t0

βt−t0 dU
∗

dC∗

{
−m−1Tt (218)

+ βnfa∗t (Dξ lnR
∗ +Dξβ

∗) · ξt −
1

2
γ∗
(
nfa∗t−1 − βnfa∗t

)2 − γ∗βm−1Ttnfa∗t

− γ∗
(
nfa∗t−1 − βnfa∗t

)
DξY

∗ · ξt −
1

2
γ∗m−2T 2

t + γ∗m−1TtDξY
∗ · ξt

}
+ t.i.p.+O(ϵ3).

A �rst-order approximation to the foreign Euler equation yields

γ∗C̄∗c∗t = − (Dξ lnR
∗ +Dξβ

∗) · ξt + γ∗C̄∗Etc
∗
t+1 +O(ϵ2)

55I use the convention that
∏t0−1
t0

β∗(ξs) = 1.
56Recall that I assumed ¯nfa

∗
= 0.
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Since R∗ is consistent with yt = c∗t ∀t if Tt = 0 ∀t,

γ∗DξY
∗ · ξt = − (Dξ lnR

∗ +Dξβ
∗) · ξt + γ∗DξY

∗ · Etξt+1 +O(ϵ2) (219)

Thus, for all s ≥ 0,

C̄∗c∗t −DξY
∗ · ξt = C̄∗Etc

∗
t+s+1 −DξY

∗ · Etξt+s+1 +O(ϵ2).

Then, using the budget constraint,

nfa∗t = −m−1Tt + nfa∗t−1 +O(ϵ2)

Replacing back in (218) and using Et−1Tt = O(ϵ2) and (219) yields, after some algebra,

U∗
t0 = AFt0 + Et0

∞∑
t=t0

βt−t0 dU
∗

dC∗

(
−m−1Tt +m−1Ttγ∗DξY

∗ · ξt −
1

2
m−2(1− β)γ∗T 2

t

)
+ t.i.p.+O(ϵ3)

(220)

where AFt0 is given by (208).
A second-order approximation to the foreign no-arbitrage condition yields, for t > t0,

Et−1Tt − γ∗Et−1Tt
(
DξY

∗ · ξt − (1− β)m−1Tt
)
= O(ϵ3) (221)

Using (221) to replace the linear term in transfers for t > t0 in (214) and (220), and noting that
Vt0 = Ut0 +mλ̄U∗

t0 ,

Vt0 = At0 +
1

2
Et0

∑
t=t0

βt

{
−
(
AT T +

(
1− β

m

)
γ∗
(
∂U

∂CT
− dU∗

dC∗ λ̄

))
T 2
t (222)

+ TtAT ξ · ξt − λxx
2
t − λππ

2
Nt −

∂U

∂CT
γT

(
˜nfat−1 − β ˜nfat

)2}
+ t.i.p.+O(ϵ3).

Note that, at t = t0, there is no analogue of (221) so At0 includes terms with Tt0 . If markets are
complete, then the planner can attain the �rst best, eliminating in�ation, savings and output gaps.
Setting xt = πNt = ˜nfat = 0 ∀t, and maximizing (222) with respect to Tt subject to Et−1Tt = 0 for
t > t0 yields (199).

57 Replacing back in (222) yields (198).

B.4.5 Approximate constraints

In this section, I derive an approximation to the constraints of the problem: the Phillips curve - a
log-linearized version of (195), and the law of motion of asset prices and transfers as a function of
realized excess returns.

Phillips curve Following the usual steps, one can show that a log-linear expansion of (195) yields

πNt =κxt + βEtπNt+1,

57At t = t0, Tcm,t0 is the one that would have been chosen at t = t0 − 1 if the initial period had been t = t0 − 1.
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where

κ =

(
1− ϕ

ϕ

)(
1− βϕ

1− η
(
∂F
∂L

)−2 ∂2F
∂L2 C̄N

)
C̄−1
N (

∂U

∂CN
)−1λx.

Asset prices First, note that using equilibrium relationships, one can rewrite the payo� function
as a function of tradable consumption at t, CTt, the output gap, xt, and output and price dispersion,
∆ and ∆p, respectively:

Xj(xt, CTt,∆t,∆
p
t ; ξt) = X̃j (Yt(xt, CTt,∆t,∆

p
t ; ξt); ξt)

To see this, note that Lt is by de�nition related to the output gap and �exible-price labor

F (Lt; ξt) = C̄Nxt + F (L�ex
t (CTt, ξt); ξt),

CNt is related to labor and output dispersion ∆,

CNt = ∆−1
t F (Lt; ξt),

PNt/Et and Wt/Et follow from the FOCs (182) and (183), and the nontradable mutual fund return
satis�es,

E−1
t

∫ 1

0
ΠNt(i)di = E−1

t PNt∆
p
tCNt − E−1

t WtLt

where

∆p
t =

∫ 1

0

(
PNt(i)

PNt

)1−η

di.

Since ∆t and ∆p
t are zero to �rst order,

Xt =
∂X

∂x
xt +

∂X

∂CT
C̄cTt +DξX · ξt +O(ϵ2).

A �rst-order approximation of (179) and (180) yields

βrrjt+1 = (1− β(1− δj))

(
DξΨj

X̄δj
· ξt +

∂ lnX

∂CT
C̄T cT+1 +

∂ lnX

∂x
xt+1 +Dξ lnX · ξt+1

)
(223)

− β(1− δj)rjt+1 − 1j∈JN∆et+1 −Dξ lnR
∗ · ξt + rjt +O(ϵ2),

where 1j∈JN is an indicator that takes a value of one if asset j is a nominal asset.
Next, note that equation (146) is still valid, i.e.

et = pNt + kecC̄T cTt + keξ · ξt + kexxt +O(ϵ2). (224)

Using this and a �rst-order approximation to the budget constraint to substitute out C̄T cTt, (223)
becomes, after some algebra,

βrrjt+1 = −β(1− δj)rjt+1 + rjt + k1rjLξ · ξt + k1rjξ · ξt+1

+ (1− β(1− δj))

(
∂ lnX

∂CT
(Tt+1 + nfat − βnfat+1) +

∂ lnX

∂x
xt+1

)
− 1j∈JN (πNt+1 + kec ((Tt+1 − Tt) + (1 + β)nfat − βnfat+1 − nfat−1) + kex∆xt+1)
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where

k1rjLξ = (1− β(1− δj))

(
DξΨj

X̄δj

)
−Dξ lnR

∗ + 1j∈JN
(
kecDξYT + kecβ ¯nfaDξ lnR

∗ + keξ
)

k1rjξ = (1− β(1− δj))

(
Dξ lnX +

∂ lnX

∂CT
DξYT +

∂ lnX

∂CT
β ¯nfaDξ lnR

∗
)

− 1j∈JN
(
kecDξYT + kecβ ¯nfaDξ lnR

∗ + keξ
)
.

Rewriting this in terms of gaps ˜nfat,

βrrjt+1 = −β(1− δj)rjt+1 + rjt + krjLξ · ξt + krjξ · ξt+1 (225)

+ (1− β(1− δj))

(
∂ lnX

∂CT

(
(1− β)

(
nfafbt + Tt+1

)
+ ˜nfat − β ˜nfat+1

)
+
∂ lnX

∂x
xt+1

)
− 1j∈JN

(
πNt+1 + kec

(
(1− β)Tt+1 + (1 + β) ˜nfat − β ˜nfat+1 − ˜nfat−1

)
+ kex∆xt+1

)
where

krjLξ = k1rjLξ − kec1j∈JN k̃ξ

krjξ = k1rjξ − β (1− β(1− δj))
∂ lnX

∂CT
k̃ξ + βkec1j∈JN k̃ξ.

Next, use that to �rst order Etrrjt+1 is zero to solve for the yield rjt,

rjt = β(1− δj)Etrjt+1 − krjLξ · ξt − krjξ · Etξt+1 (226)

− (1− β(1− δj))

(
∂ lnX

∂CT

(
(1− β)nfafbt + ˜nfat − βEt

˜nfat+1

)
+
∂ lnX

∂x
Etxt+1

)
+ 1j∈JN

(
EtπNt+1 + kec

(
(1 + β) ˜nfat − βEt

˜nfat+1 − ˜nfat−1

)
+ kexEt∆xt+1

)
.

Next, I use that iterating backwards, nfafbt =
∑t

s=−∞ Ts+nfafbt (0) where nfafbt (0) is the net-foreign
asset position consistent with Ts = 0 ∀s ≤ t. Then, I de�ne the associated no-gaps-no-transfers
yield rjt(0),

rjt(0) = β(1− δj)Etrjt+1(0)− krjLξ · ξt − krjξ · Etξt+1 − (1− β(1− δj))

(
∂ lnX

∂CT
(1− β)nfafbt (0)

)
.

Note that rjt(0) is independent of policy. Henceforth, it will prove convenient to de�ne a �normal-
ized� yield of asset j, r̃jt, given by

r̃jt = rjt − rjt(0) +
∂ lnX

∂CT
(1− β)

(
˜nfat +

t∑
s=−∞

Ts

)
+ 1j∈JN

(
kexxt − kec∆ ˜nfat

)
.

