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Abstract

I study optimal monetary policy and capital controls in a small open economy model with nomi-
nal rigidities, incomplete markets, and cross-border holdings of assets denominated in home and
foreign currency. Monetary policy can enhance risk sharing across countries by influencing ex-
change rates. The strength of this channel depends on the international portfolio, giving rise to
a potential rationale for capital controls. I develop an approximation method that allows me to
characterize the optimal policy explicitly. I show that optimal monetary policy is a weighted av-
erage of an inflation target and an insurance target and characterize the optimal weight sharply.
Perhaps surprisingly, as insurance considerations become more important, home-currency posi-
tions become larger, and the realized excess return volatility of home-currency assets actually
decreases, rather than increases as one would expect with exogenous portfolios. In addition, I
find that private portfolio decisions in small open economies are approximately efficient so that
differential capital controls on foreign- vs. home-currency assets are not necessary.
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1 Introduction

The size of international balance sheets has increased dramatically in the past three decades

and Milesi-Ferretti, 2007). In this context, small movements in exchange rates, stock, and bond

prices can create large capital gains and losses across borders. Today, these valuation effects are

often of comparable magnitude to current account fluctuations (Gourinchas and Rey, 2013} [Lane|
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and Milesi-Ferretti, 2007; Tille and van Wincoop, 2010)). As a result, they are crucial to understand
the behavior of a country’s international invesment position. However, the policy implications of
this phenomenon remain largely unexplored.

In this paper, I study the implications of financial integration for optimal monetary policy and
capital controls. The focus on these two policy instruments is motivated by two observations.
The first observation is that both monetary policy and capital controls can be used to influence
exchange rate movements, which are one of the most important sources of asset-price fluctuations in
open economies (Lane and Shambaugh, 2010). For example, tightening monetary policy and taxing
savings typically leads to a stronger currency, increasing the return of home-currency bonds. Thus,
by increasing the returns of the country’s international portfolio in bad times, and decreasing them
in good times, central bank policies can improve the hedging properties of the portfolio; that is,
they can play an insurance rolef_-]

The second observation is that a country’s international portfolio is the key determinant of
the strength of the insurance channel. When agents have sizeable cross-border positions in home-
currency assets, exchange rate movements can be very powerful as a means of completing markets.
This has two implications. First, there is a two-way feedback between monetary policy and portfolio
choice, as positions depend on agents’ expectations of monetary policy. Second, capital controls
taxing the composition of international portfolios may be desirable, as agents do not internalize the
effect of their portfolio choice on the ability of the central bank to provide insurance. Indeed, the
presence of incomplete markets and nominal rigidities guarantees this will be the case (Geanokoplos
and Polemarchakis| 1986, [Farhi and Werning, [2016). However, there is little guidance as to how
important these taxes may be or even what sign they may have.

The main contribution of this paper is to characterize optimal monetary policy and capital
controls in a model that allows for the previous considerations. From an economic standpoint, this
requires: (i) extending the typical open economy macroeconomic model used for optimal policy
analysis, where either markets are complete and there is no insurance role, or there is a single
asset and there is no role for portfolio choice; and (ii) developing new tools to study optimal policy
in these richer environments, where the standard linear-quadratic framework cannot immediately
be applied due to the indeterminacy of the portfolio at the steady state. To this end, I extend a
canonical open economy model by allowing the home country to trade multiple assets with the rest
of the world. T assume that these assets are insufficient to span the whole state space (i.e. markets
are incomplete) and that the return of some of these assets depends on monetary policy. I overcome
the indeterminacy of the steady-state portfolio by showing how the perturbation approach in [Judd
and Guu (2001) employed in positive analysis can be used to extend the linear-quadratic normative
framework in Benigno and Woodford| (2012).

The main results in this paper arise from the interaction between exchange rate management

and international portfolio choice. To illustrate the forces at play in the simplest possible way, 1

1t is well understood that monetary policy can play an insurance role in environments with incomplete markets
by affecting the terms of trade (Obstteld and Rogoftl 2002, |Corsetti, Dedola and Leduc| [2010)). I abstract from this
channel by focusing on a small open economy that faces exogenous terms of trade.



start with a static small open economy model where agents have an endowment of tradable goods
and produce nontradable goods with labor. There are two periodsE] In the first period, agents
only trade financial assets. In the second period, the state of the world is realized, agents produce,
honor their financial obligations, and consume. The model has two key ingredients. First, like in
the canonical model, there are nominal rigidities (sticky prices). This ingredient gives rise to the
traditional demand-management role for monetary policy, which can undo the distortions associated
with sticky prices. The second ingredient is the availability of home- and foreign-currency bonds
that can be traded internationally. This ingredient gives rise to the insurance channel discussed
above, and a nontrivial portfolio problem.

In this environment, I study the problem of a planner that maximizes the utility of home
households under commitment. The planner has two tools: monetary policy and capital controls.
Monetary policy is a state-contingent exchange rate rule. Capital controls are taxes on financial
assets. My approximation method allows me to get closed form solutions for the optimal monetary
policy, portfolio, and capital controls around the nonstochastic steady state. Using this approx-
imation, the two ingredients described above translate into two targets for monetary policy: a
demand-management target and an insurance target. The former is the exchange rate that would
be required to attain a zero output gap (i.e. restores production efficiency). The latter is the
one that equalizes the marginal utility of tradables at home and abroad (i.e. replicates complete
markets).

The optimal monetary policy balances these two objectives. I show that the optimal weight
on the insurance target increases with the size of gross positions. The reason is that large gross
positions make the return of the portfolio sensitive to monetary policy. That is, small exchange rate
movements create substantial capital flows. As a result, the planner can enhance risk sharing at a
small cost in terms of the output gap. Conversely, letting the exchange rate float freely to close the
output gap is very costly, as this would imply large undesirable transfers of wealth across borders.
In other words, currency mismatches endogenously create “fear of floating” in some states of the
world, e.g. after non-tradable productivity shocks.

I show three main results that emerge from studying endogenous portfolio choice. The first result
is that the planner chooses the portfolio to align the two targets as much as possible but, forced
to prioritize an objective, the planner chooses larger gross positions when the insurance motive is
more important. This makes it ex post more difficult to stabilize demand, but improves the ability
of the planner to provide insurance.

When is the insurance objective more important? There are two main determinants. First,
there are primitives that control whether one objective dominates over the other, e.g. the degree of
risk aversion or price stickiness. Second, there is the relative likelihood of different kinds of shocks.
For example, in the simple model shocks to nontradable productivity require that the exchange
rate moves to close the output gap (the demand-management target) but that it stays constant

to prevent transfers of wealth (the insurance target). Shocks to the tradable endowment create

21 refer to this as the static model because there is no intertemporal decision.



the opposite pattern. Thus, the more volatile the tradable endowment, the more important the
insurance motive is. In other words, although risk is a second-order phenomenon, it matters for
optimal monetary policy to first order via the portfolio decision.

The second result is that endogenous portfolio choice is crucial for the volatility of home-currency
returns. That is, suppose that the planner now cares more about insurance, e.g. prices become
more flexible, what happens to the volatility of the home-currency returns? Holding the portfolio
constant, the optimal policy prescribes that home-currency returns move more in states of the
world where there is a demand for insurance, e.g. after tradable-endowment shocks, but move less
otherwise, e.g. after non-tradable productivity shocks. Crucially, I show that this composition
effect is exactly zero when evaluated at the optimal portfolio. Since gross positions increase under
the optimal policy, the volatility of home-currency returns relative to a pure demand-management
policy decreases: a smaller change is need to provide insurance and it becomes more costly to close
the output gapf’j

The third main result is that the approximate solution implies that capital controls should not
tax the composition of international flows, despite the presence of aggregate-demand externalities.
While private agents would choose the wrong portfolio absent taxes (Farhi and Werning, 2016)), as
risk vanishes the portfolio that they would choose converges to the socially-optimal portfolio. The
key observation behind this result is that eliminating production inefficiencies in this economy is
feasible, i.e. the planner can always close the output gap. As a result, the economy only expe-
riences booms and recessions because the planner is trying to improve international risk sharing.
Formally, this implies that output gaps are proportional to social marginal utility. Furthermore,
the wedge between social and private marginal utility is also proportional to the output gap. These
observations imply that social and private marginal utilities are proportional to one another, which
is enough to establish the asymptotic optimality of the private portfolio decision.

After solving the simple model, I consider a general framework that allows for a large class
of preferences, technology, multiple assets, and a potentially finite number of foreign arbitrageurs.
Three main lessons emerge. First, the analysis carries over in terms of two sufficient statistics: the
transfers that would arise under complete markets, which capture the potential insurance benefits,
and the realized returns in an economy where foreigners do not hold home-currency bonds, which
capture the potential fear-of-floating costs associated with currency mismatches. Second, when
there are multiple assets, one needs to correct the aforementioned sufficient statistics and subtract
the insurance the planner can get “for free”, i.e. using the assets at their disposal without distorting
production efficiency. Third, limited participation in home-currency bond markets creates a demand
for cooperation in monetary and capital-control policy across borders. A selfish home planner would

manipulate asset prices to favor the home country, which involves putting non-zero approximate

3Note that this result is described with respect to the volatility of the home-currency returns under demand-
management. However, the volatility of the returns under a pure demand-management policy itself also changes with
the portfolio. Interestingly, this effect depends on the sign of the position: it decreases volatility when home agents
are short the home-currency bond and vice versa. Thus, in the empirically-relevant case where the home country is
short the home-currency against the rest of the world (Bénétrix et al.l [2019), both effects go in the same direction
and overall volatility decreases.



taxes to lower international risk sharing[]

Next, I study a dynamic version of this economy. I show analytically the robustness of the
results and derive new insights, which stem from the fact that the planner has more than one way
to affect the return of the country’s portfolio. For example, to increase the return of the home-
currency bond, the planner can either appreciate the exchange rate today or promise to do so in
the future (or both). In addition, the planner can achieve this appreciation using monetary policy
and savings taxes. Generically, the planner relies on both policy instruments. In other words,
while the composition of capital flows should not be taxed, net flows should, i.e. taxes should be
uniform across assets in the approximate solution. The optimal policy mix depends on features of
the environment, such as the maturity of the home-currency bond.

Finally, I calibrate the model to explore numerically the quantitative relevance of the results.
Since the theoretical analysis assumes commitment, I take Canada as a benchmark advanced small
open economy. The numerical results illustrate that modelling endogenous portfolio choice is crucial.
Indeed, a key feature of the optimal policy is that the home economy takes more debt in its own
currency against the rest of the world. Without this lever, i.e. if the portfolio were exogenously
fixed at the calibrated value, the weight on the insurance target under the optimal policy would be

about seven times smaller and the welfare gains of financial integration almost halved.

Related literature This paper belongs to a large literature exploring deviations of optimal mon-
etary policy from inflation targeting in New Keynesian open economy models, surveyed by |Corsetti,
Dedola and Leduc| (2010). In particular, my analysis is closely related to papers where monetary
policy plays an insurance role linked to the composition of international portfolios. Benigno (2009 )
and |Benigno| (20096) characterize the optimal policy in an economy with home- and foreign-currency
bonds, but lack endogenous portfolio choice. |(Chang and Velasco| (2006) and |Senay and Sutherland
(2019) compare the performance of a set of policy rules with optimal portfolio choice. Devereux
and Sutherland| (2008)) study optimal monetary policy, but in a special case where there are enough
assets to replicate the first-best allocation. I contribute to this literature by solving the joint optimal
monetary and capital-control policy in a second-best environment.

Second, this paper contributes to the literature that studies environments where the planner can
control both the country’s portfolio (directly, i.e. government debt, or indirectly, via regulation) and
monetary policy. Closest to my work is |Farhi and Werning| (2016)), who study a static small-open
economy with home- and foreign-currency debt in one of their applications. They provide a formula
for portfolio taxes, pointing out that they are generically nonzero. Perhaps surprisingly, T show
that, as risk vanishes, these taxes converge to zero faster than the risk premium, so no taxes are
needed in the approximate solution. Du, Pflueger and Schreger (2020), Engel and Park| (2022), and
Ottonello and Perez| (2019) study the interaction of monetary policy and the currency denomination
of sovereign debt. |Drenik, Kirpalani and Perez (2022)) study the interaction between the currency

denomination of contracts by private agents and monetary policy, chosen by a government that lacks

“This result is related to|Costinot, Lorenzoni and Werning| (2014)), except that consumption is optimally procyclical
across states (i.e., imperfect risk sharing) instead of over time - see section



commitment. This paper complements these studies by analyzing the problem under commitment.

Third, there is a related closed-economy literature that studies the potential of monetary policy
to complete markets with nominal assets in environments with commitment; see |Schmitt-Grohe and
Uribe (2004)), Siu| (2006)), Lustig, Sleet and Yeltekin| (2008)) and |[Sheedy| (2014)). In these papers, a
similar trade-off between demand-management and insurance emerges, but insurance takes place
between the government and the private sector, or between borrowers and savers. In addition, my
analysis emphasizes the role of exchange rate movements, and the portfolio decision between home-
and foreign-currency bonds, which is absent from these studies.