After this normalization, (226) can be rewritten as

r̃jt = β(1− δj)Etr̃jt+1 − krrjπEtπNt+1 − krrjxEtxt+1 − βkrrjbEt∆ ˜nfat+1 (227)
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where

krrjb ≡ δj

(
kec1j∈JN − ∂ lnX

∂C

)
krrjx ≡ (1− β(1− δj))

(
∂ lnX

∂x
− kex1j∈JN

)
krrjπ ≡ −1j∈JN .

Next, I de�ne the no-gaps-no-transfers realized returns rrjt(0) analogously:

βrrjt+1(0) = −β(1− δj)rjt+1(0) + rjt(0) + krjLξ · ξt + krjξ · ξt+1 (228)

+ (1− β(1− δj))

(
∂ lnX

∂CT
(1− β)nfafbt (0)

)
.

Subtracting (228) from (225) yields, using the de�nition of r̃jt, (227),

βrrjt+1−βrrjt+1(0) = r̃jt−β(1−δj)r̃jt+1+krrjππNt+1+krrjxxt+1+βkrrjb∆
˜nfat+1+βµjTt+1+O(ϵ2)

(229)
where

µj = β−1(1− β)

(
∂ lnX

∂C
− kec1j∈JN

)
.

B.4.6 Approximate problem: Set up

In this section, I set up the approximate problem. I begin by discussing the problem from the
perspective of time t0. Then, I derive the set of �promise-keeping� constraints one needs to add
to make the problem recursive, i.e. study the optimal policy from a �timeless� perspective, as
discussed in section A.1. This justi�es studying the problem around the deterministic steady state
characterized in section B.4.3. Before doing so, I will sort assets into two classes: endogenous assets
JD and exogenous assets JX . Intuitively, endogenous assets are those whose returns can be a�ected
by policy. Note that endogenous assets are not necessarily nominal. In general equilibrium, the
return of a real asset can be endogenous to policy, e.g. claims on non-tradable �rms.

De�nition 6. An asset j is exogenous to policy, i.e. j ∈ JX if krrjπ = krrjb = krrjx = 0. If an
asset j is not exogenous to policy, then it is endogenous, i.e. j ∈ JD. The number of endogenous
assets is JD = #(JD).

The problem at t = t0 is choosing {xt, πNt, ˜nfat, rrt, r̃t, Tt, Θ̄t} to maximize

At0 −
1

2
Et0

∑
t=t0

βt−t0

{(
AT T +

(
1− β

m

)
(
∂U

∂CT
− ∂U∗

∂CT
λ̄)γ∗

)
(Tt − Tcm,t)

2 (230)

+ λxx
2
t + λππ

2
Nt +

∂U

∂CT
γT

(
˜nfat−1 − β ˜nfat

)2}
+ t.i.p.+O(ϵ3)

92



subject to

Etrrjt+1 = 0 (231)

πNt = κxt + βEtπNt+1 (232)

βrrjt − βrrjt(0) = r̃jt−1 − β(1− δj)r̃jt + krrjππNt + krrjxxt + βkrrjb∆
˜nfat + βµjTt (233)

Tt =
∑
j

rrjtΘ̄jt−1 (234)

∀t ≥ t0 and j ∈ JD with ˜nfat0−1, Θ̄t0−1 and r̃jt0−1 given. To make the problem recursive, I add
two promise-keeping constraints at t = t0 for each of the two forward-looking constraints (231) and
(232). First, note that as long as there is an endogenous asset, i.e. j ̸= ∅, a home planner would like
to manipulate the initial returns of asset j, rrjt0 , in its country's favor, i.e. to increase Tt0 . Thus,
in the initial period one needs to add promises

rrjt0 = r̄rjt0 . (235)

Note that this is really only necessary for endogenous assets, which are the ones that the planner
can manipulate. The other promise is standard and relates to in�ation,

πNt0 = π̄Nt0 . (236)

Using promises (235)−(236), and de�ning yt = {πNt, rrt, ˜nfat−1, r̃jt−1, Θ̄t−1}, the problem can
be written recursively as follows,

V(yt; ξt) = max
{yt+1,xt,Tt+1,Θ̄t}

−1

2
Et

{
β

(
AT T +

(
1− β

m

)
(
∂U

∂CT
− ∂U∗

∂CT
λ̄)γ∗

)
(Tt+1 − Tcm,t+1)

2

+ λxx
2
t + βλππ

2
Nt+1 +

∂U

∂CT
γT

(
˜nfat−1 − β ˜nfat

)2
+ βV(yt+1; ξt+1)

}
+ t.i.p.+O(ϵ3)

subject to

πNt = κxt + βEtπNt+1

Etrrjt+1 = 0,

βrrjt − βrrjt(0) = r̃jt−1 − β(1− δj)r̃jt + krrjππNt + krrjxxt + βkrrjb∆
˜nfat + βµjTt.

Tt+1 =
∑
j

rrjt+1Θ̄jt

∀j ∈ JD. This is the problem from the �timeless� perspective. An alternative recursive representa-
tion is to de�ne yt = {EtπNt+1, ˜nfat, r̃jt} and

V(yt−1; ξt−1) = max
{yt,rrt,xt,Tt,Θ̄t−1}

−1

2
Et−1

{(
AT T +

(
1− β

m

)
(
∂U

∂CT
− ∂U∗

∂CT
λ̄)γ∗

)
(Tt − Tcm,t)

2

(237)

+ λxx
2
t + λππ

2
Nt +

∂U

∂CT
γT

(
˜nfat−1 − β ˜nfat

)2
+ βV(yt; ξt)

}
+ t.i.p.+O(ϵ3)
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subject to

πNt = κxt + βEtπNt+1

Et−1rrjt = 0,

βrrjt − βrrjt(0) = r̃jt−1 − β(1− δj)r̃jt + krrjππNt + krrjxxt + βkrrjb∆
˜nfat + βµjTt.

Tt =
∑
j

rrjtΘ̄jt−1

In this case, the planner makes state-contingent decisions for t before uncertainty is realized; accord-
ingly, it needs to respect a promise of expected rather than realized in�ation. This representation is
more convenient as it reduces the dimension of the state-space. Note that, by certainty equivalence,
further innovations at t ≥ t0 + 1 are irrelevant for optimal decisions at t0 and the portfolio chosen
at t0 − 1. Thus, w.l.o.g. I assume there is no uncertainty in periods t ≥ t0 + 1. Iterating forward
on (237), note that one may write the objective as

Vt0 = V̂t0 + βEt0−1V†
t0
+ t.i.p.+O(ϵ3)

where

V̂t = −1

2

∑
t≥t0

βt−t0

{
λx (Et0−1xt)

2 + λπ (Et0−1πNt)
2 +

∂U

∂CT
γT

(
Et0−1

˜nfat−1 − βEt0−1
˜nfat

)2}
(238)

V†
t = −1

2

(
AT T +

(
1− β

m

)
(
∂U

∂CT
− ∂U∗

∂CT
λ̄)γ∗

)
(Tt0 − Tcm,t0)

2 (239)

− 1

2

∑
t≥t0

βt−t0

{
λx

(
x†t

)2
+ λπ

(
π†Nt

)2
+

∂U

∂CT
γT

(
˜nfa

†
t−1 − β ˜nfa

†
t

)2}
,

where y†t are time-t0 innovations, i.e. y†t = yt − Et0−1yt. To solve the problem, I �rst study
the optimal path for expectations {Et0−1xt,Et0−1πNt+1,Et0−1

˜nfat,Et0−1r̃t}∞t=t0 . Next, I study the

optimal t = t0 innovations {x†t0 , π
†
Nt0

, ˜nfa
†
t0 , r̃

†
t0
} that deliver a given set of promised returns rrt0 .

After this, the problem is similar to the static model and I solve for optimal promises of realized
returns for t = t0. Finally, I solve for the optimal portfolio at t = t0 − 1.

B.4.7 Expectations

Taking t0 − 1 expectations on the constraints (231)−(234),

κEt0−1xt + βEt0−1πNt+1 = Et0−1πNt (240)

β(1− δj)Et0−1r̃jt − krrjxEt0−1xt = Et0−1r̃jt−1 + krrjπEt0−1πNt + βkrrjbEt0−1∆ ˜nfat. (241)

The optimal path for expectations of in�ation, output gaps, savings gaps, and prices {Et0−1xt,
Et0−1πNt+1, Et0−1

˜nfat, Et0−1r̃t}∞t=t0 maximizes (238) subject to (240) and (241) with r̃jt0−1, Et0−1πNt0 ,

and ˜nfat0−1 given. Let βt−t0ϕt and β
t−t0νjt denote the Lagrange multipliers on (240) and (241),

respectively. The FOCs with respect to Et0−1xt, Et0−1πNt+1, Et0−1r̃jt, and Et0−1
˜nfat yield, respec-
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tively

λxEt0−1xt = κϕt +
∑
j∈JD

krrjxνjt (242)

λπEt0−1πNt+1 + ϕt+1 −
∑
j∈JD

krrjπνjt+1 = ϕt (243)

νjt+1 = (1− δj)νjt (244)

β
∂U

∂CT
γTEt0−1

˜nfat+1 − β
∑
j∈JD

krrjbνjt+1 = (1 + β)
∂U

∂CT
γTEt0−1

˜nfat −
∂U

∂CT
γTEt0−1

˜nfat−1 (245)

−
∑
j∈JD

krrjbνt

These four equations together with the constraints (240) and (241) form a system of equations in
di�erences. There are J + 2 roots outside the unit circle and a unit root.58 Picking the initial
condition {ϕt0 , {νjt0}j∈JD , ˜nfat0} appropriately so that the system does not diverge, one obtains
the solution at t = t0,

Et0−1xt0 = k̂x[{r̃jt0−1}j ,Et0−1πNt0 ]

Et0−1
˜nfat0 = k̂b[{r̃jt0−1}j ,Et0−1πNt0 ] +

˜nfat0−1

Et0−1πNt0+1 = k̂π[{r̃jt0−1}j ,Et0−1πNt0 ]

Et0−1r̃jt0 = k̂r[{r̃jt0−1}j ,Et0−1πNt0 ].

Note that there is no interaction between ˜nfat0−1, the return terms {r̃jt0−1}j , and Et0−1πNt0 . This

is easy to see from the system (240)−(245): if some path {Et0−1xt,Et0−1πNt+1,Et0−1
˜nfat,Et0−1r̃t}

solves the problem for some ˜nfat0−1, then {Et0−1xt,Et0−1πNt+1,Et0−1
˜nfat + ε,Et0−1r̃t} solves the

problem for ˜nfat0−1 =
˜nfat0−1 + ε.

Note that the solution is of the form

V̂t = −1

2

{
Aππ (Et0−1πNt)

2 + 2r̃′t0−1Arπ (Et0−1πNt) + r̃′t0−1Arrr̃t0−1 +Abb
˜nfa

2
t0−1

}
where Aππ and Abb are positive scalars and Arr is a positive de�nite matrix.

58More precisely, only long assets (δj < 1) feature an exploding root. If an asset j is short (δj = 1), then Et0νjt = 0
∀t > t0 and one can �drop� the asset-pricing constraint from the continuation problem, i.e. the problem for t > t0.
Intuitively, the expected asset price in future periods is irrelevant for welfare since agents are not exposed to it at
t = t0.
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B.4.8 Innovations

The optimal time-t0 innovations from t ≥ t0 + 1 onwards solve the same problem as the t0 − 1
expectations from t ≥ t0 onwards. Replacing the solution into the objective (239),

V†
t0
= −1

2

{(
AT T +

(
1− β

m

)
(
∂U

∂CT
− ∂U∗

∂CT
λ̄)γ∗

)
(Tt0 − Tcm,t0)

2 + λx

(
x†t0

)2
+ λπ

(
π†Nt0

)2
(246)

+ βAππ

(
π†Nt0+1

)2
+ 2β

(
r̃†t0+1

)′
Arππ

†
Nt0+1 + β

(
r̃†t0

)′
Arr

(
r̃†t0

)
+

(
β2

∂U

∂CT
γT + βAbb

)(
˜nfa

†
t0

)2}
+ t.i.p.+O(ϵ3)

Taking t0- and t0 − 1- expectations on the constraints (231)−(234) and subtracting,

π†Nt0
= κx†t0 + βπ†Nt0+1 (247)

βrrjt0 − βrrjt0(0)− βµjTt0 = −β(1− δj)r̃
†
jt0

+ krrjππ
†
Nt0

+ krrjxx
†
t0
+ βkrrjb

˜nfa
†
t0 . (248)

The innovation problem is to choose {x†t0 , π
†
Nt0

, π†Nt0+1, {r̃
†
jt0

}j∈JD , ˜nfa
†
t0} to maximize (246) subject

to (247) and (248). Let ϕ†t0 and ν
†
jt0

denote the Lagrange multipliers of (247) and (248), respectively.

The FOCs with respect to x†t0 , π
†
t0
, π†t0+1,

˜nfa
†
t0 , and r̃

†
j′t0

yield, respectively,

−λxx†t0 + κϕ†t0 +
∑
j∈JD

krrjxν
†
jt0

= 0 (249)

−λππ†t0 − ϕ†t0 +
∑
j∈JD

krrjπν
†
jt0

= 0 (250)

−Aπππ
†
t0+1 −

∑
j∈JD

Aπrj r̃
†
jt0

+ ϕ†t0 = 0 (251)

−Abb
˜nfa

†
t0 +

∑
j∈JD

krrjbν
†
jt0

= 0 (252)

−Aπrjπ
†
t0+1 −

∑
j′∈JD

Arjrj′ r̃
†
j′t0

− (1− δj)ν
†
jt0

= 0. (253)

The solution to this problem yields

π†Nt0
= k†π (βrrjt0 − βrrjt0(0)− βµjTt0)j∈JD

π†Nt0+1 = k†Fπ (βrrjt0 − βrrjt0(0)− βµjTt0)j∈JD
x†t0 = k†x (βrrjt0 − βrrjt0(0)− βµjTt0)j∈JD

˜nfa
†
t0 = k†b (βrrjt0 − βrrjt0(0)− βµjTt0)j∈JD

r̃†jt0 = k†r (βrrjt0 − βrrjt0(0)− βµjTt0)j∈JD
ϕ†t0 = k†ϕ (βrrjt0 − βrrjt0(0)− βµjTt0)j∈JD
ν†t0 = k†ν (βrrjt0 − βrrjt0(0)− βµjTt0)j∈JD
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for some vector of constants k†π, k
†
Fπ, k

†
x, k

†
b , k

†
r, k

†
ϕ ∈ RJD and a square positive de�nite matrix

k†ν ∈ RJD×JD . By the envelope theorem,

V†
t0
= −1

2
(βrrjt0 − βrrjt0(0)− βµjTt0)

′
j∈JD k

†
ν (βrrjt0 − βrrjt0(0)− βµjTt0)j∈JD (254)

− 1

2

(
AT T +

(
1− β

m

)
(
∂U

∂CT
− ∂U∗

∂CT
λ̄)γ∗

)
(Tt0 − Tcm,t0)

2 + t.i.p.+O(ϵ3)

B.4.9 Optimal returns

Next, I solve for the optimal combination of realized returns {rrjt0}j∈JD that delivers a given
transfer Tt0 when agents hold portfolio Θ̄t0−1. Of course, this step is unnecessary if there is only one
endogenous asset, i.e. if JD = 1. When JD > 1, I maximize (254) subject to

∑
j rrjt0Θ̄jt0−1 = Tt0 .

This yields

{rrjt0 − rrjt0(0)− µjTt0}j∈JD =−
(
k†ν

)−1
Θ̄JDt0−1

 1− Θ̄′
JDt0−1µJD

Θ̄′
JDt0−1

(
k†ν
)−1

Θ̄JDt0−1


×

(
Tt0 −

Θ̄′
t0−1

1− Θ̄′
JDt0−1µJD

rrt0(0)

)

where I use the notation that yJ = {yj}j∈J for a generic vector y and set J of natural numbers.
Replacing into (254) I obtain

Et0−1V†
t0
= −1

2

k0

Θ̃′
JDt0−1χΘ̃JDt0−1

Et0−1

{(
Θ̃′

JDt0−1χΘ̃JDt0−1

)
(Tt0 − Tcm,t0)

2 +
(
Tt0 − Θ̃′

t0−1rrt0(0)
)2}

(255)

where

k0 =

(
AT T +

(
1− β

m

)
(
∂U

∂CT
− ∂U∗

∂CT
λ̄)γ∗

)
χ = β−2

(
AT T +

(
1− β

m

)
(
∂U

∂CT
− ∂U∗

∂CT
λ̄)γ∗

)(
k†ν

)−1
(256)

Θ̃jt0−1 =

(
1

1− Θ̄′
JDt0−1µJD

)
Θ̄jt0−1

Intuitively, χ controls how expensive it is for the planner to deviate from the demand-management
policy after choosing the optimal combination of output gaps, in�ation, and savings distortions.
Indeed, when JD = 1, the problem is isomorphic to the one in the static model.

B.4.10 Optimal transfers

The optimal transfers Tt0 maximize (255). This yields,

Tt0 =
Θ̃′

JDt0−1χΘ̃JDt0−1

1 + Θ̃′
JDt0−1χΘ̃JDt0−1

Tcm,t0 +
1

1 + Θ̃′
JDt0−1χΘ̃JDt0−1

Θ̃′rrt0(0) (257)
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Replacing back in (255), and taking time t = t0 − 1 expectations:

Et0−1V†
t0
= −1

2

k0

1 + Θ̃′
JDt0−1χΘ̃JDt0−1

{
σ2Tcm,t0

+ Θ̃′
t0−1Var(rrt0(0))Θ̃t0−1 (258)

− 2Θ̃′
t0−1Cov(rrt0(0), Tcm,t0)

}
.

B.4.11 Proposition 19: Optimal portfolios

Here, I prove an analogue of proposition 10 and lemma 5.

Proposition 19. Given some position in endogenous assets Θ̄JD,t0−1 the optimal portfolio on ex-
ogenous assets solves

Θ̄JX t0−1 =
(
1− Θ̄′

JDt0−1µJD
)
Var(rrJX ,t0(0))

−1×{
Cov(rrJX t0(0), Tcm,t0)− Cov(rrJX t0(0), rrJDt0(0))

Θ̄JD,t0−1

1− Θ̄′
JDt0−1µJD

}
.