Finally, this paper makes a methodological contribution to the literature on optimal portfolio
choice in dynamic stochastic general equilibrium models (Devereux and Sutherland, 2011; Evans
and Hnatkovska, 2012; Tille and van Wincoop, [2010). These papers are positive, aiming to approx-
imate the competitive equilibrium given a policy rule. T extend these methods to tackle normative
questions. That is, I show how the abstract linear-quadratic optimal policy framework of |Benigno
and Woodford| (2012)) can be adapted to handle problems with portfolio choice.

Layout The paper is organized as follows. Section [2| presents a two-period model of a small open
economy that trades home- and foreign-currency assets with the rest of the world. I derive the
planning problem and describe the approximation method. Section [3| characterizes the optimal
policy in this environment. Section {4 extends the two-period model along several dimensions,
allowing for large economies and general preferences, technology, and financial assets. Section
studies a dynamic version of the model. Section [6] numerically explores the quantitative importance
of the results in a calibrated model. Section [7 concludes.

Appendix [A] contains a general proof for the approximation of planning problems with portfolio
choice used in this paper, extending the abstract framework of Benigno and Woodford| (2012), which
may be of independent interest. Appendix [B] contains all other proofs and additional extensions.

Appendix [C] contains additional numerical exercises with the calibrated model.

2 Static model

I start with a simple two-period model to illustrate the main analytical results. Since there are no
savings decisions, I henceforth refer to this model as the static model. I generalize these results
along several dimensions in sections ] and [5] and appendixes and

2.1 Setup

At t = 0, agents trade financial assets. At t = 1, a state of the world s € S is realized, agents honor

their financial obligations, produce, and consume.[ﬂ

®My approximation in section puts restrictions on S. I parametrize shocks as £ = eus where € > 0 is a scalar
with the interpretation of risk and take the limit ¢ — 0. The implicit function theorem and the bifurcation theorem I
rely on require that us is bounded-vector stochastic process (see appendix .



Home households There is a continuum of households in the home country, maximizing a

Greenwood—Hercowitz—Huffman (GHH) utility function

1—
> wU(Crs,Cns, Ls) = > msln (w%so}vga T ZL;W) , (1)

where o > 0, s is the probability of state s, Cps is tradable consumption, C'y¢ is nontradable

—(1=2) is a normalization constant.

consumption, Ly is labor, and x = o~ (1 — «)
At t = 0, agents can trade two assets with foreigners: home-currency bonds B, which offer
a fixed payment R in home currency, and bonds B*, which offer a fixed payment of 1 in foreign

currency. The budget constraint is given by
(1+TB)B+B* :To,

where 75 is an ad valorem tax on home bonds and Tj is a lump-sum transfer from the central bank.
I assume positions are bounded by K > 0, i.e. |B| < K[

At t = 1, the state of the world s is realized and agents receive a tradable endowment Yrp,. 1
normalize the foreign-currency price of the tradable good Pr, to 1. The budget constraint in state
s is

Crs+ E; ' PysCns = Yrs + E; "W, Ls + E; 'y, + RE; ' B + B*
where Py is the price of nontradables, Wy is the wage, and Ilys are profits from nontradable

good producers, and F; is the nominal exchange rate in units of home currency per unit of foreign

currency. Optimization over tradable and nontradable consumption and labor yields

« CNs Es
pu— 2
(1 — CTs PNs’ ( )
it s pe - W (3)

%s * PNS .
Asset optimization yields a no-arbitrage condition,

> {((1 +75) 'RE;' - 1) ;C(f;(s) = 0. (4)

s

Nominal rigidities A representative firm produces nontradable goods with labor using a linear
technology,
Yns = ZsLs,

T normalize the exchange rate at ¢t = 0, Ep = 1, the return of the foreign bond, R* = 1, and the tax on foreign-
currency debt, 7g= = 0. This is without loss of generality in the static model because there is no consumption or
production at t = 0; i.e. only the relative price of the assets is determined in equilibrium.



where Z; > 0 is nontradable productivity, which may vary across states. The price of the nontrad-
able good is fixed at one
Pys=1Vse S. (5)

Firms satisfy any demand at this price.
Foreign households The home economy is assumed to be small relative to the rest of the world,

i.e. its actions do not affect foreign consumption C?%. Foreigner optimization implies the following

no-arbitrage condition,[]

S |(rE - 055 )] =0 ()

S

Central bank The central bank in the economy has two tools: monetary policy and capital
controls. Monetary policy is a state-contingent exchange rate policy rule {E,} gﬁ Capital controls
in this model are represented by the portfolio tax 7. The proceeds are then rebated to home

households through lump-sum transfers,
T() = TBB. (7)

The monetary authority announces the monetary and tax policies at the beginning of time, before

agents engage in bond trading, and is assumed to be perfectly credible.

Goods and labor market clearing Replacing profits, labor income and the ¢ = 0 budget

constraint into the ¢ = 1 budget constraint, I obtain
Ors = Yrs + (RE;' —1)B. (8)
The market clearing condition for nontradables is given by
Cns = ZsLs. 9)

Next, I formally define a competitive equilibrium in this economy.

Definition 1. Given a Central Bank policy ({Es}s,75,70), an allocation ({Crs}s,{Cns}s,{Ls}s,B)
together with prices ({Pns}s,{Ws}s,R) is a competitive equilibrium if and only if they solve

@-@-

"I assume it is infeasible to have a state-contingent tax on the returns of financial assets by foreigners. Otherwise,
the planner would attain the first best: the planner completes markets by choosing the tax such that the home return
after taxes is equal to the desired transfer of wealth under complete markets.

8As is standard in the New Keynesian literature, I focus on the cashless limit (see e.g. [Woodford) 2003).




2.2 Planning problem

The planner in the economy is the central bank, which chooses a state-contingent exchange rate

{Es} and capital controls 75 to maximize the utility of home households. Combining equations ,

and @7

CNS - — ESCTS) (10)
(0%

Ly=——Z7'E,Crp,. (11)
(6

These equations show the allocations of labor and nontradable production that the planner can
attain with a policy {Es}s given {Crs}s. Furthermore, 75 allows the planner to control the agents’
portfolio decision, so can be dropped from the planning problem. Thus, the foreign no-arbitrage

condition @ and the budget constraint characterize the set of implementable allocations.

Lemma 1. An allocation for tradable consumption {Crs}s, an exchange-rate policy {Es}s, a port-

folio B and a home-currency yield R form part of an equilibrium if and only if they solve (6)) and

Next, use equations and to substitute out Cs and Ls in home’s utility function,

-1 lea _l-afl-a, e
V(CTS,ES;ZS) = ln (6% CTSES — 1 T o o Zs ESCTS (12)

Problem 1. The planner’s problem is choosing {Crs}s, {Es}s, and B to maximize

W= Z WSV(CTsa ES§ Zs)
subject to

Yrs + (RE;! —1)B = Crs

S, {(REs_l _ 1)%: (s)] ~0.

S

Before tackling this problem, it is useful to study the problem with complete markets.

Problem 2. When markets are complete, the planner’s problem is choosing {7s}s, and {Fs}s to

maximize

ZT‘-SV(YTS + 7;7 Es; Zs)

subject to

> [Tsjg:(s)} 0



Under complete markets the transfer of wealth in each state of the world 7T, is decoupled from
monetary policy Es. This implies the exchange rate has a single role in this economy: closing the
output gap, i.e. Vg(s) = 0. This is the traditional demand-management role of monetary policy.
Transfers {Tem s }s are then chosen to equalize the marginal utility of tradables abroad and at home,

ie. %(s) x gg: (s).

By contrast, in problem [I] the exchange rate E; is tightly linked to the transfers 7; by the

relationship 7; = (RE;! — 1)B. As a result, the exchange rate plays an additional insurance role,
given by the desire to replicate the complete-markets transfers {7, s }s. When prices are flexible, the
planner can perfectly replicate these transfers since the exchange rate plays no demand-management
role. When prices are sticky and #(.S) > 2, there is a trade-off between both objectives of monetary
policy.

2.3 An almost linear-quadratic approximation

In the literature on optimal monetary policy, a commonly used technique is to replace the original
nonlinear problem with a linear-quadratic (LQ) problem that is valid in a neighborhood of the
deterministic steady state. This technique can be applied under very general conditions and provides
a locally-valid characterization of the solution up to first order. Problems with a portfolio problem,
however, are an exception (Benigno and Woodford, 2012)E] In appendix [Al T use a perturbation
approach based on a bifurcation theorem stated in |Judd and Guu (2001) to show that one can
derive an almost LQ (ALQ) problem that provides a valid characterization of the solution around
the steady state. Here, I illustrate the approach by applying it to the current setting.

The first step is to derive a linear-quadratic objective around a steady state with an arbitrary
portfolio B. Let bars denote steady-state quantities and lowercase letters denote log deviations
from the steady state. I assume that at the steady state C* =1, Y = o and Z = 1 — «, which

then implies R = E~' = 1 and L = 1. A second-order approximation of the objective yields

I+¢ (I+¢)(1-a) i L+¢ ’ : 3
——E Mg (———)acps — ———F— | es + Ts — s + t.L.p. +
w S {( Jac 5 e c Z ip. 4+ O(e)

where t.i.p. stands for “terms independent of policy”. To evaluate the linear term in crg, one needs

to know the behavior of ¢, to second order. A second-order approximation of the budget constraint

9 At the steady state, all assets are perfect substitutes so the optimal portfolio is indeterminate. Furthermore, since
agents are risk neutral to first order, the portfolio is also indeterminate to first order. Formally, this implies that the
Jacobian is singular at the steady state, so an implicit function theorem like the one used by |[Benigno and Woodford
(2012) cannot be applied to justify the validity of the LQ approach.

10



and the foreign no-arbitrage condition yield

1 1 _ _ _
ocTs + iac?ps = ayrs + iay%s + (r—es)B+ 5(7“ — es)zB + (r—es)B + (’)(63)

S mdlr — e+ 5l — e} = 3w — et + O(E)

where v* = —(LJ,—**/,/, B = B — B. Furthermore, note that

Zﬂ's(r —e,)BRE™1 = O(¢),

since only the first order behavior of r—e, is required to evaluate this cross term, Bis predetermined,
and a first-order expansion of the foreign no-arbitrage condition yields >, 7s(r —es) = O(€?). This
is an important observation, as it implies one does not need to know how B varies with risk to
characterize welfare to second order (Samuelson, 1970). Using these observations, the objective

becomes

1 . 1 i
W = —§k0 ZS:FS {X (aQC%S — 2ay*(r — es)cZB) + (65 + o i @CTs - aii28> } +t.1p. + 0(63)
(13)

where kg = (1+¢)(1—a) > 0and x = (a+¢) (1 —a) ta™! > 0. If B were not a choice variable,
then maximizing this objective subject to a first-order approximation of the budget constraint and

the foreign no-arbitrage condition,

acrs = ayrs + B(r — es) + O(e?) (14)
Zﬂ's(r —e5) = O(e?) (15)

would be a proper LQ problem. My result is that solving this problem and maximizing also with
respect to the steady-state approximation point B (a nonlinear but tractable problem) yields a
locally-valid approximation of the solution around the steady state. I show this by proving that the
first-order conditions of this approximate problem coincide with a perturbation of the first-order
conditions of the nonlinear problem. The main advantage of the approximate-problem approach
is that there are typically many local solutions to the first-order conditions, since the problem is
nonlinear in B. Keeping track of welfare allows me to check not only whether the solution is a local
maximum but also the best local maximum among the solutions that stay in a neighborhood of the
steady state. Of course, the usual caveats with respect to local approximation methods apply.

In appendix [A] I show a general version of this result in the abstract setup of Benigno and
Woodford| (2012) extended to allow for optimal portfolio choice, which nests the models used in this

paper. I prove that, as long as there is a single no arbitrage constraint per asset (i.e. the planner

11



can control portfolios), the approach described above is correctm

Proposition 1. (ALQ equivalence to perturbation) Mazimizing with respect to ({es, crs}s,r)
and B yields a linear approzimation of a solution to the first order conditions of problem around

e =0 for ({es,crs}ses,r) and a bifurcation point of the system B.

Proof. This is a special case of proposition [L7| (see appendix [A.3]). O

3 Optimal policy

In this section, I study the optimal policy in the static model. I start by characterizing the solution
when the composite is linear in labor, i.e. ¢ = 0, in sections This parametrization implies
that the exchange rate that closes the output is independent of the outstanding portfolio position.
This simplifies the analysis and serves as a useful stepping stone to understand the main results of
the paper. The case ¢ > 0 is analyzed in section

3.1 Monetary policy focuses on insurance when gross positions are large

Substituting in the constraints and and manipulating , the planning problem becomeﬂ

1 _

{m}aXB _5 Z Ts (65 - 6(1771,,3)2 +XBQ (65 - ems(B))Q (16)
es}s, —_———— —_——
5 demand management insurance
where .
€dm,s = 5257 (17)

is the demand-management target, i.e. the exchange rate that closes the output gap, and

. 1 * %
ein,s(B) = 5 (_ayTs + ay Cs)? (18)

wa]]

—Jem,s

is the insurance target, i.e. the exchange rate that would replicate complete-markets transfers 7ep, 5.
The objective function is intuitive: It penalizes output gaps, i.e. wedges in production efficiency
(the red term), and deviations from complete markets, i.e. wedges in risk sharing (the blue term).

Taking the first-order condition with respect to ez, I obtain the following result.

10Suppose the planner could not tax home-currency bonds. Then, the planning problem would have an additional
constraint: the home no-arbitrage condition . Such a constraint, however, is to first-order identical to the foreign
no-arbitrage condition. In appendix I show that this implies that there is additional indeterminacy at the steady
state: the Lagrange multiplier on one of these no-arbitrage conditions. Thus, one needs to keep track of additional
quadratic constraint. Of course, if the optimal tax is O in the approximated model, those Lagrange multipliers would
be zero. This is the case in this paper when there is an infinitely elastic demand of the home-currency bond by

foreigners (see section [3.5)).
1To simplify the exposition, I assume w.l.o.g. that shocks are mean zero, which implies r = O(€?).
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Lemma 2. (Optimal monetary policy) Consider an economy with small risks, i.e. € — 0. Then,

€op.s(B) = (1 — w(B)) €dm,s + w(B)ems(B) + 0(62). (19)
where w(B) = %.

The optimal exchange rate is a weighted average of the two exchange-rate targets that reflect
the goals of monetary policy. Crucially, the optimal weight w has two components. First, there is
an exogenous component that depends on preferences and technology, controlled by the parameter
X. In this simple example, x depends on openness, «, since nominal rigidities only affect the
nontradable sector.[lzl More generally, it depends on the degree of price stickiness, risk aversion, and
the elasticity of labor supply, among others. More interestingly, there is an additional endogenous
component: the portfolio B. When gross positions |B| are large, the planner only needs a small
exchange rate movement and, hence, small changes in the output gap, to create a transfer 75. This
follows from equation . In other words, providing insurance when |B]| is large is cheap. On the
other hand, it becomes increasingly costly to close the output gap. Doing so requires moving the
exchange rate, which implies a large transfer of wealth across borders. Note that the sign of B is
irrelevant for the argument.

Figure [1| shows the two exchange rate targets and the optimal policy for different levels of B.
The left panel plots the response after a positive innovation to nontradable productivity Z,. Since
the price of nontradables is fixed, the demand management target depreciates to lower the relative
price of nontradables and close the output gap (dashed-red line).ﬁ On the other hand, the insurance
target is a peg if B # OFE] Any movement in e; would create a transfer of wealth across borders
that is undesirable. The solid-green line plots the optimal exchange rate. The larger B is, the
closer it is to the insurance target. When B = 0, there is no insurance role so it coincides with the
demand-management target.

The right panel plots the response after a positive innovation to the tradable endowment. The
demand-management target is a peg, since the relative price of nontradables does not move in the
flexible-price allocation.E] On the other hand, the insurance target is a hyperbola: when B > 0 the
exchange rate needs to depreciate to create a negative transfer that offsets the tradable endowment
shock. The smaller B is, the larger the required movement. Again, the optimal exchange rate lies
between both targets and is closer to the insurance target as |B| increases. The response after c*
shocks is analogous.

Lemma [2]is not a complete characterization of the exchange rate policy, since it depends on the

portfolio, which is endogenous. I tackle this next.

2Note that the relationship is non-monotonic. When « is very high, deviations from demand-management matter
little since the non-tradable sector is small. When « is very low, given B, a small exchange rate change creates a large
transfer relative to the size of the tradable sector. Note, however, that the desired transfer and, therefore, e;n s(B),
also become smaller as a — 0.

13Note that the demand-management target is independent of B. This because of the unitary elasticity of substi-
tutions and ¢ = 0. I relax this in section

"When B = 0, there are no transfers of wealth so es is irrelevant for risk sharing.

15This is because of GHH preferences, unitary elasticities of substitution, and ¢ = 0.

13



Figure 1: Optimal exchange rate conditional on B

(a) Nontradable productivity shock
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(b) Tradable endowment shock

€s

0
.
ea,
a.,

oy
G
.....
0
0
.
.

€op,s  mmmas Cdm,s  weeesss €in,s €op,s

Note: Exchange rate response after a positive nontradable productivity shock (left) and a positive endowment shock
(right): demand-management target (dashed-red line), insurance target (dotted-blue line), and optimal policy (solid-
green line). I set @ = 0.55 and ¢ = 0.

3.2 Optimal portfolio

Next, I characterize the optimal portfolio. Replacing into and rearranging, the planner’s

problem becomes

L xko P2 2 2 B
mgx—iw B Uedm + O-’T(m +2BU7—cmedm (20)

demand management insurance  align targets

2
€dm

the demand-management target, and o7, ¢, is their covariance, respectively. Solving this problem

where U%—Cm is the volatility of transfers in the complete markets allocation, o2, is the volatility of
yields the optimal steady-state portfolio B, which is one of the solutions to a quadratic equation
(in an interior optimum).

The optimal B has two important properties, which I describe next.

3.2.1 The planner chooses portfolios to mitigate trade-offs

Choosing the portfolio optimally allows the planner to mitigate the trade offs between insurance and
demand management. This effect is captured by the third term in the objective . For example,
suppose the economy only receives nontradable productivity shocks z,. By choosing B = 0, the

planner can allow the exchange rate to float freely without creating any undesirable transfers of
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wealth across borders. Thus, they replicate the behavior of the first-best economy to first orderff]

When the economy faces more shocks, the planner exploits the correlation between the targets.
For example, suppose endowment shocks yrs and nontradable productivity shocks z; are positively
correlated (7em,s and egy, s are negatively correlated). When the country is long home-currency
assets (B > 0), the targets align: An exchange rate depreciation when z, is high closes the output
gap and creates a negative transfer, which is desirable because the endowment yr, is high. Thus,
by choosing B appropriately, the planner can replicate the first-best allocation to first order. When
the correlation is imperfect, the first best is unattainable but the same intuition goes through: the

planner chooses B to align the targets on average.

Proposition 2. In an interior optimum, the optimal home-currency position B has the opposite
sign to o1..e4. - If Tem and eqp, are perfectly correlated, the planner attains the first-best allocation

to first order (provided K is large enough so that the replicating portfolio is feasible).

3.2.2 When market incompleteness is pervasive, large gross positions are optimal

To the extent that the insurance and demand management motives are not perfectly correlated, the
planner needs to prioritize one objective. In section I argued that the optimal weight depended
on the portfolio B. When gross positions |B| are large, it is relatively cheap to provide insurance
and relatively costly to close the output gap. By contrast, small gross positions |B| minimize the
losses from deviations from demand management o> . (the first term). This argument is reflected
in the first and second terms of the objective .

This principle guides the optimal portfolio decision when trade-offs are unavoidable: The more
important the insurance motive, captured by Uchm / Jg . and x, the larger the gross positions |B|.
In this example economy, a%—cm Jo? . would be large if yrs and c are very volatile relative to zs.
Note that it is crucial that the proper hedges of yrs and ¢} are missing securities. If agents could
imperfectly hedge these shocks, the volatility of the transfers that need to be replicated UQTcm would

decrease and the planner would choose a smaller currency exposure (see section .

Proposition 3. In an interior optimum, gross positions |B| become larger when the insurance
motive becomes more important (i.e., when O'%— /o2 or x increase). Furthermore, a decrease in
cm dm
the covariance between the insurance and the demand-management targets - |o7., ¢, |/02 - makes
Cm dm
gross positions |B| smaller if and only if the demand-management motive is more important than
the insurance motive, i.e., if of > xoz. . Conversely, i.e., if o7 < xo7 -, it makes gross

positions | B| larger.

3.3 Optimal monetary policy: Risk matters to first order

In standard models, the optimal monetary policy in any given state is independent from the relative

likelihood of that state. Here, that is no longer true. The optimal exchange rate response depends

16Suppose there are no restrictions on cross-border currency holdings, i.e. K = co. When the economy receives
only tradable endowment shocks, the planner can approximate the first-best arbitrarily closely by choosing B — oo
and es; — 0 such that Bes = ayrs. This case is similar to the one studied by |Korinek]| (2009).
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on B, which in turn depends on the distribution of shocks in the economy. Indeed, an important
feature of the solution is that optimal portfolio choice amplifies the bias of optimal monetary policy
in favor of one objective. That is, suppose that insurance becomes more important (e.g. 1 x).
Proposition [3| implies that the planner chooses larger gross positions, i.e. a larger |B|. Lemma
implies that that both high x and large gross positions B lead to an increase on the optimal weight
on the insurance motive w. In other words, there is not only a direct effect on the weight through

x but also an indirect effect through the optimal B.

Proposition 4. The optimal insurance weight w increases with the importance of the insurance

motive (i.e. when 0% /o2 —and x increase).

3.4 Portfolio endogeneity is crucial for exchange rate volatility

Should the exchange rate be allowed to “foat” to manage aggregate demand or should authorities
curb exchange rate volatility? With incomplete markets, letting the exchange rate float to close
the output gap is clearly suboptimal, since it may create undesirable transfers of wealth. This may
lead to “fear of floating” in some states of the world (e.g. after nontradable productivity shocks Zs).
However, in other states, the planner may actually increase the volatility of the exchange rate to
provide insurance (e.g. after tradable endowment shocks Yry).
What effect dominates? Using equation , one can write exchange rate volatility as a function
of the weight on each target and the portfolio,
02(w,B) = (1 —w)?0? +w?o? Bt 2w(l —w)o 5 (21)

€dm 6in( edmein(B)

The next lemma contains the key observation.
Lemma 3. In an interior optimum, the solution satisfies W = 0. If gross positions are already
at the upper bound, i.e. |B| = K, then W > 0.

Suppose that the importance of insurance increases (e.g. 1 x). The first effect on volatility
comes from the optimal weight w, which increases (proposition . This gives rise to a “composition
effect”: the exchange rate reacts more to yprs shocks and less to zg shocks.

What shock dominates? Figure [2| plots the volatility of the exchange rate explained by zs shocks
(dashed-red line) and the volatility of the exchange rate explained by yr, shocks (dotted-blue line)
shocks as a function of x. If gross positions |B| are already at the upper bound (panel a), i.e.
|B| = K, then overall volatility (solid-green line) increases. Intuitively, improving risk sharing
is important but large gross positions are infeasible. Thus, the planner must rely on substantial
exchange rate movements to create the desired transfers. By contrast, if B is at an interior optimum,
the planner can also increase B to provide insurance. Crucially, lemma [3| states that the planner
chooses B such that a marginal increase in the weight w leaves exchange rate volatility unchanged.
That is, the composition effect is exactly zero at the solution.

The second effect on volatility comes from the endogeneity of the portfolio. Asinsurance becomes

more important, gross positions |B| increase (proposition , which reduces the volatility of the
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Figure 2: Exchange rate volatility
(a) Fixed B (b) Optimal B
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Note: Variance decomposition of the exchange rate volatility o(es) when the portfolio is fixed and too small (left
panel) and when the portfolio is optimal (right panel). More precisely, I compute the optimal policy for oy, = 0. =1,
ocx =0, corr(yr, z) = 0.25, for log x € (1,4), which can be rationalized by changing a. I plot exchange rate volatility

(i) with only z shocks (dashed-red line), (ii) with only yr shocks (dotted-blue line), (iii) with both shocks (solid-green
line). On the left panel, B is fixed at the optimal level for log(x) = 1.

insurance target (panel b). Since the composition effect in an interior optimum is zero, exchange

rate volatility unambiguously decreases when B can adjust (panel b).

Proposition 5. (Optimal exchange rate volatility). Consider an economy with small risks (e — 0).
(i) Suppose gross positions are at the upper bound and, as a result, the optimal portfolio is
unresponsive to marginal changes in risks or parameter values (i.e. |B| = K). Then, exchange
rate volatility Ug/dgdm increases with the importance of the insurance motive (i.e. when x and
0% [oZ, increase).
(ii) Suppose the optimum B is interior. Then, exchange rate volatility Ug/agdm decreases with

the importance of the insurance motive (i.e. when x and 07 /o2 increase).

3.5 Portfolio decisions are asymptotically efficient

Does the private sector over- or under-expose itself to home currency debt absent government

intervention? Optimality of the portfolio implies

> w(RES - 1)5(‘);(3) =0. (22)
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Combining a second-order approximation of and @7

Zﬂ_s - ( 8CT) 1aCT( ) (dC*) 1dC’*( )> :O(Ed)_ (23)

If the portfolio is socially optimal, home’s marginal utility of tradables relative to foreign must
be uncorrelated with the realized return of the home-currency bond. Combining a second-order
approximation of and (@,

St (G - ) o

where I used that, at the steady state, private and social marginal utilities coincide, and that in an
interior optimum the tax is zero at the steady state and to first order (otherwise agents would take
infinite positions).

A first-order approximation of %(s) and {?TUT(S) yields:

o) = g - al-ae-dn s0@). (@)
— — aggregate demand externality

social marginal utility private marginal utility

The term in red is an aggregate-demand externality. Agents overvalue tradable consumption in
booms: if e5 > egp, s then %(s) < aaTUT(S)' The opposite occurs in recessions. Since markets are
incomplete, the planner will typically deviate from demand management, i.e. es # €gm, s. Therefore,
taxes are generically necessary to implement the social optimum (Farhi and Werning, 2016).

Equation illustrates the first crucial assumption behind the approximate zero-tax result: if
prices were flexible, there would be no wedges between private and social marginal utility. A common
reason why this assumption may be violated in New Keynesian open economy models is terms-of-
trade-manipulation motives. For example, in section [4 I show that the tax is not approximately
zero if there is a finite elasticity of demand for home assets.