Taking the �rst-order condition of (258) with respect to Θ̄JX ,t0−1 and rearranging yields the
desired result.

Lemma 11. The optimal portfolio on endogenous assets solves

max− 1

2
k0

(
1

1 + Θ̃′
JDt0−1χΘ̃JDt0−1

){
σ2T̃cmt0

+ Θ̃′
JDt0−1Var(r̃rJDt0(0))Θ̃JDt0−1 (259)

−2Θ̃′
JDt0−1Cov(r̃rJD,t0(0), Tcm,t0)

}

where

T̃cm,t0 = Tcm,t0 − Cov(r̃rJX t0(0), Tcm,t0)
′Var(r̃rJX t0(0))

−1rrJX t0(0),

r̃rJDt0(0) = rrJDt0(0)− Cov(r̃rJX t0(0), r̃rJDt0)
′Var(r̃rJX t0(0))

−1rrJX t0(0).

Note that, if #(JD) = 1, this simpli�es to the expression in lemma 5.

Replacing the result of proposition 19 into (258) yields the desired result.

B.4.12 Proposition 20: Robustness when there is a single endogenous asset

Here, I prove an analogue of proposition 11.

Proposition 20. If there is a single endogenous asset, i.e. #(JD) = 1, then proposition 11 carries
over to the dynamic model unaltered with f(Θ̄t0−1) = Θ̃JDt0−1 and returns rrft0 = f(Θ̄t0−1)

−1T̃cm,t0.

This result follows immediately from the fact that the optimal transfer (257) and the objective
function (259) have the same form as in the static model. By contrast, when #(JD) > 1, (259)
is more complicated since Θ̃ and χ are multidimensional and, hence, there is not a closed form
solution. As a result, one cannot de�ne a single-dimensional measure of exposure to monetary
policy f(Θ̄) or its returns rrf .
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B.4.13 Solving when there is more than one endogenous asset

When JD > 1 there is no closed form solution for the portfolio problem. However, there are a
�nite number of solutions. To see this, de�ne f(Θ̄t0−1) = Θ̃′

JDt0−1χΘ̃JDt0−1 and solve the problem
conditional on an exposure to monetary policy f(Θ̄t0−1). This yields

Var(r̃rJDt0)Θ̃JDt0−1 − Cov(r̃rJDt0 , T̃cm,t0)− λ̃χΘ̃JDt0−1 = 0

Θ̃′
JDt0−1χΘ̃JDt0−1 = f(Θ̄t0−1).

Solve for Θ̃JDt0−1,
Θ̃JDt0−1 = (Var(r̃rJDt0)− λ̃χ)−1Cov(r̃rJDt0 , T̃cm,t0)

and replace to obtain an equation in λ̃,

Cov(r̃rJDt0 , T̃cm,t0)
′(Var(r̃rJDt0)− λ̃χ)−1χ(Var(r̃rJDt0)− λ̃χ)−1Cov(r̃rJDt0 , T̃cm,t0) = f(Θ̄t0−1).

Note this can be written as
P1(λ̃)

(P2(λ̃))2
= f(Θ̄t0−1)

where P1(λ̃) is a polynomial of degree (JD − 1)2 and P2(λ̃) is a polynomial degree JD. Thus, there
are at most J2

D solutions which need to be checked. Using this and then maximizing over f(Θ̄) one
can compute the optimal portfolios. Unfortunately, Θ̃ is nonlinear in f(Θ̄) if JD > 1, so there is no
analogue of proposition 11 in this case.

B.4.14 Proposition 21: Optimal portfolio taxes

Proposition 21. In an interior optimum, the optimal tax on asset j relative to the risk-free asset
is given by

τjt0−1 − τ0t0−1 =

(
1− β

m

)(
1−

∂U∗

∂CT
∂U
∂CT

λ̄

)
γ∗Cov(Tt0 , rrjt0) +O(ϵ3).

To prove the result, it is helpful to take a step back and consider the �rst-order conditions with
respect to the realized returns {rrt0}, the transfers {Tt0} and the portfolio Θ̄t0−1 before replacing
the optimal innovations. That is, maximizing the expected value of (246) subject to (247), (248)
and the de�nition of the transfer,

Tt0 = Θ̄′rrt0 .

Let λt0 denote the Lagrange multiplier on this constraint. The FOCs with respect to rrj,t0 , Tt0 and
Θ̄t0−1 yield

−βν†jt0 + Θ̄jt0−1λt0 = 0 (260)

−
(
AT T +

(
1− β

m

)
(
∂U

∂CT
− ∂U∗

∂CT
λ̄)γ∗

)
(Tt0 − Tcm,t0)− λt0 + β

∑
j

µjν
†
t0j

= 0 (261)

Et0−1rrjt0λt0 = 0 (262)

Next, note that the FOC (249) - (253) imply that one can write the optimal innovations
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{x†t0 , π
†
Nt0

, π†Nt0+1, {r̃
†
jt0

}j∈JD , ˜nfa
†
t0} as a function of {ν†jt0}j , e.g.

x†t0 =
∑
j

k̃xjν
†
jt0

Using (260), one obtains that the optimal innovations are proportional to λt0 , e.g.

x†t0 = β−1

∑
j

k̃xjΘ̄
−1
jt0−1

λt0

Intuitively, this equation re�ects the fact that the planner introduces distortions into the economy
to improve insurance. Therefore, the portfolio optimality condition (262) implies that the optimal
innovations are uncorrelated with the returns of the asset, e.g.

Et0−1x
†
t0
rrt0 = 0.

Similarly, I obtain that the remaining innovations {π†Nt0
, π†Nt0+1, {r̃

†
jt0

}j∈JD , ˜nfa
†
t0} are uncorrelated

with the returns of the assets. For future reference, note that replacing (261) and the de�nition of
Tcm (199) into the portfolio optimality condition (262) yields(

AT T +

(
1− β

m

)
(
∂U

∂CT
− ∂U∗

∂CT
λ̄)γ∗

)
Et0−1Tt0rrjt0 −AT ξEt0−1ϵt0rrjt0 = 0. (263)

Next, I combine a second-order approximation of home and foreign private marginal utility to
obtain:

−AT T Et0−1Tt0rrjt0 +AT ξEt0−1ϵt0rrjt0

+β

(
∂U

∂CT

)
γTEt0−1

˜nfa
†
t0rrjt0 +

(
∂F

∂L

)−1

Aclx
†
t0
rrjt0︸ ︷︷ ︸

=0

=

(
∂U

∂CT

)
(τjt0−1 − τ0t0−1) +O(ϵ3) (264)

Replacing (263) into (264) and rearranging yields the desired result. The intuition is similar to
the static model: the distortions (now both savings & output gaps) introduce wedges between
private and social marginal utility. However, these wedges are related to the value of insurance and,
therefore, they are uncorrelated with the return of every available asset under the optimal policy.

B.4.15 The role of time-varying capital controls

As discussed in section 5, the planner does not want to distort portfolio decisions in the limit, but
they do want to manipulate savings decisions, i.e. put time-varying taxes that are the same for all
assets. Indeed, one may back out the optimal taxes from a �rst-order approximation of the Euler
equation (187):

−γT
(
∆ ˜nfat − βEt∆ ˜nfat+1

)
︸ ︷︷ ︸

pecuniary externality

+ C̄N

(
∂U

∂CT

)−1(∂F
∂L

)−1

AclEt∆xt+1︸ ︷︷ ︸
aggregate-demand externality

= τ0t.

100



Interestingly, Acl may take di�erent signs for standard utility functions (see equation 119). If U is
GHH with a CES tradable-nontradable aggregator and CRRA with respect to the composite, then(

∂U

∂CT

)−1

Acl =
1

ρ
> 0,

where ρ is the elasticity of substitution between tradables and nontradables. Thus, agents always
overvalue tradable goods in booms. Instead, if U is separable in labor,(

∂U

∂CT

)−1

Acl =
ργ − 1

ρ
,

where γ is the CRRA risk-aversion parameter. Thus, depending on whether tradables and nontrad-
ables are Edgeworth complements (ργ < 1) or substitutes (γρ > 1), agents will under- or over-value
tradable goods in recessions, respectively, yielding potentially opposite predictions on savings taxes.

The theoretical results described in this appendix also extend to a setting where the planner
can only put time-invariant taxes on �nancial assets, i.e. the planner cannot manipulate private
savings.59 In such a case, the only di�erence is that one should add

−γT
(
∆ ˜nfat − βEt∆ ˜nfat+1

)
+ C̄N

(
∂U

∂CT

)−1(∂F
∂L

)−1

AclEt∆xt+1 = 0

as a constraint in the problems analyzed in sections B.4.7 and B.4.8. Naturally, since there is an
additional constraint in the ability of the planner to provide insurance, the cost of deviating from
demand-management, controlled by χ̃ at the end of that section, will be higher. The remainder
of the analysis is isomorphic. Importantly, note that the planner would still use the same time-
invariant asset-speci�c taxes τj − τ0 to control steady-state portfolios. One may think of this case
as one where controls are �sticky�, i.e. the planner cannot move taxes over the business cycle, but
it can put time-invariant controls. In appendix C.4, I compare the solution with and without these
taxes in the calibrated model.