Whether agents over- or under-expose themselves to home-currency risk depends on the corre-
lation of asset returns and output gaps. The key observation is that output gaps in this economy
are purely endogenous. To understand this, consider a first-order approximation to the first-order
condition with respect to the exchange rate in problem

()~ (B9 5) — =y + 0@, (26)

€s — €dm,s X (

where n is the Lagrange multiplier on @F_TI The planner only allows booms and recessions because
they affect the return of the home-currency bond. The latter is valuable when home marginal
utility at home diverges from the one abroad, i.e. when risk sharing fails. In other words, if

markets were complete, the planner would close output gaps state-by-state. This is the second

"More precisely, 7 is the Lagrange multiplier after a normalization (I divide it by B).
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crucial assumption behind the zero-tax result. Appendix studies two reasons why standard
New Keynesian models may violate this assumption: economies with mark-up shocks and multiple
sources of nominal rigiditiesf;g] In those cases, the optimal approximate tax is generically not zero,
even under complete markets.

Putting together with the optimality of the portfolio , and using the fact that > 7 (r—
es) = O(€?) and 7 is predetermined, it follows that the value of output gaps and realized excess

returns must be uncorrelated in the approximate solution. That is,
Zws(r —es)(es — edm,s) = O(e%).
S

Thus,

St () o (6) — () e (9)) = O) e 7 = O,

The tax is of order €3 or higher, i.e. it converges to zero faster than the risk premium. For any
finite level of risk € > 0, the private portfolio decision is inefficient and taxes are generically nonzero
(Farhi and Werning), [2016). However, as risk vanishes ¢ — 0, the portfolio that the private sector
would choose absent taxes and the socially optimal portfolio converge to the same point. In other

words, the portfolio is asymptotically efficient.

Proposition 6. (Asymptotic portfolio tazes) Consider an economy with small risks (e — 0). Then,

i an interior optimum optimal portfolio taxes Tp are given by
8 = O(€®). (27)

3.6 Wealth effects

Next, I consider the case of a composite with a strictly convex disutility of labor, i.e. ¢ > 0.

Following the same steps as in section the planning problem becomes

{m}ax _*kO 1- ,UB Zﬂ—s e% - 6dm,s(B)>2 +Xf(B)2 (65 - ein,S(B))z (28)
€s 57 ~—_——

demand management insurance

8ntuitively, these are cases where the dimension of the aggregate-demand externality is larger than the degrees of
freedom of monetary policy so that the planner can only stabilize a weighted average of the externalities. Perhaps
surprisingly, appendix shows that, even allowing for multiple sources of nominal rigidities and mark-up shocks,
economies with separable utility between tradables and nontradables feature a “divine coincidence™ the weighted
average that the planner stabilizes is also the weighted average that matters for the wedge between private and social
marginal utility. Therefore, the tax is still approximately zero.
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where

wealth effect

1 1+
> ¥
B) = = —
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D, 1 * 3k
ein,s(B) = _E(_ayTs + ay Cs)
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7::777,,3
_ B -1
FB)=——B  withp= P
1—uB a+ @
——

wealth effect

Comparing and , it becomes clear that the crucial difference between this problem and
the one studied in sections - is that the two objectives of monetary policy are no longer
independent. When a transfer makes agents richer (75 > 0), the exchange rate needs to appreciate
to prevent an inefficient boom in the economy. Henceforth, T call this the wealth effect of exchange
rate movements, which is governed by the parameter pu.

The wealth effect introduces an asymmetry into the optimal weight. For any two positions of the
same size, the weight on the insurance objective is larger if agents are long home-currency assets.
To see why, suppose the planner wants to create a positive transfer. If agents are short the home
currency, the planner needs to depreciate the exchange rate. Since the depreciation makes agents
richer, the demand-management target moves in the opposite direction, i.e. it appreciates. This
makes the original transfer more costly. Equivalently, suppose the planner was willing to create
a deviation of a 1% depreciation with respect to the exchange rate that closes the output gap.ﬁ
If B < 0, the actual exchange rate movement, and resulting transfer, would be smaller than 1%.
Indeed, the additional transfer would be f(B)%.

Lemma 4. (Optimal monetary policy) Consider an economy with small risks, i.e., € — 0. Then,
e?(B) = (1 — w(B)) de,s(B) +w(B)ein s(B) + (’)(62). (29)

_ n\2
where w(B) = 7&{(5}%)2.

The preceding discussion suggests that the size of the portfolio is not the most adequate measure
of “exposure” to monetary policy in this generalized environment, but rather f(B). Indeed, lemma
and proposition [3| hold in terms of f(B). That is, a larger importance of insurance leads to a
larger balance-sheet exposure to monetary policy, f(B), and an increased weight on the insurance
target. Note that, as long as 1 — uB > 0, a larger exposure |f(B)| is associated with larger gross
positions |B].

Henceforth, it will also prove useful to a measure of portfolio returns using f(B) as a notion of

OFor a given a transfer 75, the exchange rate that closes the output gap is es(fs) = fH'TS + edam,s(0). For a
given deviation e; — es(7;), the planner gets an additional transfer of 7, — Tam,s(B) = f(B)(es — es(7s)), where
Tam,s(B) = f(B)edm,s(B) is the implied transfer under demand management.
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the size of the portfolio, rry,:

7T
f(B)

(30)

rrps =

Proposition 5| holds in terms of rr fsﬂ Note that

TTfs T €s

Trdm,s(o) rrdm,s(B) edm,s(B) .

Thus, relative to a demand-management policy 774, s(B), the volatility of the home-currency re-

turns r7s decreases with the importance of the insurance objective.

o s .. Y B 2 2
Proposition 7. Lemﬁma @ and proposztzons@ and hold for f(B) = 1B a%m/aedm(o) a?d
OTemeam(0) instead of B, U%m/agdm, and o1.,.¢,, » TESpectively. Proposition@ holds in terms of f(B)
with the opposite sign, i.e. f(B) has the same sign as O Tomeam(0)- Proposition @part (#) holds for

J%Tf/azrdm(o) instead of ag/azdm(o), while part (i) holds as long as 1 — uB > 0.

One may wonder whether the results on f(B)-return volatility translate into the volatility of
the actual returns, i.e. the exchange rate. Note that the actual returns, rry = —eg, and the f(B)

returns, 77y, are linked by

1
= —(— g 31
o= (s (31)

The wealth effect implies that the answer depends on the sign of the position. Suppose that there
is a positive nontradable productivity shock, which requires a depreciation to close the output gap.
When B < 0, a depreciation makes the country richer, increasing nontradable demand. Thus, the
exchange rate needs to depreciate by less to close the output gap, i.e. it becomes less volatile. The
opposite is true when B > 0. Therefore, when B < 0, which is often the empirically relevant case,
this new effect reinforces the effects I characterized in section By contrast, when B > 0, it

operates in the opposite direction making the overall effect on volatility ambiguous.

Proposition 8. (Optimal exchange rate volatility). Consider an economy with small risks (e — 0).
(i) Suppose gross positions are at the upper bound and, as a result, the optimal portfolio is
unresponsive to marginal changes in risks or parameter values (i.e. |B| = K). Furthermore,
suppose that 1 — uB > 0. Then, exchange rate volatility ag/agdm(o) tncreases with the importance
of the insurance motive (i.e. when x and U%—cm/agdm(o) increase keeping o1, (0)constant).
(ii) Suppose the optimum B is interior. Then, if B < 0, exchange rate volatility ag/asdm(o)
decreases with the importance of the insurance motive (i.e. when x and O'%— increase). If B > 0,

the result is ambiguous.

Finally, proposition [6] also carries over to this environment. Interestingly, even if the plan-
ner focused on demand management, portfolio choices would be approximately efficient. That is,

consider problem [I| with the additional constraint that output gaps are zero in every state, i.e.

2ONote that I write the results relative to eq, (0), which is a function of parameters and shocks, i.e. exogenous.
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E'=E! =®&(Cr,,Zs) Vs, where ®(-) is given by

dm,s

e e e e
O(Crs, Zs) = o ate (1 —a)ate Zg, T2 CRI°.

The first-order condition with respect to Crs yields

aagT(S) - njgi (s) = <A(s) - nZg: (s)) 1— RB;(;DT(S) : (32)
—_——

pecuniary externality

where I used the fact that %(S) = (%/T(s) when the output gap is zero, i.e. there is no aggregate-
demand externality. Still, agents do not internalize that their portfolio decisions affect the return of
the asset and, as a result, affect its price. This is a standard pecuniary externality due to incomplete
markets (Geanokoplos and Polemarchakis, 1986]).

A first-order approximation of yields

oU _dU* _dU* B __ 0P oU _dU* _dU* 9
s = M) = 0= 5 = (1= ’BGE ) (56 =1 o) = =g ) + 0@

While agents do not internalize that consuming an extra unit in state s changes the realized excess

return of the bond by R%, the social value of RB 88% extra units of tradables is given by social
T T

marginal utility. Hence, private and social marginal utilities (relative to foreigners’) are still pro-

portional to one another. Using the same argument as before, it follows that pecuniary externalities

must also be uncorrelated with the realized excess return of the bond so portfolio decisions are

asymptotically efficient. This result is critical to understand why the no-tax result generalizes to

arbitrary asset structures in section

Proposition 9. (Asymptotic portfolio tazes) Consider an economy with small risks (e — 0). Then,

in an interior optimum optimal portfolio tazes Tp are given by

8 = O(€%).

dm

Tazes are also approzximately zero in any economy where the planner is restricted to set e = el

and can only optimize over B.

4 Static model: General framework

The previous analysis makes several strong assumptions. An attractive feature of my methodology is
that it can easily accommodate more general environments. In this section, I exploit this tractability
to analytically prove the robustness of the previous results and derive additional insights. I defer the
analysis of a dynamic economy to section bl For brevity, a formal definition and characterization of

the competitive equilibrium and planning problem are omitted here and included in appendix
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4.1 Set up

Preferences There is a representative agent with preferences over tradables, nontradables, and

labor,

ZWSU(CTS’CN57L8§€S)- (33)

where &5 is a K x 1 vector of shocks. U is locally analytic around the steady state, increasing in
Cr and Cy, decreasing in L, and strictly concave. Each agent owns an endowment Y7 (&) of the

tradable good and firm profits, described below. I normalize Pr, = 1.

Technology The nontradable good is a CES composite of a continuum of varieties

1 _
y / Cvai)' T di) 7.
0

For each variety, there is a firm that produces it using labor,

CNs('O = F(Ls(i)S gs)

F' is locally analytic around the steady state, increasing and concaveF_r] Note that all varieties have
the same technology. Thus, in the first best all firms produce equal amounts.

The only role of this special structure is to introduce nominal rigidities into the environment.[z_zl
More precisely, I assume that in each state of the world a random share ¢ of the firms have a fixed
home-currency price of Pyg(i) = 1 Vs while the remaining share 1 — ¢ can reset their price. As
usual, T assume there is a constant production subsidy 7% = 1 — % to correct the monopolistic

distortion.

Financial assets Agents have access to J + 1 < K assets, {@j}jzo. For ease of exposition, 1
assume that one of these assets, labeled asset 0, is a risk-free asset in foreign currency. The payoff
{f( jsts of asset j may depend on both aggregate endogenous variables, collected in y and shocks
£so

Xjs = X;j(Vsi &)

for some function X ;j that is positive and locally analytic around the steady state. For example, the
home-currency bond of the previous section would be X ;(-) = E;1. Claims on a mutual fund of
nontradable good producers would be X fo IIys(i)di while claims on the tradable endowment
would be Xj(~) = Yr(&).

21To simplify the exposition, I assume production is separable across goods and introduce nonseparabilities (if any)
in the utility function. A model where tradables are used in the production of nontradables is similar to one with
nonseparable utility.

221t is straightforward to, instead, introduce nominal rigidities into retail (i.e. firms that aggregate tradables and
nontradables to produce the final good) or wages. As discussed in section what is important for the result on
taxes (proposition [12]) is that if the planner chose to, they can fully undo nomlnal rigidities (see also appendix

*3Here, Ys would potentially include tradable and non-tradable consumption, labor, nontradable-goods prices,

wages, aggregate profits, and exchange rates. See appendix [B.2.]] E 1| for a formal definition.
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Large economy A measure m of foreigners with endowments {Y*(&s)}s trades financial assets

with home agents. They give rise to a no-arbitrage equation that prices financial assets

dU* (Y*(ES) — LR X (Vi &) — 1)@j)

Zﬂs (Rij(ys§§s) - 1) dC* =0,

where R; is the equilibrium foreign-currency yield of asset j relative to asset 0 (normalized to one)
and ©; is the position of the home agent in asset j (financed by issuing asset 0). The case in the

previous section is nested by letting m — oc.

Planner The planner chooses the exchange rate rule { Es}s and taxes on financial assets {7;}; to

maximize

subject to all equilibrium conditions (see appendix [B.2.2). A > 0 is the relative Pareto weight on
foreigners. This formulation nests the case of a home (or non-cooperative) planner with A = 0 and
the case of a global planner (or cooperative) that does not want to redistribute wealth ex ante across

borders by setting A equal to the ratio of the marginal utility of tradables at the steady state.

4.2 Results

Lemma [8] in appendix shows that the approximate planning problem can be written as

~ 2
ko (13,19 f _ :
maX(e}, (6,}; T 5 T | Do | (65 — eans(©))? +xF(O)° (es — €ins(O))°
1-> iR Qa0 B ——
T demand management insurance
(34)
where kg > 0, x > 0 is the parameter that controls the relative importance of insurance vs. demand-
management, edm,s(é) is the demand-management target, which attains a zero output gap and zero
price dispersion when © = O, and Gm,s(@) is the insurance target, which replicates the flexible-
prices complete-market transfers 7, s when © = © (explicit expressions provided in the appendix).

The balance-sheet exposure to monetary policy f(©) is given by

direct effect

=
Z krv'j e@j

i
1— % 1;9;
j

~———
wealth effect

f(®) =

The numerator contains the direct effect: the change in the return of asset j when the exchange

rate changes, keeping wealth constant, given by k;... In the model of section [2, k... = —1. The
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denominator contains the wealth effect: the change in the return of the portfolio because of a
transfer Ty, keeping the output gap constant, given by > j ,u,j@j. f(©) has the same interpretation
as f(B) in section a depreciation of 1% with respect to the demand-management target creates
a transfer of f(0)%.

Written this way, it becomes clear that the optimal exchange rate is once more a weighted average
of both targets with an optimal weight that depends on f(©). However, © is now multidimensional
and, hence, the optimal exchange rate depends on the entire portfolio ©. To make progress, I divide
the optimal portfolio problem into two steps. First, I solve for the optimal portfolio © that attains

a given level of balance-sheet exposure to monetery policy, f(©).

Proposition 10. Let C:)j = 1_2% and suppose that kyr.e # 0 for at least one asset j. Given
Rt ]

some balance-sheet exposure to monetary policy, f(©), the optimal portfolio solves

© = keo + kos f(O)

where

P Var(rram(0) " kprekl e
o k;“re VG/T‘(TTdm(O))—lkTre

B Var(rrgm(0)) ™ e
kL Var(rrgm(0) " ke

> Var(r7gm (0)) ™1 Cov(Tem, 774m (0))

R7*1, and TTam(0) =

Tem are the desired transfers under complete markets, kppe = {/’{:/’<:Wje}3-]:1 €
{rrj,dm(())};]:l € R7*! are the realized excess returns when © = 0 and e; = dm,s(0). If Kprje = 0
Vg, then f(©) =0 and

O = Var(rrgm(0)) "t Cov(Tom, 77am (0)).

The first term in the optimal portfolio formula, kgg, captures two effects. First, the planner
uses assets with returns that are independent from monetary policy to diversify away some risk.
For example, consider the model of section [2| and suppose that the planner can sell claims to the
tradable endowment. In this case, the planner can hedge tradable endowment shocks without
using monetary policy, which is a costly source of insurance against these shocks. The second effect
appears when there is more than one asset that loads on monetary policy. For example, consider the
model of section 2| and suppose that the planner can trade an asset that loads on both the tradable
endowment shock and the exchange rate. The planner can hedge tradable endowment shocks using
this asset and then offset the resulting exposure to monetary policy with an appropriate position
on the home-currency bond.

The second term in the optimal portfolio formula, kg, contains information on how the optimal
portfolio composition varies with balance-sheet exposure to monetary policy. Interestingly, even if
the return of an asset is unaffected by monetary policy, the planner may still vary their holdings of
such an asset depending on the desired exposure f(©). For example, consider the model of section

and suppose that the planner can sell claims to the nontradable productivity Zs. In the original
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model, if Z; is very volatile, the planner chooses home-currency bond positions close to 0 to avoid
undesirable transfers of wealth. In this example, by contrast, the planner can choose a large B to
insure against tradable endowment shocks and buy claims to Z; to offset the undesirable transfers
created by the nominal asset in those states of the world.

This discussion suggests that in this generalized asset market structure, what matters is not
the transfers the planner wants to replicate from complete markets {7cp s}s or the returns under
demand management {774y, s(0)}s, but rather the transfers that cannot be hedged using instruments
other than monetary policy, {7~'cm7s} s, and the component of returns that depends on the exposure
to monetary policy after solving the optimal portfolio problem above, {774, s(0)}s. For example,
consider the model of section [2] If the planner can trade claims on the tradable endowment, this
shock will not enter 7~Zm,s. Similarly, if the planner can trade claims on non-tradable productivity,
the exchange rate movements (i.e, the return of the home-currency bond) explained by Z, will not
enter 174y, (0). Lemma [5| shows that, once one makes these corrections, the objective function

takes the same form as before.

Lemma 5. The optimal f(©) solves

1 X ~ _
max 5 o <1+xf(®)2> (o2, + 0%, (0f(O) =207 .. (0)f(8))+O0()

where

T

m,s — 7::m,s - kl@orrdm,s(o)
7 dm,s(0) = k'@frrdm,S(O).

It is then immediate that propositions and carry over to this environment.@ Furthermore,
define the f(©)-returns, rrss, as
rrps = f(©) 7T, (35)

where Ty = Ty — kgoTTdm,s(0). Intuitively, this object is the transfer created by monetary policy, T,
per unit of exposure f(0). I prove an analogous result to proposition [5| for the volatility of f(0©)-
returns, rrys. At this level of generality, however, there is no obvious mapping to the volatility of
the exchange rate, which needs to be checked on a case-by-case basis.

Proposition 11. Lemma@ and propositions@ and hold for f(©) , O',%, 0'72,~Td ) and o3 0)
9 y lm cm m

instead of B, a%—cm/aedm, and o7,.e,., Tespectively. Proposition @ holds in terms of f(©) with

the opposite sign, i.e. f(©) has the same sign as O rram(0)° Proposition E] part (ii) holds for
2

2 - 2/ 2
Trr; /GT~Tdm(0) instead of o /Uedm(O)‘

Finally, proposition [12| characterizes the optimal tax for each asset j.

240One may think of 77 ¢m s(0) and Tem s as functions of parameters and shocks that are “sufficient statistics” for the
comparative statics emphasized in proposition (see appendix for details).
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Proposition 12. In an interior optimum, the optimal tax on asset j is given by

) dv
7= — [ 1= %X | 7" Cou(Ts, rrjs) + O(€).

m 90T

When the country is small, i.e. m — o0, like in section [2| the tax is zero for every asset in the
approximate solution. The reason is that the two crucial assumptions discussed in section are
satisfied. That is, (i) if prices were flexible, private and social marginal utility would be proportional
to one another, and (ii), if markets were complete, the planner would eliminate output gaps. By

contrast, when the country is large and policy is non-cooperative, i.e. m < oo and \ # %UT/ZIC{::,

the first assumption is violated. To see this, suppose the planner only cares about home agents, i.e.
A = 0. The planner realizes that, as the economy demands more insurance from abroad, it becomes
more expensive. Private agents do not internalize this negative terms-of-trade externality and over-
insure. That is, for any asset that provides insurance for the home country Cov(7,7r;js) > 0, the
private sector takes a position that is too long and the planner needs to tax this asset 7; > 0. The
opposite is true when a positive position in the asset provides insurance to the rest of the world,
ie. Cov(Ts, rrjs) < 0@ This result is reminiscent of a result in |Costinot, Lorenzoni and Werning
(2014). They show that in a dynamic endowment economy with two countries, a home planner
would induce procyclical consumption to manipulate the interest rate in their favor. My result
shares the same logic but across states instead of over time, i.e. lack of perfect insurance instead of

procyclicality.

5 Dynamic model

In this section, I study a dynamic economy. For ease of exposition, I focus the analysis in sections
5.4l on a three-period version of the simple model of section 2| Section discusses an infinite-
horizon version of the general model of section [ which is studied in detail in appendix

5.1 Setup

All the uncertainty is still revealed at ¢ = 1, but there is an additional period t = 2 after it. The

utility function is given by

1—
W= m 3w (xCraCks - 1Lk 6)
s t=1,2

At t = 1, agents can trade one-period home- and foreign-currency bonds that promise a fixed

payment at ¢ = 2 in the corresponding currency, Rs and R}, respectively. Since the model is

?5Tn the special case where agents trade only home- and foreign-currency assets, Cov(7s,rrjs) = B > mse2. Thus,
the planner pushes positions towards zero, i.e. disincentivizes financial integration.
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deterministic between ¢ = 1 and ¢t = 2, no arbitrage implies
R = EL,'EqRs(1+ 9y), (37)

where W, is a convenience-yield shock, capturing in reduced form unmodelled changes in the liquidity
service or pledgeability of home-currency bonds relative to foreign-currency bonds (as in Lahiri and
Végh, 2003). When Uy is high, holding the home asset becomes valuable and its price increases.
That is, ¥y creates a first-order uncovered interest rate parity (UIP) deviation, i.e. Uy is a “UIP
shock”% I also allow for shocks to R*, rationalized by fluctuations in foreigners’ 5*[*'|

At t = 0, agents can trade a long home-currency bond that promises a fixed home-currency
coupon of Ry at t = 1 and (1 — §) Ry units of the t = 1 home-currency bond. In addition, they can
trade a short foreign-currency bond that pays 1 unit of foreign currency at t = 1.@ The realized

excess return of home-currency bonds at ¢t = 1 is given by

rrs =36 (RoE;' —1) +(1—-0) (1+U)RELZ R —1) 5. (38)
—_————
affected by t = 1 policy affected by promised ¢t = 2 policy

Equation (38) illustrates the key difference between the dynamic and the static model: the planner
has more tools. Before, the only way the planner could create transfers at ¢t = 1 was to affect the
exchange rate at t = 1. Now, they can either move the exchange rate today (i.e. at ¢t = 1), or
promise to move it tomorrow (i.e. at ¢ = 2). The latter would affect the price of home-currency
bonds today, i.e. it would create valuation effects.

Consumer optimization yields the intratemporal equations and holding Vs,t, at =0

no-arbitrage condition that is analogous to (4, and an Euler equation,

ou ou

)=01-71")R 2 39
5o (52 = (L= ™) R (5,2), (39)
where 75%Y is a savings tax that is uniform across assets. The home country’s budget constraint is
given by
Crs1 +nfas =Yrs +rrsBy (40)
Crs2 = Yrso + Rynfas, (41)

where nfas = B} + B; is the net-foreign-asset position. Technology is given by Cng = Zs:Ls: and

nontradables prices are fully rigid and equal to one Py4(t) = 1 Vs,t. Finally, foreign optimization

26Note that U, is symmetric across agents: the liquidity value of the home bond goes up or down for everyone.

2"The R* shock I consider has similar effects to what is often labeled “UIP” shock in the literature (Kollmann)
2001). However, in my model R* does not create a UIP deviation. Here, a positive R* shock makes all assets sold by
home agents to foreigners less attractive, regardless of the currency of denomination.

28 As in section [2] agents only trade assets at ¢ = 0 so I normalize w.l.o.g. the yield of the ¢ = 0 foreign-currency
bond and the ¢t = 0 exchange rate to 1.
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yields a no-arbitrage condition that is analogous to (6) (see appendix for details). This

completes the characterization of the competitive equilibrium.

5.2 Planning problem

The planning problem is to maximize subject to all equilibrium conditions. Appendix m

shows that a second-order approximation of the objective function yields:[?]

1- - - ~ 2 .
W=—ckod me | (1= Y 22 +X(Te—Tems)’ +4X  nfa; +t.ip.4+O(e),
2 1o ~— —_——— ~——
8 ~ 7% output gap insurance savings distortions

(42)
where ko = (1 +¢)(1 — @), X = : (#> (1—a)ta™!, and

7Zm,s = —Qys1 — QYs2 + Oﬂ’: + 20‘7*0:

1 *
o (a(ysl - y2$) + arg + 7-5) .

nfas =nfas — 5

=nfal(Ts)

There are three loss terms. The first two are the same as in the static model: they penalize
deviations from production efficiency and perfect risk sharing, respectively. The additional loss term
in green reflects that in a dynamic model the planner also cares about the distribution of wealth
over time. Let n fagb(’Ts) denote the first-best savings in an economy that receives an exogenous
transfer of 7. For example, if the country receives a positive transfer of 7;, then under flexible
prices the planner would spend %7; in each period. Whenever savings deviate from this benchmark,

consumption smoothing is distorted and welfare decreases.
A first-order approximation of yields

rrs :5(7"0—651)+(1—5)(¢s+7"0—€s2—7“:)’ (43)

where 15, = log(¥s). Using the remaining equilibrium conditions, one can rewrite this expression
as a function of output gaps and savings distortions (see appendix [B.3.3)):

—(1—a)(0zg + (1 —0)xg) —2u (6 — (1 = 8)) nfas = (1 - ,uB) TTs — I'Tdm,s(0), (44)

29lfor ease of exposition, I assume that in the steady state both periods are identical and there is no initial wealth
sonfa=0. If nfa # 0, then the interest-rate shock has an additional income effect that may be positive or negative
depending on whether the country is a creditor or debtor in the original steady state.
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where p = %a‘lﬁ > 0 is the wealth effect discussed in section an

1y lea™(@6-(1-9) ., 149
~ 24 + (p(yTsl + yTSQ) Ty (6251 + (1 5)252) (45)

2 a+ @ a+ @
+ (1 =0) (s —75)

T dm,s(0)

are the realized excess returns of the home-currency bond when the planner stabilizes demand
(51 = g2 = nfas = 0) and B = 0.