B.5 Examples of non-zero approximate taxes

In this section, I study two extensions of the general model of section 4 that illustrate common
reasons why the approximate no-tax result may not hold. To emphasize the role of the multi-
dimensional aggregate-demand externality, I focus on the small-open-economy case m → ∞. The
two extensions share one critical feature: the aggregate-demand externality is multidimensional
but the planner has no additional tools. Despite this, in both cases the result on taxes is subtle
and crucially relies on non-separability between tradable and non-tradable goods. When they are
separable, the tax is still approximately zero.60

The �rst extension studies a model with mark-up shocks. Mark-up shocks create variation
in output gaps that is unrelated to the value of insurance. The optimal policy prescribes booms
when mark ups are low and recessions when mark ups are high to alleviate the cost of ine�cient
price dispersion. As a result, even under complete markets, asset returns may be correlated with
output gaps if they are correlated with mark-up shocks. I show that a standard model with GHH

59In a previous version of this paper, I characterized more explicitly the solution to this problem. Since it is very
similar, the algebra is omitted from this version for brevity.

60Separability here should be interpreted broadly. For ease of exposition I only introduce non-separability in
preferences. However, a model with separable preferences and non-separabilities in production would be similar to a
model with non-separable preferences.
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preferences implies that agents overvalue tradable goods in booms. Thus, assets that pay in states
where mark ups are high are undervalued.

The second extension studies an economy with multiple non-tradable sectors, each with their
own nominal rigidity. In this case, the argument for taxes is more subtle: even with GHH utility
taxes are zero if prices are fully rigid. I present two simple examples that give rise to a non-zero
tax. The �rst example features a �mixed� utility function where one nontradable good is separable
from tradable consumption and the other is not. The second example features GHH utility but
heterogeneous degrees of price stickiness across sectors.

B.5.1 Mark-up shocks

In this section, I extend the model of section 4 to allow for shocks to the elasticity of substitution
across varieties. The only equilibrium relationship that changes is the optimality condition of
�exible-price �rms (113), which now becomes

PNs(i) = M(ξs)(1− τL)
1

∂F
∂L (s)

Ws for i ∈ {�ex}, (265)

where M(ξs) =
η(ξs)

η(ξs)−1 is the desired mark up. I assume the labor subsidy is such that the economy

is e�cient at the steady state, i.e. τl = (η̄ − 1)/η̄.
Following the same steps as before, one may write the approximate planner's problem as

max
{Ts,{rrjs}j ,xs}s

−
∑
s

1

2
πs

{
AT T (Ts − Tcm,s)

2 + (κλπ + λx) (xs − x̃s)
2
}
+ t.i.p.+O(ϵ3)

subject to

Ts =
∑
j

Θ̄jrrjs

rrjs = krrjT Ts + krrjxxs +
∑
k

krrjkξks.

The key di�erence is that, because of mark-up shocks, the planner does not seek to stabilize output
gaps. Rather, when mark ups are high, the planner avoids high in�ation by creating a recession:

x̃s = −

(
λπκ

ϕ
1−ϕ

λπκ2 + λx

)
Dξ lnM · ξs +O(ϵ2). (266)

This is a source of �exogenous� variation in output gaps; i.e. output gaps that do not re�ect a desire
to provide insurance. As a result, output gaps are generically correlated with asset returns to �rst
order. Indeed, the FOCs of this problem imply∑

s

πs(xs − x̃s)rrjs = O(ϵ3). (267)

Furthermore, following the same steps as before, portfolio optimality also implies

−AT T
∑
s

πsTsrrjs +
∑
s

πsrrjsAT ξ · ξs = O(ϵ3).
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On the other hand, the expansion of home and foreign no-arbitrage equations is still given by

−
∑
s

πsAT T Tsrrjs +
∑
s

πs

(
∂F

∂L

)−1

C̄NAclrrjsxs +
∑
s

πsrrjsAT ξ · ξs =
∂U

∂CT
τj +O(ϵ3).

Thus, the tax of asset j is given by:

τj =

(
∂U

∂CT

)−1∑
s

πs

(
∂F

∂L

)−1

C̄NAclrrjsx̃s +O(ϵ3). (268)

Note that, in any model where utility is separable between tradables and non-tradables, agents do
not over- or undervalue goods in booms and recessions to �rst order under the optimal monetary
policy (Acl = 0).61 Thus, the tax would be zero. With GHH, assets that pay in states where mark
ups are high, which induce recessions x̃ < 0, are undervalued by the private sector and need to be
subsidized. Proposition 22 collects these results.

Proposition 22. Consider an extension of the model of section 4 to allow for mark-up shocks
(described above) and m → ∞. In such a model, the optimal policy implies (267): the return of
any tradable asset j must be uncorrelated with output gap deviations from the target output gap x̃,
given by (266). The optimal tax τj is given by (268) and Acl is given by (119). In particular, a
model with separable utility implies Acl = 0 and, hence, zero approximate taxes. A model with GHH
preferences

U(CTs, CNs, Ls) =
1

1− γ

((
α

1
ρC

ρ−1
ρ

Ts + (1− α)
1
ρC

ρ−1
ρ

Ns

) ρ
ρ−1

− α

1 + φ
L1+φ
s

) 1
1−γ

implies Acl =
(1−α)(1+φ)γ

ρ(α+φ)γ . In that case, assets with returns that are positively correlated with mark

ups are undervalued (τj < 0) and vice versa.

B.5.2 Multiple sources of nominal rigidities

In this section, I extend the general model of section 4 to allow for M ≥ 1 nontradable goods.
Formally, utility is now given by∑

s

πsU(CTs, {Cms}m, {Lms}m; ξs),

where U is assumed to be locally analytic and concave. Each nontradable good is a composite of a
CES continuum of varieties

Cms = (

∫ 1

0
Cms(i)

ηm−1
ηm di)

ηm
ηm−1 .

For each variety, there is a �rm that produces it with labor,

Cms(i) = Fm (Lms(i); ξs) .

Note that all varieties within a sector have the same technology. Thus, in the �rst best all �rms in
the same sector produce equal amounts.

61Note that the fact that monetary policy is optimal is important for this result. Sub-optimal monetary policy, e.g.
a peg, could introduce another link between private consumption and the output gap. The key observation is that
manipulating tradable consumption does not alleviate the trade o� between price dispersion and output gaps.
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The only role of this special structure is to introduce nominal rigidities into the environment.
More precisely, I assume that in each state of the world a random share ϕm of the �rms have a �xed
home-currency price of P̄m while the remaining share 1− ϕm can reset their price. I assume there
is a constant sector-speci�c labor subsidy τLm = 1 − ηm−1

ηm
to correct the monopolistic distortion.

Steady-state prices P̄m are chosen such that the steady state is e�cient, i.e.

∂Fm

∂Lm

∂U

∂Cm
= − ∂U

∂Lm
.

Second-order approximation to utility A second-order approximation of the utility �ow yields

Us = −1

2
p′sΛπps +

∂U

∂CT
C̄T

(
cTs +

1

2
c2Ts

)
+

1

2

∂2U

∂C2
T

C̄2
T c

2
Ts + (L̄l)′AlcC̄T cTs (269)

+ C̄T cTsAcξξs −
1

2
(L̄l)′All(L̄l) + (L̄l)′Alξ · ξs + t.i.p.+O(ϵ3)

where All, Alz ∈ RM×M , Alc ∈ RM×1, Azc ∈ RM×1, Λπ ∈ RM×M and

Alc(m) =
∂2U

∂Cm∂CT

∂Fm

∂Lm
+

∂2U

∂Lm∂CT

Acξ = D2
CT ξ

U +
∑
m

∂2U

∂Cm∂CT
DξFm

All(m,m
′) = −

(
1m=m′

∂U

∂Cm

∂2Fm

∂L2
m

+
∂2U

∂Cm∂Cm′

∂Fm

∂Lm

∂Fm′

∂Lm′
+

∂2U

∂Cm∂Lm′

∂Fm

∂Lm
+

∂2U

∂Lm∂Cm′

∂Fm′

∂Lm′
+

∂2U

∂Lm∂Lm′

)
Alξ(m, :) = 1m=m′

∂U

∂Cm
D2

LmξFm +
∂2U

∂Cm∂Cm′

∂Fm

∂Lm
DξFm′ +

∂2U

∂Lm∂Cm′
DξFm′ +

∂Fm

∂Lm
D2

CmξU +D2
LmξU

Λπ(m,m
′) = 1m=m′

∂U

∂Cm
C̄mηm

(
ϕm

1− ϕm

)1−
C̄m

∂2Fm
∂L2

m
ηm

( ∂Fm∂Lm
)2

 ,

and I abuse notation by writing (Ȳ y) to denote {Ȳmym}Mm=1 for an arbitrary variable y ∈ RM . If
prices were �exible,

(L̄l)�ex = A−1
ll Alξ · ξs +A−1

ll AlcC̄T cTs +O(ϵ2).

Let xms = C̄−1
m

∂Fm
∂Lm

(
L̄mlms − L̄ml

�ex
ms

)
denote the output gap in good m, and de�ne a diagonal

matrix D1 ∈ RM×M with

D1(m,m
′) = 1m=m′

(
C̄−1
m (

∂Fm

∂Lm
)

)
.

Thus, one can rewrite the above as

Us =
∂U

∂CT
C̄T

(
cTs +

1

2
c2Ts

)
− 1

2
AT T C̄

2
T c

2
Ts + C̄T cTs

(
Acξ +A′

lcA
−1
ll Alξ

)
ξs

− 1

2
p′sΛπps −

1

2
x′sΛxxs + t.i.p.+O(ϵ3)
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where

AT T = −
(
∂2U

∂C2
T

+A′
lcA

−1
ll Alc

)
Λx = D−1

1 AllD−1
1 .

Next, note that consumer optimization implies

− ∂U

∂Lm
=
Wms

Pms

∂U

∂Cm
,

which to �rst order is equal to

−Alc(m)C̄T cTs +
∂U

∂Cm

∂2Fm

∂L2
m

L̄mlms +All(m, :)(L̄ls) = (270)

(− ∂U

∂Lm
) (wms − pms)−

∂U

∂Cm
D2

LmξFm · ξs +Alξ(m, :) · ξs +O(ϵ2)

A �rst-order approximation of �exible-�rm's optimality condition yields,

pms(i) +

(
∂Fm

∂Lm

)−1 ∂2Fm

∂L2
m

L̄mlms(i) +

(
∂Fm

∂Lm

)−1

D2
LξFm · ξs = wms +O(ϵ2).

Using this equation to substitute out wms in (270),

−Alc(m)C̄T cTs +
∑
m′

All(m,m
′)L̄m′ lms(i) = (−ULm)pms(i) +Alξ(m, :) · ξs +O(ϵ2). (271)

De�ning a diagonal matrix D2,

D2(m,m
′) = 1m=m′

ϕm
1− ϕm

∂U

∂Cm

∂Fm

∂Lm

(
1− ηm

(
∂Fm

∂Lm

)−2 ∂2Fm

∂L2
m

C̄m

)
,

and using a �rst-order approximation to the de�nition of the price index, (271) becomes

−AlcC̄T cTs +All(L̄ls) = D2ps +Alξ · ξs +O(ϵ2).

Rewriting in terms of the output gap and solving,

ps = κxs +O(ϵ2), (272)

where κ ∈ RM×M is given by
κ = D−1

2 AllD−1
1 .

Replacing in the objective function,

Us =
∂U

∂CT
C̄T

(
cTs +

1

2
c2Ts

)
+

1

2
AT T C̄

2
T c

2
Ts + C̄T cTs

(
Acξ +A′

lcA
−1
ll Alξ

)
ξs −

1

2
x′Λ̃xx+ t.i.p.+O(ϵ3)

where

Λ̃x ≡ κ′Λpκ+ Λx.
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Using a second-order approximation of the budget constraint and the foreign no-arbitrage equa-
tions,

W =
∑
s

πs{−
1

2
AT T T 2

s + TsAT ξ · ξs −
1

2
x′Λ̃xx}+ t.i.p.+O(ϵ3) (273)

where

AT ξ = Acξ +A′
lcA

−1
ll Alξ +

(
∂2U

∂C2
T

+A′
lcA

−1
ll Alc

)
DξYT +

∂U

∂CT
γ∗DξC

∗.

Monetary policy Because prices are sticky, the exchange rate can a�ect the overall level of labor.
Indeed, consumer optimization implies

UCm(s) = E−1
s PmsUCT (s)

A �rst-order approximation of this equation yields(
ΓT + ΓMA

−1
ll Alc

)
Ts +

(
Γξ + ΓMA

−1
ll Alξ +

(
ΓT + ΓMA

−1
ll Alc

)
DξYT

)
· ξs +

(
ΓMD−1

1 − κ
)
xs =

(274)

1M×1

(
−es −

(
∂U

∂CT

)−1

AT T Ts +

((
∂U

∂CT

)−1

AT ξ − γ∗DξC
∗

)
· ξs +

(
∂U

∂CT

)−1

A′
lcD−1

1 xs

)
+O(ϵ2)

where ΓT ∈ RM×1, Γξ ∈ RM×S , ΓM ∈ RM×M are given by:

ΓT (m) ≡
(
∂U

∂Cm

)−1 ∂2U

∂Cm∂CT

Γξ(m, :) ≡
(
∂U

∂Cm

)−1
(
DCmξU +

∑
m′

∂2U

∂Cm∂Cm′
DξFm′

)

ΓM (m,m′) ≡
(
∂U

∂Cm

)−1( ∂2U

∂Lm∂Cm′
+

∂2U

∂Cm∂Cm′

∂Fm′

∂Lm′

)
.

Planner's problem and optimal tax The planning problem is to maximize (273) subject to
(274), the de�nition of the transfer

Ts =
∑
j

Θ̄jrrjs (275)

and the de�nition of realized excess returns, given to �rst order by

krrjcTs + krrjees + krrjxxs + krrjξξs = rrjs, (276)

where krrjc, krrje ∈ R, krrjx ∈ R1×M , krrjξ ∈ R1×S .
Let νs denote the multiplier on (274) and substitute (276) into (275) and let λs denote the
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multiplier on the resulting constraint. The FOC of this problem are

−AT T Ts +AT ξ · ξs + ν ′sΓ̃T −

1−
∑
j

Θ̄jkrrjc

λs = 0

ν ′s1M×1 +
∑
j

Θ̄jkrrjeλs = 0

−Λ̃xxs +
∑
j

Θ̄jk
′
rrjxλs + Γ̃′

Mνs = 0

∑
s

πsrrjsλs = 0.

where

Γ̃T = ΓT + ΓMA
−1
ll Alc + 1M×1

(
∂U

∂CT

)−1

AT T

Γ̃M = ΓMD−1
1 − κ− 1M×1

(
∂U

∂CT

)−1

A′
lcD−1

1

Combining the last FOC with the second FOC,∑
s

πsrrjsν
′
s1M×1 = 0.

Solving for νs in the third equation and replacing,∑
s

πsωrrjsxs = 0

where

ω = −11×M

(
Γ̃′
M

)−1
Λ̃x ∈ R1×M (277)

is a 1×M vector of weights. Intuitively, the planner only allows �average� booms and recessions to
improve insurance. ω controls how important each of these output gaps are for welfare.

To study the optimal tax, I combine a second-order approximation of home and foreign no-
arbitrage conditions, ∑

s

πs
(
−AT T Ts +A′

lcxs +AT ξ · ξs
)
rrjs =

∂U

∂CT
τj

Combining this with the �rst FOC of the planner's problem and portfolio optimality (the last FOC),∑
s

πs (Axxsrrjs) =
∂U

∂CT
τ.

where

Ax = −
(
Γ̃T

)′ (
Γ̃′
M

)−1
Λ̃x +A′

lc ∈ R1×M (278)

As one would expect, a tax is needed if the returns of the assets are correlated with the output
gaps. Crucially, the weights that matter for the wedge between social and private marginal utility
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Ax are not typically the same as the one that the planner seeks to stabilize for demand-management
reasons, ω. Intuitively, if good j has a high Ax(j) relative to ω(j), then the economy will feature
signi�cant booms and recessions in good j that matter for the wedge but matter little for welfare.
Thus, ceteris paribus, assets with a high return when good j is booming will be overvalued and vice
versa. There are a few remarkable cases, however, where Ax and ω are proportional to one another:
separable utility and GHH preferences (the latter only with rigid prices).

I collect these results in the following proposition.

Proposition 23. In a multi-sector small open economy model (i.e. m → ∞), the optimal policy
prescribes that a weighted average of the output gaps is uncorrelated with the returns of available
assets, ∑

s

πsωrrjsxs = O(ϵ3).

where ω is given by (277). Furthermore, the optimal taxes are given by∑
s

πs (Axxsrrjs) = UCT τ +O(ϵ3),

where Ax is given by (278). Therefore, if there exists a constant K ∈ R such that

ω = KAx,

then the optimal tax is zero. Examples of economies where such a constant exists are:
(i) Models with symmetric nontradable sectors;
(i) A model where tradables are separable from nontradables, i.e.

U(CTs, {Cms}m, {Lms}m) = UT (CTs) + UN ({Cms}m, {Lms}m);

(ii) A model with rigid prices (ϕm = 1 ∀m) and GHH preferences

U(CTs, {Cms}m, {Lms}m) =
1

1− γ

(α 1
ρ

TC
ρ−1
ρ

Ts +
M∑

m=1

α
1
ρ
mC

ρ−1
ρ

ms

) ρ
ρ−1

−
M∑

m=1

αm

1 + φm
L1+φm
ms


1

1−γ

,

where αT +
∑M

m=1 αm = 1. I veri�ed this analytically for M = 2, but numerical explorations suggest
it works for an arbitrarily large M ∈ N.

Proof. (i) is immediate from the fact that all rows will give identical results if all nontradable sectors
are identical;62 (ii) when tradables are separable from nontradables, ΓT = Alc = 0M×1. Therefore,

Ax =

(
∂U

∂CT

)−1

AT T︸ ︷︷ ︸
K

(
−11×M

(
Γ̃′
M

)−1
Λ̃x

)
︸ ︷︷ ︸

ω

.

(ii) After some algebra, one can show that when M = 2 and prices are fully rigid,

Ax =
1

ραT︸︷︷︸
K

ω.