Next, imagine that the planner wants to increase the return of the home-currency bond relative
to a laissez-faire demand-management policy. They have three ways of achieving this. First, they
can use contractionary monetary policy at ¢ = 1, appreciating the nominal exchange rate and
creating a recession at t = 1, x1s < 0. Second, they can rely on forward guidance, promising an
expected appreciation of the exchange rate and a future recession, xo; < 0. Such a promise would
increase the price of home-currency bonds and create a positive valuation effect at ¢t = 1. Finally,
they can distort consumption. If § > %, the return is more sensitive to the value of the exchange
rate today than tomorrow. Thus, by boosting consumption at ¢t = 1, i.e. nfas; < 0, they create a
positive return without distorting production.

The approximate planning problem is to maximize subject to . I solve this problem in
two steps. First, I solve the ¢ = 1 continuation problem, i.e. finding the optimal combination of
output gaps and savings distortions that minimize the cost of a given transfer 7. Then, I solve the

t = 0 problem of finding the optimal distribution of realized returns {rrs}s and the portfolio B.

5.3 The continuation problem: Minimizing the cost of creating a transfer

Proposition below describes the optimal combination of {xg}i—12 and n}as. The results are
intuitive. First, since the costs of small output gaps and consumption-smoothing distortions are
negligible, the planner optimally distorts both margins. When bonds are short, the planner relies
more on contemporaneous output gaps and brings consumption forward whenever the goal is a
higher home-currency return. When bonds are long, the planner relies on forward guidance to
create valuation effects and postpones consumption whenever the goal is a higher home-currency

return.

Proposition 13. Suppose that the planner wants to increase the return of home-currency bonds,
ie. 175 — (1 — pB) " rrgm s(0) > 0 (the converse is analogous). Then:

(i) Output gaps are negative in both periods. The longer the bonds, the more the planner relies

on valuation effects, i.e. |xrs1| increases with § while |xs2| decreases with 6. When 6 = %, output
gaps in both periods are equal.
(ii) Suppose p > 0. Then, relative to the first-best savings, the planner increases consumption

att=144d > % (nfa, < 0) and decreases consumption at t =1 if § < % (nfa,>0). If o =0 or

3ONote that the wealth effect is smaller in a dynamic economy since consumption increases less than the initial
transfer. In an infinite horizon model, payn = (1 — B)static, as agents only spend the annuity value of the transfer.
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6= %, the planner chooses the first-best savings.

What does this imply for savings taxes? A first-order approximation of the home Euler equation

yields

crse — (1 — a)21‘52 =r; =14 cps — (1 — a)2x31 + 0(62), (46)

where 77

the country’s budget constraint, can be written aﬂ

is a savings tax on home agents (i.e. a financial tax that is uniform across assets). Using

s

Fsav (1 _ 04)2(:1?52 — $sl) — 204_1?1}@5 +O(62) (47)
N——

aggregate demand externality  pecuniary externality

Consider first the case with ¢ = 0 and suppose that the planner wants to create a positive transfer.
When bonds are short (i.e. § > 1/2), the recession at ¢ = 1 is deeper than the one at ¢t = 2. Seeing
relatively high prices of nontradables at ¢ = 1, home agents mistakenly consume oo little at t = 1.
The planner needs to tax savings to correct this aggregate-demand externality. The converse is true
if 6 <1/2.

Next, suppose that ¢ > 0. When bonds are short (i.e. § > 1/2), the planner wants to consume
more at t = 1 than under flexible prices to appreciate the exchange rate, i.e. n}as < 0. However,
agents do not internalize the effect of their decisions on the exchange rate. The planner needs to

tax savings to correct this pecuniary externality. The converse is true if § < 1/2.

Proposition 14. Suppose that the planner wants to boost the return of home-currency bonds, i.e.
rrs — (1 — puB) " Yrrgm s(0) > 0 (the converse is analogous). If 6 > 3 (shorter bonds), the planner

tazes savings ;Y > 0. If 6 < % (longer bonds), the planner subsidizes savings TS > 0.

5.4 Time-zero problem

After replacing the solution of the continuation problem into ,@ the objective becomes

W= Lk B Y e d (e = i o(B)): 4XF(BY2 (1 — i o(B))? b+ tip 4 O(). (48)

-~

demand management insurance

3In appendix I characterize these taxes in a dynamic version of the general model of section I show
that one can still decompose them into the same two components. Interestingly, the sign of the aggregate-demand
externality term depends on the utility function. While GHH always predicts that agents overvalue tradables in
booms, even with non-unitary elasticities, when labor is separable the sign depends on whether goods are Edgeworth
substitutes (agents overvalue tradables in booms) or complements (agents undervalue tradables in booms). Relatedly,
Bianchi and Coulibaly} [2022| show that, when monetary policy is used to manipulate savings, whether it leans with
or against the wind also depends on whether goods are Edgeworth complements or substitutes.

323ee appendix for the explicit solution.
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where ko = (62 + (1 = 0)° + X '1%(6 — (1= 0)*) " "ho, x = (6% + (1 = 8) + X '2(6 — (1 = 8))*)x,
and

_ 1

TTdm,s(B) = = MBrrdms(O)
_ 1

Trin,s(B) = §7-cm,s-

This problem has exactly the same form as in in terms of the realized returns rr, instead
of the exchange rate e;. Therefore, it is straightforward to show that propositions [7] and [§] carry
over to this environment cast in terms of the returns of the home-currency bond. Perhaps more
surprisingly, proposition [J] also carries over. The key observation in the proof is that all distortions,
e.g. output gaps and savings distortions, are proportional to the required deviation from demand
management; this follows from the solution of the continuation problem. As a result, they are all
orthogonal to the return of the asset.

Why are portfolio decisions approximately efficient while savings decisions are not? To establish
the asymptotic optimality of the private portfolio, it is enough to show that the relative strength
of the pecuniary and aggregate-demand externalities across states is proportional to the value of
improving insurance. By contrast, the relative strength of these externalities over time is driven
by technological features that determine the most cost-effective way of improving insurance, e.g. if
the bond is short, then it is better to create an output gap today than in the future. This is not
internalized by private agents and, hence, savings taxes are a useful additional tool.

In sum, the additional complexity of this model is encoded in the sufficient statistics {rrgm s(0)}s
and {7cm,s}s and the parameters x and p. For example, convenience-yield shocks s lead the
planner to use exchange rates to stabilize home-currency returns, i.e. they increase afrdm 0) without
changing a%-cm. This pushes positions towards zero. On the other hand, interest rate shocks create a
demand for insurance, increasing U%m. Since they also affect returns, there is a natural covariance

o 0)T., that pushes the economy towards a particular level of B. Indeed, if bonds are not too

7T dm (
long, a positive interest rate shock r; > 0 creates a demand for insurance 7y, s > 0 and lower
home-currency returns under demand management 774y, s(0) < 0. This pushes the home economy

to be short home-currency bonds.

Proposition 15. Lemma@ and propositions@ @ andholdfor f(B), U%-Cm/o*zrd (0)? and o7, .. rrn (0)
) U

€dm’

(ii) holds for afrf/azrdm(o) instead of Ug/agdm(o). Proposition @ holds for afTs/afT,dm(o) instead of

2/ .2
Ue /Uedm(o) ’

instead of B, a%—cm/a and o7, e, , respectively. Let rry = f(B)"'T,. Proposition E] part

Proposition 16. Consider an economy with small risks (e — 0). Then, in an interior optimum

optimal portfolio taxes Tp are given by

dm

Tazes are also approzimately zero in any economy where the planner is restricted to set e = el

and/or nfa, = 0.
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5.5 Evolving uncertainty and infinite horizon

One may wonder whether the previous results were driven by the finite horizon of our economy and
the fact that there was no further uncertainty after t = 1. In appendix I consider an infinite-
horizon version of the model in section 4] with Calvo pricing. To keep the environment stationary, I
assume that each asset j pays a coupon that declines at a geometric rate d;, as in e.g. Hatchondo
and Martinez (2009)).

Most results generalize to this environment (see appendixes [B.4.11] [B.4.12|and [B.4.14] for formal

statements). The only caveat at this level of generality is that there is no one-dimensional sufficient
statistic f(©) when there are multiple assets with returns that are endogenous to policy. For
example, suppose there are two home-currency bonds traded at ¢ = 0: one pays at ¢ = 1 and the
other pays at ¢ = 2. Then, “exposure” to monetary policy is a two-dimensional object. For this
reason, there is no analogue of proposition @ By contrast, when there are multiple assets but
only one of them loads on monetary policy, e.g. a model with home-currency bonds and other assets
that load on shocks &, then this result also carries over. Finally, the result on optimal taxes is also
robust, regardless of the number of assets with returns that are endogenous to policy. When m — oo
or A = (0U/0Cr)/(dU/dC*), the two crucial assumptions discussed in section [3.5|are satisfied and,
therefore, the optimal tax is approximately zero. Otherwise, the planner taxes financial assets to
reduce cross-border insurance and manipulate the terms of trade.

Why are the results so general? The critical observation is that uncertainty more than one-
period ahead does not matter for decisions today because utility is quadratic in the approximate
model. That is, even though there is uncertainty for t > ¢y + 1, one can still write a deterministic
continuation problem for expectations conditional on ¢y information, as in section After solving
this, finding the optimal distribution of realized returns at ¢y and the ¢ty — 1 portfolio is a problem

that is isomorphic to the one in the static model.

6 Numerical illustration

In this section, I calibrate an infinite-horizon version of the economy in section [5| with Calvo pricing

in the nontradable sector and flow utility function

P 1=y
1 1 p—1 1 p—1 Pfl 1—« 1+
u(Cre, Cne, Ly) = T— <<a”CTtp +(1—-a)Cy; ) - mLt ’
Table [I| presents the baseline calibration, based on data from Canada, which I take as a benchmark
advanced small open economy.

The top panel contains the parameter values that govern preferences, technology, and the be-

33The model is still easy to solve numerically, however. In appendix [B.4.13| I provide a solution method for this
case.
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Table 1: Parameter values and shocks

Parameter Description Value  Parameter Description Value
A. Structural parameters

154 Discount factor 0.99 ¢ Probability of not adjusting prices 0.75

¥ Home risk aversion 2 n Elasticity of substitution (varieties) 6

~* Foreign risk aversion 2 6 Bond depreciation 0.042

o Tradable share 0.55 Gr Reaction to inflation 2.77

o ! Frisch elasticity 0.5 o) Reaction to output gap 1.15

p Elasticity of substitution (T/NT) 0.74 pi Smoothing coefficient 0.87

B. Shocks

02 Productivity s.d. 0.71%  py Convenience yield persistence 0.85

Opx Terms-of-trade s.d. 0.2%  corr(ef,ef)  Correlation: z and p* 0.38

Orx World interest-rate s.d. 0.22%  corr(ef,ef™) Correlation: z and r* -0.18

Oyx Foreigners’ output s.d. 0.56% corr(ei,e/*)  Correlation: z and y* 0.56

oy Convenience yield s.d. 1.05%  corr(ef*,e;*)  Correlation : p* and r* —0.50

0z Productivity persistence 0.85 corr(el™,e/*)  Correlation: p* and y* 0.44

P Terms-of-trade persistence 0.75 corr(e;*,€?*)  Correlation: r* and y* —0.22

Prs World interest-rate persistence 0.85 corr(ef’, €f) Correlation: ¢ and others 0

Py* World output persistence 0.90

havior of the Central Bank in the competitive equilibrium, described by a standard Taylor rule,
it = piit—1 + (1 — pi)oamne + (1 — pi) pre,

where 7 and x; are the welfare-relevant inflation and output gap, respectively. Most of these
parameters take values that are standard in the literature. The tradable share «, the bond duration
0, and the Taylor-rule parameters are specific to Canada (see appendix for details).

The bottom panel contains the parameter values that govern the stochastic processes of the
structural shocks. The tradable endowment shock Y7; is decomposed into two parts: TFP Zp; and
the terms-of-trade Py, so that Y7, = Pr,Z7;. I assume productivity shocks Z7; and Zy; are perfectly
correlated across sectors due to lack of data on sectoral output at a quarterly frequency. In addition,
the economy faces foreign-interest-rate shocks R; and foreign SDF shocks Y;*. To match these, I fit
AR(1) processes to (log) labor productivity (z), the (log) terms of trade in Canada (p*), (log) U.S.
real seasonally-adjusted output (y*) and the U.S. 3 month treasury bill rate deflated by the U.S.
CPI (r*), using quarterly HP-filtered data (except for r*) over the sample period 1997 : 1 —2019 : 4.
Since it matters for optimal portfolios, I take into account the contemporaneous correlation in the
innovations of these AR(1) processes. Finally, I assume that there are shocks to the convenience
yield of home bonds relative to foreign bonds, v, which I assume is independent from other shocks.
I choose the volatility of this shock to match the observed home-currency position against the
rest-of-the world (about 30% over yearly GDP - Bénétrix et al., 2019).@

34The persistence of this shock is irrelevant for the results (one can always offset a higher persistence with smaller
innovations), so I assume it is the same as the interest-rate shock w.l.o.g.
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Table 2: Mapping to sufficient statistics

o(Tem) o(rram(0)) corr(Tem, r7am(0))
Productivity (z) 3.02% 0.27% 1
Terms-of-trade 0.43% 0.01% -1
(r*)
Foreign interest 43.50% 1.26% -1
rate (r")
Foreign SDF (y*) 35.45% 0% undefined
Convenience- 0% 6.40% undefined
yield shock (%)
Total 49.02% 6.52% —0.15

Note: The volatility of transfers is measured as a % of GDP.