62The symmetry here refers to how they enter into utility; shocks ξ can vary across sectors.
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Examples of non-zero taxes A model with asymmetric wealth e�ects can produce a non-zero
tax. Consider, for example, a model where one good is separable and the other is not:

U(CT , C1, C2) = ln
(
α−αT
T α−α1

1 CαT
T Cα1

1 − α1L1

)
+ α2 lnC2 − α2L2

and linear production Cm = ZmLm ∀m. Simulating this model with αT = 0.4, α1 = α2 = 0.3, and
rigid prices (ϕ1 = ϕ2 = 1), I �nd that Ax is relatively larger than ω for the second (separable) good.
For simplicity, consider an environment where Θ̄ = 0 so that the solution features no transfers.
Suppose that nontradable productivity of good 2 goes up. In this case, the planner reacts with a
boom in sector 1 and a recession in sector 2. Since the externality places a higher weight on sector
2, the private sector undervalues consumption in this state. The opposite is true when z1 and y are
high (a y shock implies labor would ideally go up in sector 1 and stay constant in sector 2, so the
former will have a recession and the latter a boom). In sum, assets that pay relatively more when
z2 is high are undervalued while assets that pay when z1 is high are overvalued. Note that the case
of a home-currency bond is non-obvious since the exchange rate moves in the same direction with
both productivity shocks, i.e. z1 and z2.

A GHH model with heterogenous degrees of price stickiness can also give rise to a non-zero tax.
Suppose utility is GHH with ρ = γ = 1, αT = 0.4, α1 = α2 = 0.3 and φm = 0.63 Furthermore,
suppose ϕ1 = 0.5 while ϕ2 = 0.9. In this model, per unit of output gap, both goods create the same
wedge between private and social marginal utility. However, prices in sector 1 are more �exible
and, hence, a large output gap implies substantial price dispersion, which is very costly. Hence, the
planner allows for small output gaps in sector 1 and large ones in sector 2. As a result, assets that
pay when sector 2 booms are overvalued, e.g. assets that pay when z1 is large.

C Calibration details and additional numerical results

In this section, I present the calibration details omitted in the main text and I conduct additional
exercises to shed additional light on the quantitative relevance of the insurance channel. In every
case, I re-calibrate the volatility of the convenience-yield shock σ(ψ) to match the observed portfolios
under the Taylor rule.

C.1 Calibration details

I adopt standard values for the discount factor (0.99), risk aversion (2), and the Frisch elasticity
of labor supply (12). I set the elasticity of substitution between tradable and nontradable goods
at ρ = 0.74, following Mendoza (1992), who estimates it in a sample of 13 industrial countries.
I assume that intermediate good producers do not reoptimize each period with probability 0.75,
and set the elasticity across varieties η to 6, as in Gali and Monacelli (2005). For the remaining
parameters, I use data from Canada, which I take as a benchmark small open economy. I classify
as nontradable sectors those with a very low export share: construction and services related to
real estate services, public administration, education, health services and professional and scienti�c
services. This leads to a share of tradables in output (α) of 55%. Furthermore, I assume that the net
foreign asset position is balanced (i.e, NFAss = 0), which is roughly in line with the average NFA
in Canada over the past decade. The coe�cients of the Taylor rule are borrowed from Verstraete
and Suchanek (2018), who estimate the coe�cients of the Taylor rule for Canada (table 4a in their

63One can also get a non-zero tax with heterogeneity in φm or Fm provided ϕm < 1 or Fm is nonlinear in Lm.
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paper).64 Since I lack data on the maturity of home-currency external debt, I choose δ to match
an average maturity of 6 years, which roughly corresponds to the average maturity of Canadian
government debt.65

C.2 Nominal rigidities

In this section, I study the sensitivity of the results to changes in the parameters that govern nominal
rigidities. First, I assume that nontradable producers reset their prices more often, reducing ϕ from
0.75 to 0.7. Second, I assume a higher elasticity of substitution across varieties, η = 11. Finally, I
assume a lower elasticity of labor supply, φ = 10.

Table 4 shows the results. As one may see, the size of the gross positions and the relative impor-
tance of the insurance target increase substantially when prices are more �exible.66 Indeed, under
the optimal policy both objectives become equally important. Like before, portfolio endogeneity is
crucial: if the portfolio were not able to adjust, the demand-management objective would still be
by far the most important goal of monetary policy. As one may expect, the planner can now reap
more bene�ts out of �nancial integration. An increase in the elasticity of subtitution has a similar
e�ect in the opposite direction.

A decrease in the labor supply elasticity has ambiguous e�ects. On the one hand, it decreases
the exogenous parameter that controls the importance of the insurance motive, χ: a given output
gap is more costly if the disutility of labor is more convex (see section 2.3 for an explicit expression in
the static model). It also strenghtens the wealth e�ect discussed in section 3.6, which also decreases
the importance of the insurance motive because short home-currency positions become more costly.
On the other hand, φ also lowers the volatility of the realized returns under demand-management,
implying that large gross positions will not typically create large undesired transfers of wealth after
e.g., productivity shocks. In this numerical example, both forces o�set each other so that the �nal
outcome is similar to the baseline model.

C.3 Finite number of foreign arbitrageurs

Next, I consider a deviation from the small open economy assumption that I studied in section
4: only a mass m of foreigners may access Canadian home-currency bond markets (the risk-free
bond in foreign currency is still in in�nitely elastic supply at R∗). I consider di�erent m to vary
the amount of total wealth that the foreign arbitrageurs have. Since a �nite number of foreigners
introduces a terms-of-trade manipulation e�ect, I report the optimal tax on home-currency bonds
and consider a �fth policy: the solution under cooperation.

64Note that the coe�cients that they report for in�ation and output gaps correspond to (1− ρi)ϕπ and (1− ρi)ϕx
in my model, respectively.

65Bank of Canada reports government debt by maturity grouped into time brackets: up to 3
months, from 3 months to 3 years, from 3 to 5 years, from 5 to 10 years, and over 10
years (https://www.bankofcanada.ca/rates/banking-and-�nancial-statistics/government-of-canada-direct-securities-
and-loans-classi�ed-by-remaining-term-to-maturity-and-type-of-asset-formerly-g6/). I compute average maturity as
a weighted mean of the average and the maximum value of the brackets, which takes values between 5.7 and 6.7 for
the years in the sample.

66One reason why these quantitative results are fairly sensitive to the value of these parameters is that the correlation
between both exchange-rate targets is not very large in the calibrated model (see table 2). One may see from the
solution to the optimal portfolio problem (see equation (97)) that, if the correlation were exactly zero, the solution
would be �bang-bang�: pick B̄ = 0 if demand-management is more important, and B̄/(1−µB̄) → ±∞ if insurance is.
In other words, there is a threshold value χ∗ such that the behavior of the optimal portfolio varies drastically around
it. Similarly, in models where the correlation is small, there exists a region of the parameter space where optimal
portfolios become very sensitive to the values of parameters that a�ect χ, such as η and ϕ.
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Table 5 shows the results. As the number of foreigner arbitrageurs decreases, the size of op-
timal positions naturally decreases: it is more expensive for foreigners to hold the home-currency
bond because it induces additional volatility in their consumption. Importantly, the home planner
understands that, as the country issues more home-currency debt, the yield on this debt increases.
Thus, it taxes home-currency debt (subsidize home-currency assets) to induce agents to reduce their
home-currency debt against the rest of the world. The tax is substantial; slightly under 100% of
the expected excess returns under demand-management and over 100% under the optimal policy.67

Interestingly, when there are very few foreigners (bottom panel) the tax is so large that under the
optimal policy the observed level of �nancial integration is actually smaller than under laissez-faire
with a Taylor rule. Furthermore, note that the insurance weight increases as m decreases when the
portfolio is �xed (column 4). This is because the planner starts caring about transfers of wealth not
only because of their e�ect on risk sharing, but also on the price of the bond. Indeed, one can see
from equation (256) that χ decreases with m. Similarly, because this terms-of-trade manipulation
motive exists even under complete markets and �exible prices, there is not much �nancial integra-
tion even under the �rst best with non-cooperative policy. As a result, the demand-management
and optimal policies attain a larger share of the potential gains of trading the home-currency bond
with the rest of the world.

Finally, note that the limits to arbitrage in home-currency bond markets imply that there are
substantial gains for the world of cooperating. When the foreign welfare is taken into account, the
planner once again chooses large gross positions under the optimal policy. In addition, note that
the welfare gains of �nancial integration relative to the �rst-best decrease with m. The reason for
this is that the model is being recalibrated as m changes to match positions under the Taylor rule.
Since a smaller m naturally makes larger positions more expensive, the required volatility of the
convenience-yield shock also decreases. As a result, the correlation between both exchange-rate
targets increases and the planner gets closer to the �rst-best without distorting demand.

C.4 Savings taxes and bond duration

In section 5.3, I emphasized that in a dynamic model the planner does not only rely on monetary
policy but also on savings taxes (i.e., taxes on cross-border �ows that are uniform across assets)
to manipulate the realized return of the home-currency bond. Here, I compute the savings taxes
that are implied by the model under the optimal policy and compare the solution to the case where
these taxes are unavailable (see appendix B.4.15 for the theoretical derivation). In that section, I
also emphasized that the optimal savings taxes crucially depends on the maturity of the bond. To
study this, I consider a case with a 1-year bond (δ = 1

4) and a case with a 10-year bond (δ = 1
40).

Table 6 shows the results. In the baseline calibration, taxes allow the planner to increase the
weight on the insurance motive and reap more bene�ts from �nancial integration. However, the
e�ects are not very large: without taxes the optimal weight only decreases by two percentage
points while the gross position decreases by 7 percentage points of GDP. Taxes are rather small:
their standard deviation is only 0.07%. These taxes become an order of magnitude larger when
considering one-year bonds. Accordingly, the planner can provide much more insurance when they
are available. The intuition is given by proposition 14. When bonds are short, they promise a stream
of payments with a larger variability over time, i.e. a large payment today and small tomorrow. As
a result, manipulating the path of tradable consumption and, hence, of the real exchange rate that
closes the output gap, is very e�ective at manipulating the payments of these bonds. By contrast,
when they are long, they promise similar payments over time and, hence, distorting the path of
tradable consumption is less e�ective at distorting the value of the payment stream.

67Recall that this tax, like the expected excess returns (i.e., the risk premium), are second-order objects.
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Finally, comparing results across duration, one may see that the planner can provide more
insurance when bonds are long. The main reason is that the parameter that governs the importance
of insurance χ increases with bond maturity. When bonds are long, the planner can make exchange
rate promises far into the future. These promises a�ect the value of the long bonds today, but
create little production distortions: these movements are expected and give �rms time to adjust
their prices.

C.5 Other parameters

In the main text, I set α = 0.55 to re�ect the share of the tradable sector in Canada. However,
as argued by Burstein, Neves and Rebelo (2003), tradable goods have a large distribution cost
component, which is also nontradable. For Canada, they estimate this distribution cost to be 40%.
Making this correction implies a tradable share of α = 0.33. Since the nontradable sector is the
one a�ected by the nominal rigidity in my model, this makes demand-management more important.
Accordingly, the planner reduces the insurance weight to 6.33% and lowers the optimal position in
home-currency debt to 59%.

Next, I study the role of the complementarity between tradable and nontradable goods. I
consider two values, which correspond to the bounds on the estimates in the literature (see Akinci
(2011) for a survey): ρ = 0.4 and ρ = 1.5. A lower elasticity of substitution decreases the pass-
through of the exchange rate to the output gap, which lowers the cost of providing insurance. In
addition, it makes capital controls more e�ective: the wealth e�ect becomes more important (i.e., µ
is larger) and, thus, changes in tradable consumption have a larger e�ect on the exchange rate that
closes the output gap.68 Overall, the e�ects are signi�cant: at the lower end, the optimal weight
on insurance increases by �ve percentage points, while it decreases by two percentage points at the
upper end of the admissible values for ρ.

Next, I vary risk aversion (column 5). I set γ = 10 - the upper bound of the range considered
by Mehra and Prescott (1985). A higher risk aversion naturally makes insurance more important.
Thus, the optimal insurance weight increases, gross positions become larger, and there are larger
gains of �nancial integration.

Finally, I change the discount factor (column 6). For illustrative purposes, I set β=0.98, which
is very low for a model at the quarterly frequency. Ceteris paribus the shocks, a higher discount
factor implies transfers become more valuable. It has a similar e�ect to risk aversion, although its
e�ects are more modest.

68When ρ = 0.4, σ(τsav) = 0.16%. When ρ = 1.5, σ(τsav) = 0.04%.
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Table 4: Varying the importance of demand-management

Taylor rule Demand
management

Optimal Optimal: �xed Θ

A. Benchmark

ω 0% 11.37% 1.66%

Θ̄ −30.00% −28.97% −85.83% −30.00%

Welfare gains 1.32% 2.28% 6.49% 3.90%

B. Low price stickiness (ϕ = 0.7)

ω 0% 54.52% 2.46%

Θ̄ −30.00% −28.80% −237.28% −30.00%

Welfare gains 1.31% 2.26% 16.25% 4.66%

C. High elasticity of substitution across varieties (η = 11)

ω 0% 2.29% 0.95%

Θ̄ −30.00% −28.97% −47.38% −30.00%

Welfare gains 0.57% 2.28% 3.68% 3.21%

D. Low elasticity of labor supply (φ = 10)

ω 0% 11.50% 1.64%

Θ̄ −30.00% −29.67% −88.14% −30.00%

Welfare gains −0.66% 2.36% 6.65% 3.96%

Note: Welfare gains are measured by how much of the welfare gap between the �rst-best (a model with �exible prices)

and an economy without home bonds (B̄ = 0) economy is achieved by each policy: welfare(policy)−welfare(B̄=0)

welfare(firstbest)−welfare(B̄=0)
%.

Note that the Taylor rule is not guaranteed to deliver positive welfare gains (an economy without home-currency

bonds and �exible prices/perfect demand-targeting may dominate it).
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Table 5: Finite number of arbitrageurs

Taylor rule Demand
management

Optimal Optimal: �xed Θ Optimal:
Cooperation

A. Benchmark (m→ ∞)

ω 0% 11.37% 1.66% 11.37%

Θ̄ −30.00% −28.97% −85.83% −30.00% −85.83%

τB/risk premium 0% 0% 0%

Welfare gains 1.32% 2.28% 6.49% 3.90% 6.49%

B. Equal number of home and foreign agents (m = 1)

ω 0% 6.19% 3.69% 15.77%

Θ̄ −30.00% −20.84% −39.63% −30.00% −80.88%

τB/risk premium −74.17% −176.1% 0%

Welfare gains 0.83% 3.73% 7.01% 6.63% 10.02%

C. Very few foreigners (m = 1
10
)

ω 0% 11.94% 18.78% 31.94%

Θ̄ −30.00% −16.08% −22.86% −30.00% −59.56%

τB/risk premium −82.65% −115.49% 0%

Welfare gains −10.96% 17.43% 24.66% 22.78% 33.60%

Note: Welfare gains are measured by how much of the welfare gap between the �rst-best (a model with �exible prices)

and an economy without home bonds (B̄ = 0) economy is achieved by each policy: welfare(policy)−welfare(B̄=0)

welfare(firstbest)−welfare(B̄=0)
%.

The �rst-best is computed from the point of view of the home economy in the �rst four columns, and from the point

of view of a global planner in the last column (i.e. even under complete markets and �exible prices, a non-cooperative

planner would like to manipulate the stochastic discount factor of foreigners). Note that the Taylor rule is not

guaranteed to deliver positive welfare gains (an economy without home-currency bonds and �exible prices/perfect

demand-targeting may dominate it).
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Table 6: Savings taxes and bond duration

Optimal policy:
with taxes

Optimal policy:
without taxes

A. Benchmark (δ = 1
24
)

ω 11.37% 9.17%

Θ̄ −85.83% −77.99%

σ(τsav.) 0.08% 0%

Welfare gains 6.49% 5.93%

B. One-year bonds (δ = 1
4
)

ω 6.01% 0.87%

Θ̄ −67.49% −37.64%

σ(τsav.) 0.84% 0%

Welfare gains 4.59% 2.62%

C. Ten-year bonds (δ = 1
40
)

ω 50.35% 46.81%

Θ̄ −217.18% −202.67%

σ(τsav.) 0.08% 0%

Welfare gains 15.34% 14.45%

Note: Welfare gains are measured by how much of the welfare gap between the �rst-best (a model with �exible prices)

and an economy without home bonds (B̄ = 0) economy is achieved by each policy: welfare(policy)−welfare(B̄=0)

welfare(firstbest)−welfare(B̄=0)
%.
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Table 7: Other parameters

Taylor rule Demand
management

Optimal Optimal: �xed Θ

A. Benchmark

ω 0% 11.37% 1.66%

Θ̄ −30.00% −28.97% −85.83% −30.00%

Welfare gains 1.32% 2.28% 6.49% 3.90%

B. Low openness (α = 0.33)

ω 0% 6.33% 1.85%

Θ̄ −30.00% −29.86% −58.99% −30.00%

Welfare gains 0.49% 3.66% 6.96% 5.43%

C. Low elasticity of substitution T/NT (ρ = 0.4)

ω 0% 15.33% 1.96%

Θ̄ −30.00% −30.29% −96.50% −30.00%

Welfare gains 1.00% 2.82% 8.38% 4.72%

D. High elasticity of substitution T/NT (ρ = 1.5)

ω 0% 9.36% 1.44%

Θ̄ −30.00% −27.87% −81.35% −30.00%

Welfare gains 1.27% 1.84% 5.27% 3.25%

E. High risk aversion (γ = 10)

ω 0% 19.16% 6.09%

Θ̄ −30.00% −25.71% −58.53% −30.00%

Welfare gains 1.59% 7.29% 16.21% 12.75%

F. High discount factor (β = 0.98)

ω 0% 14.53% 3.03%

Θ̄ −30.00% −28.74% −74.36% −30.00%

Welfare gains 2.30% 4.37% 10.62% 7.25%

Note: Welfare gains are measured by how much of the welfare gap between the �rst-best (a model with �exible prices)

and an economy without home bonds (B̄ = 0) economy is achieved by each policy: welfare(policy)−welfare(B̄=0)

welfare(firstbest)−welfare(B̄=0)
%.
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