6.1 DMain results

Table Rlshows how much each shock contributes to the variance of the two “sufficient statistics” - the
demand for insurance 7; - and the volatility of the realized excess returns without home-currency
bonds rrg,(0), as well as the correlation between them induced by each shock. The demand for
insurance is largely driven by the two foreign shocks, r* and y*. Realized returns, on the other
hand, are mainly driven by the convenience-yield shock. Since the interest rate shock 7* introduces
a negative correlation between returns and desired transfers, while ¢ and y* do not introduce any
correlation, the optimal country portfolio is short home-currency assets.

Table [3| compares the behavior of the economy under four different policies: (i) the competitive
equilibrium with a Taylor rule; (ii) a demand-management policy, i.e. setting w = 0; (iii) the
optimal policy; (iv) the optimal monetary policy if the portfolio were fixed at the calibrated value.
The results suggest that even under the optimal policy stabilizing demand is the most important
role of monetary policy with an optimal weight of 89% (first row). However, monetary policy
still plays an important risk-sharing role: it significantly improves the insurance properties of the
home-currency bond, more than doubling the optimal size of gross positions (second row). The
endogeneity of the portfolio is crucial: If the portfolio were fixed, the weight on the insurance
motive would be about seven times smaller. As argued in section by increasing gross positions,
the optimal policy manages to improve insurance while lowering the volatility of realized returns
(third row). By contrast, with a fixed portfolio, return volatility increases. The second panel
computes the volatility of the returns induced by each type of shock. Here, one can appreciate
that the composition effect discussed in the theory is quantitatively important: returns move less
after convenience-yield shocks and productivity shocks, stabilizing asset returns at the expense of
fluctuations in aggregate demand, and move more when the demand for insurance arises (p*, r* and
y* shocks).
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Table 3: Results in baseline model.

Taylor rule Demand Optimal Optimal: fixed ©
management

A. Optimal weight, optimal portfolio and volatility of the realized excess returns

w 0% 11.37% 1.66%
S —30.00% —28.97% —85.83% —30.00%
o(rr) 6.40% 6.39% 5.91% 6.41%

B. Variance decomposition of realized excess returns

o(rr): z 0.07% 0.26% 0.12% 0.22%
o(rr): p* 0.01% 0.01% 0.02% 0.01%
o(rr) i r* 1.33% 1.23% 2.49% 1.81%
a(rr) :y* 0% 0% 1.17% 0.49%
o(rr) : 6.26% 6.27% 5.34% 6.16%

C. Welfare gains (% of first-best)

Welfare gains 1.32% 2.28% 6.49% 3.90%

Note: In column 4, the portfolio is fixed at —30.0% while the remaining columns it is optimally chosen by the planner.
The portfolio is normalized by annual gdp. Every other variable is expressed in quarterly units. Welfare gains are
measured by how much of the welfare gap between the first-best (a model with flexible prices) and an economy without

home bonds (B = 0) economy is achieved by each policy: w;‘l’;g;‘g(;(ﬁzl;Zii;ffﬁgf:ﬁig@o) %.

How effective is the optimal policy in completing markets? To answer this question, I compute
the welfare gains (in consumption equivalents) of moving from an economy without home-currency
bonds to an economy with these bonds and flexible prices - an economy that may be called “first-
best” since it can deliver as much insurance as the planner desires at no efficiency cost. 1 then
compute what share of these gains are attained in the economy with sticky prices under each
policy. The bottom panel shows the results. The optimal policy improves significantly over the
demand-management policy, especially when the portfolio is allowed to adjust. In other words,
both optimal monetary policy and optimal portfolio choice are important to maximize the welfare

gains of financial integration.

6.2 Additional results

Appendix [C] uses the calibrated model to conduct additional exercises. First, I show that the quan-
titative relevance of the insurance channel is sensitive to the parameters that govern the importance

of the demand-management motive (¢, , and ¢). Second, I deviate from the assumption of small
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open economy by allowing for a finite measure of foreigners m. I quantify the optimal tax that the
home planner sets, show that this significantly decreases gross positions, and contrast the solution
with that of a cooperative planner. Third, I compute the optimal policy when the planner cannot
use capital controls (i.e. no taxes are allowed). T show that the savings taxes discussed in section
do not play a quantitatively relevant role in the baseline calibration, but that this result is sensitive
to the maturity of the home-currency bond. In particular, they become more important when bonds
are shorter. This is in line with proposition which suggests that savings taxes are more effective
when the asset promises payments that are uneven over time.ﬁ] Furthermore, I show that it is easier
for the planner to provide insurance with long maturity bonds, since they can make promises farther
into the future when prices have had time to adjust. Finally, I show that the optimal insurance
weight, gross positions and the welfare gains of financial integration increase in the openness of the
economy (), decrease with the elasticity of substitution between tradables and nontradables (p),

increase with risk aversion (7), and the discount factor (871).

7 Conclusion

I developed a framework to study optimal monetary policy and capital controls in open economies
with incomplete markets and portfolio choice. Optimal monetary policy is a weighted average of two
targets: a demand-management target, concerned with the traditional role of “undoing” nominal
rigidities, and an insurance target, concerned with improving international risk sharing.

I showed three main results, which underscore the importance of modelling the portfolio decision.
First, I showed that the planner chooses optimal portfolios to minimize the ex-post trade-off between
both objectives of monetary policy. When the trade-off is unavoidable, the planner chooses larger
gross positions when insurance considerations become more important. Second, I showed that when
there is a larger need for insurance, the stochastic properties of the realized returns of home-currency
assets change via a composition effect (returns move more to improve insurance and less to stabilize
demand) and an endogenous portfolio effect (gross positions increase, which changes the volatility
of the targets). The importance of each channel and the overall effect on return volatility critically
depends on whether the portfolio is allowed to adjust. Finally, I showed that portfolio decisions
are approximately efficient despite the presence of aggregate demand externalities (due to nominal
rigidities) and pecuniary externalities (due to incomplete markets), so no capital controls on the
composition of capital flows are necessary in the approximate solution, as long as the country cannot
affect the foreigners’ stochastic discount factor. By contrast, savings taxes, i.e. uniform taxes across
asset classes, are desirable.

In this paper, I focused on the trade-off between insurance and demand-management, abstract-
ing from other relevant macroeconomic forces such as endogenous terms-of-trade movements in

product markets, investment, and financial frictions. However, the methodology I develop is widely

*1In the simple model, the relevant benchmark was § = %, but this was only because there were only two periods
and no discounting. In the infinite horizon setting, as J goes to zero, payments become more evenly spread out over
time.
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applicable and can be used to explore optimal policy with portfolio choice in those environments
as well. Furthermore, the tools developed in these paper could also be interesting to study closed

economies with heterogeneous agents that make portfolio choices with aggregate risk.
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Appendix (for online publication)

A An (almost) linear-quadratic (ALQ) approximate problem for
optimal policy in DSGE models with portfolio choice

Benigno and Woodford| (2012) show how to derive approximate linear-quadratic (LQ) problems
that yield, as a solution, a correct linear approximation to the optimal policy in a large class
of dynamic-stochastic-general-equilibrium (DSGE) models. A notable exception in this class are
problems where agents make portfolio decisions.

In this appendix, I derive an approximate problem with (i) an objective that is quadratic in all
endogenous variables conditional on the portfolio, (ii) constraints that are linear in all endogenous
variables conditional on the portfolio, and (iii) nonlinear in the portfolio. T show that the solution
to this problem yields the optimal steady-state portfolio (i.e. the zero-order portfolio) and a linear
approximation to the optimal policy for all other endogenous variables that is locally correct if the
planner can control the portfolio, e.g. if she chooses it directly (e.g. public debt) or has access to
taxes on financial assets to manipulate the portfolio decision of private agents. 1 also show that,
whenever the planner cannot control the portfolio without restrictions, the solution to this problem
is generically an infeasible allocation around the steady state. Therefore, the approximate policy
that emerges from this “naive” approach is incorrect.

Section introduces a general class of dynamic optimization problems with forward-looking
constraints and portfolio choice in an environment where a planner can control the portfolio. Section
derives an “almost linear-quadratic” (ALQ) approximate problem associated with any problem
in this class. Section presents and proves my main result: that the first-order conditions of
the ALQ problem - including the steady-state portfolio as a control - coincide with a perturbation
of the first-order conditions (FOC) of the non-linear problem using a perturbation approach that
relies on a bifurcation theorem stated in |[Judd and Guu (2001). Section shows what fails
when the planner cannot perfectly control the portfolio and faces many no-arbitrage conditions as
constraints. I show that in this case the “indeterminacy” problem is of a higher dimension. I derive
a “generalized” ALQ problem that is valid in this case but requires one to keep track of an additional
quadratic constraint. Finally, Section presents a mapping of the model in the paper to this
general framework.

A.1 Set up

Throughout this section I follow Benigno and Woodford, (2012) as closely as possible to ease the
comparison with a standard problem without portfolio choice. Like them, I consider an abstract
discrete-time dynamic optimal policy problem. The only difference is that T explicitly model (i)

a portfolio decision and (ii) the number of “agents” i = {0,1,...,I}. To define a useful class
of problems, I isolate some endogenous variables from the rest: the excess return on an asset
j =1,...,J over a reference asset j = 0, rr;;41, and the position on these assets 0;;; for agents

ie{l,...,I }[ﬂ Crucially, I assume that the portfolio by itself has no direct effect on utility or

the constraints: its only effect is indirect through the transfers 7;; 41 = Z}Ll 0;5¢77 141 it creates.

Otherwise, the portfolio would be determined at the steady state and risk would not play a first-order

36The position of the remaining agent is determined by asset-market clearing. Furthermore, the position on the
reference asset is also pinned down in a dynamic model by savings’ considerations; not risk. Thus, the dimension of
the indeterminacy problem each period is J x I.
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role around the deterministic steady state.m In such a case, I would not need the tools developed
in this paper; the results in [Benigno and Woodford (2012) would apply directly. Henceforth, for
notational convenience I write 0; = {Gijt}f’:‘/m:l, rry = {rrjt}jzl and T; = {ﬁt}{zl.

The policy authority wishes to determine the evolution of an endogenous state vector {y;, rr¢, 0472,
for t > ty to maximize an objective of the form

[e.9]

Vio = Ky, Z BOm (e &), (49)

t=to

where 0 < 8 < 1 is a discount factor and & is a vector of exogenous disturbances. The evolution of
the endogenous states must satisfy a system of backward-looking structural relations for all ¢ > g

F(yt, Te, &3 9t-1) = 0 (50)
X (e, &5 Ye—1) = 1, (51)

where X;(-) maps endogenous variables and shocks into the realized excess return of asset j rela-
tive to the reference asset 0. Compared to |Benigno and Woodford (2012), I explicitly wrote the
backward-looking constraint to reflect the definition of the realized excess return and included
the transfers 7; as an explicit argument of the F' backward looking constraints. Crucially, this is
the only place where 6, appearsF_g]

The evolution of the endogenous states must also satisfy a system of forward-looking structural
relations

Eig(yt, &5 yi41) =0
Eirrjir1mo(Yir1,&41) =05 =1,...,J. (53)

that must hold for each ¢ > t¢, given the vector of initial conditions (y,—1,0:—1). Compared to
Benigno and Woodford| (2012), I explicitly wrote the forward-looking constraint to have the
interpretation of a “no-arbitrage” condition, involving the product of the realized excess return and
a stochastic discount factor mg. Crucially, there is only one of these constraints per asset; i.e. there
are J constraints per time period; not J x I. Essentially, this implies that the planner has J x [
extra degrees of freedom. Intuitively, one can think of the planner as choosing the portfolio of each
agent 6;; freely while asset prices (an element of y;) are determined by the constraint .
Henceforth, I assume that all functions are locally analytic around the deterministic steady state
(defined below) and that mg > 0 is a positive functionf’:gl To have a well-defined problem, I also
assume the number of backward-looking constraints ng + J plus the number of forward-looking
constraints ny + J is less or equal than the number n, + J of endogenous variables other than the
portfolio each period. When they are strictly less, such as the model in this paper, then there
is at least one dimension along which policy can vary other than the portfolio. When they are
equal, the planner can only choose the optimal portfolio, e.g. solving for optimal macro-prudential
policy in a real model. A tp-optimal commitment (the standard Ramsey policy problem) is then the
state-contingent evolution {y,rr¢, 0;}72, consistent with equations - for all t > ¢y that

maximizes .

37In my framework, risk determines the steady-state portfolio, which in turn determines the first-order behavior of
the remaining endogenous variables. In this sense, risk matters to first order.

3¥Note that it is without loss of generality that transfers only appear in F, since I can always include a constraint
in F' that defines an element of y; to be equal to the transfers.

39 Essentially, analytic functions are C° and locally equal to the power series created by their Taylor series expansion.
See [Judd and Guul (2001) for a formal definition.
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Assumption 1. All functions in the problem (w {Fj} X 1,{Xj}3-7:1,{gk}zg:1, mo) are locally analytic
at the deterministic steady state (i.e. for any 6:). mq is a positive function. The number of
backward-looking constraints np + J plus the number of forward-looking constraints ngy + J is equal
or less than the number ny + J of endogenous variables other than the portfolio each period.

Optimal policy from a “timeless” perspective I follow Benigno and Woodford (2012)) to
obtain a problem with a recursive structure by adding initial precommitments:

g(ytoflygto—l;yto) — gto (54)
rrjtom()(ytoaéto) = mjto j = 17"°7J‘ (55)

Compared to Benigno and Woodford| (2012), there is an additional pre-commitment: agents are not
surprised by the value of the realized excess return of the asset.
Let V( gto,mto,yto 1,01— 17§t0,£t0 1) be the maximum achievable value of the objective (49)

subject to (| . for all t > tg, (54) and where my, = {my, }j: . Then, the infinite-horizon

problem is equlvalent to maximizing

T(yt, &) + BEV (Geg1, M1 Yt Or, €41, &)

subject to
F(ye, Te, §t3 yt—1) = (56)
Xj(ye: & y1-1) = it j=1,....J (57)
9(Yt-1,&-15yt) = (58)
rrigmo(ye, &) =mye j=1,...,J. (59)
Egty1 =0 (60)
Eymir1 =0 (61)

As pointed out by Benigno and Woodford| (2012)), in the presence of forward-looking constraints, one
needs suitably chosen initial conditions for the pre-commitments {gs,, my, } to have a deterministic-
steady-state solution to this problem.

The solution to the recursive problem yields policy functions:

Yt = y" (Gt M, Ye—1, 01, &, §-1)

rre =17 (G, My Ye—1, 001, 6, §—1)

Or = 0" (Ge, M, ye—1, 001, &, &e—1)
Gt+1 =g (&e415 96, Mty Y1, 01, &, §-1)
mey1 = m" (15 G, M5 Ye—1, 01, &, §e-1)

Following Benigno and Woodford| (2012), I assume that there is an extended state vector that
depends only on the evolution of (y;, 6, rr¢, &), defined recursively as

Yy = w (§t7yt7 Ht,T’Tt, yt—l) .

Plugging in the optimal decisions,

yt — Q;Z)* (gtamtaytflvgtflaftagtflaytfl) .
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Next, write the initial pre-commitments and as functions of the current realization of
the shock and this extended state vector:

Gty = g(gtoayto—l)
mtO = m0(§t07yt0—1) ] - 1, ceey J.

for some functions g, mg. These pre-commitments are self-consistent if:

(&1 90 Y1), (& Yym1) Y1, 021, &6, € 1)

g (£t+17 ¢* (gta me, Ye—1, 915—17 €t7 gt—lv yt—l))
(§t+1; g(§t7 yt—1)7 m(gh yt—l)a Yi-1, 675—17 5757 gt—l) 7

m (£t+17 1/]* (gh M, Yt—1, 0?5—17 §t7 é.t—lv yt—l))

g -
m* =
for all possible values of &.1,& and y,_;. In this case, the initial constraint is of a form that one

would optimally commit oneself to satisfy at all subsequent dates. The resulting policy is, in the
language of Benigno and Woodford| (2012)), optimal from a timeless perspective.

A.2 A correct ALQ local approximation

I assume an initial state (y,—1,04,—1) and pre-commitments (gy,, 7,) such that the optimal policy
in the case of zero disturbances is a steady state. The Lagrangian of the nonlinear problem is given
by

0o ng J
Liy =V + Ey, Z ﬁtto{ Z et Fi (e, Tey S ye—1) + Z It (Xj(yta & Y1) — TTjt)
t=to k=1 j=1

ng J
+ B8 ke 19k, Soviu) + 87 mojioarrjimo(u, ft)}

k=1 j=1

where Ny = { N\ }2E, e = {,ujt}}’:l, o = {@kt}zg:p and ng; = {770jt}3]:1 are the Lagrange mul-
tipliers associated with constraints - respectively, for all ¢ > #y, and I use the notation
B~ Lo, 1 and ﬁflnojto_l for the pre-commitment constraints and . Again, note that the
only difference with Benigno and Woodford| (2012) is that I explicitly separated the collection of
backward-looking and forward-looking constraints that are related to financial assets.
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Optimality requires that {y;, rrs, 0r, Ae, pie, @1, Mot } 24, satisfy

ng nr
Dy (i, &) + Y Mt DyFr (e, Tey & ve-1) + BB Y Mee1 Dy Fr(yesrs Terns vt i)
k=1 k=1
J J
+ 3 e Dy X5 (Yo, & v1-1) + BE: > i1 DXy (yeen, §era; vr)
j=1 =1
Ng ng J
+87) ok-1Dag (W1, &1590) + Be Y ore Dyg(ue, & vrn) + B moje1rrieDymo(yr, &) = 0
k=1 k=1 =1
(62)
ng 1
Z Z Hijt—lAktDﬁFk(yt, Ti: & yt—l) — Myt + 571770jt—1m0(yt7 ft) =0
k=1 i=1
(63)

nr
Eirrjisn (Z )\kt-l—lDﬂFk(yt—l—laﬁ—&—laft-&-l;yt)) =0,
k=1

(64)

which are the FOC with respect to y;, rr;, and 60,5, respectively. I adopt the notation in |Benigno
and Woodford| (2012)) such that Dy, D; and Dy denote the row vector of partial derivatives of any
of the functions with respect to the elements of y;, y;4+1 and y,—1, respectively. As usual, I suppose
that the vector of exogenous disturbances {{;} can be written as

ft = €Ut

Vt, where {u;} is a bounded-vector stochastic process and € > 0 is a scalar. I am interested in
approximations that become accurate as € — 0.
Note that, since mg is a positive function, an optimal steady state must satisfy:

rr; =0 (65)

Thus, at the optimal steady-state (7, A, i, ¢) must satisfy

ng nr
Dym(,0) + > AeDyF(5,0,059) + B> XDy Fi(3,0,0;7)
k=1 k=1
J J
+> Dy X;(5,0:9) + B> 13Dy X;(7, 0; 9)
=1 =1
g g
+B871Y  erDyge(@,0:9) + Y @xDygi(¥,0;7) = 0 (66)
k=1 =1
F(3,0,0;5) =0 (67)
X(y,0;9) =0 (68)
9(5,0;9) =0 (69)
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which is exactly the same as in |Benigno and Woodford (2012). This reflects the fact that having
access to more than one financial asset is irrelevant at the steady state. This also implies that, given
that 77; = 0, the first-order condition with respect to 6;;; automatically holds (equation |64] E Thus,
there is the well-known issue that any portfolio solves the problem at the deterministic steady state.
Henceforth, I assume that this steady state (7, \, i, @) exists. Given a portfolio ;, fo; is then given
by:

ng I
lojt = —Bmo(y,0)~" (Z > 0 A D7, Fr(5,0,0; ) — ﬂj) :
k=1 i=1

A second-order Taylor-series expansion of the objective function 7 around (g, 0) yields
R _ .
(y,&) = Dym -+ §y’D§y7T Y+ y'DZgr €+ tip. + O, (70)
where § = y; — ¥ and “t.i.p.” refers to terms that are independent of policy. Substituting into

@9,

oo 3 ~ 1 ~ ~ ~ ]
Vo = Eq, Z pito {Dyw Y + §y£D§y7r Y + y,ﬁDigﬂ : ft} + t.ip. + O(e3). (71)

t=to

Using a second-order Taylor approximation of each Fj, constraint around (7,0,0,{6:}¢2,) for an
arbitrary {6;}9° toF_ZI premultiplying by the Lagrange multiplier A\, and computing the discounted
sum yields

00 oo J
Eio > BN Fi(ye, T G vi-1) = Eig Y 5t_t°/_\k{ (DyFy + BDgFy) e+ Y > D Fy - (Bije—1rre)

t=to t=to Jj=li=1
(72)
1 T _
+ 2yt (D2 F + 5D§:L7Fk> e + Z Z QQDZTZF;{ . (Qijt—l'rrjt)
j=1i=1
+ GiD2Fy - o1 + §1 Doy - & + BUDe Fr - S
1 J J I 1 B -
+ 5 Z (Hijt—lrrjt) D%Z,Fk . (Gi/j/t_lrrj,t)
j=1j/=11i=1i'=1
I ~ J I
30 D (B + 33D (G 17v)
j=1 i=1 j=1 i=1

J I
+ Z Z (Bije—177jt) Dgﬁka : ft} + t.ip. + O(e%).

where 0~t = 0; — 0, and I used that realized excess returns at the steady state are zero, i.e. 7 = 0.
A first-order approximation of the no-arbitrage constraint yields E;_1rr;: = O(e?) Vj. Noting
that 6;;—1 and 4,1 are predetermined at ¢ and using the law of iterated expectations, 1) simplifies

“0Recall that constraints {X;} are a special case of a backwards constraint.

417 assume an initial pre-commitment gy, near zero in the absence of shocks.

42Here, I am abusing notation; {ét},?ito is a full contingent plan. That is, let s* = {&o, ..., &} denote the history until
s' and S* the set of possible histories at ¢. I am formally approximating around an arbitrary plan {é(st)}stestytZto.
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00 o) J I
Eio > BN F(ye To & v1-1) = Bip Y ,Bt—tOAk{ (DyFi+ BDyFy) G+ Y Y D7 Fi - (Bije—1rrt)

t=to t=to 7j=11:i=1

L2 2 . 2 ;
+ 50t (Dyy Bl + BDg Fr) - e + Z; 2} JeDyr: B - (Oije-1r7j)
j=1 i=
+ G Dy B - Gr1 + §1Dje Fie - &+ BU D . - G4

J J I I
+ % Z Z Z Z (Bije—177jt) D%”G’Fk < (Orje—1rrie)

j=14'=114=1i'=1

J I
+ Z Z ijt— 1TTjt DTng ft} + t.i.P. + 0(63).

j=1i=1

Note that, compared to Benigno and Woodford (2012)), there are additional terms that explicitly
consider the transfers implied by the portfolio decision.
I proceed in the same way to approximate each {X; = rr]} _, constraint,

[o.¢]
Eto Z B to yt7 §t7 Yt— 1) - 7’7’]t Eto Z 5ttoﬂj{ (Dij + ﬂDQXj) ' gt - Trjt—i_ (73)
t=to t=to
1. -
+ 52/2 (Dzij + 5D§ng) Ut + ytD 35 Yt—1
+ 1D X - & + B D X - &H} + t.i.p. + O(€).

The approximation of each g constraint is identical to Benigno and Woodford| (2012),

o0 [ee])
Ey, Z B Brgi (ye1, &-15 ) = By Z Bt_to@c{ (Dygi + B~ Dygr) - G
t=to t=to

1. _ .
- §y£ (D291 + B " Diog) - Gt + 1 Die g - &

+p7! yggk &1+ 87! yygk? . Qtl} + tip. 4+ O(e).

43Since 77 = 0, the promise-keeping constraint at t = to is, to first order,
TTjtg = Mjty J=1,...,J.

This implies that the terms ;1) —177500and §i, 1 D2y Fi - (0ijeg—177j¢,) are independent of policy.
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Putting everything together, I obtain

ng 00
_ _ _ S _
st ; Prrto = Etg Z gt {‘I)yyt + 52/2Hyt + G Ryi—1 + §;Z(L)&r 41

t=to
J ng I
+ Z <Z Ak Z Dt Fy, - eijt—l — ﬂ]) Tt
j=1 \k=1 =1

ng J I

+ Z S\k Z Z ﬂéDzﬁFk : (éijt_lrrjt)

ng J I
3 MDY (Bijiearrse) D5 F @} + tip. + O(). (74)
k=1  j=1i=1
where
ng _ J Ng
o, = Z Ak (DyFy + BDyFy) + Z I (DyX; + BDyX;) + Z Pk (Dygk + BilDﬁgk)
k=1 j=1 k=1
nE o J Ng
H =3 N (DyyFit+ BD3F) + 3 iy (D, X + BDY ;) + 3 ow (D9 + 87 Do)
k=1 j=1 k=1
nro J ng
R=) MDyFi+ ) BiDyX+ 3 @B Djyon
k=1 j=1 k=1
ng B J Ng
Z(L)=Y X (BDjeFy + DycFy - L) + Z fij (BD2:X; + DpeX; - L) + Z G (Dieg - L+ B D2egy - L?) .
k=1 j=1 k=1
At the steady state,
¢, = —-Dym

Similar to Benigno and Woodford| (2012)), I can use these relationships to obtain an alternative
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quadratic approximation to ,

Vio = Eto 5t t°{2 1Q - Tt + U R - Ge1 + 20: B(L)&r1 (75)
t=to
J ng B I B
+)° (Z MNe D D1 Fy - 0t — Mj) Tt
=1 \k=1 =1
nrEo J I B
DD D Dy Fi (Bie-1rre)
k=1 j=1i=1
| J J I I
- _ ) _
+ 5 Z )‘k : Z Z 4 (Hijt,lrrjt) D,ETZ/Fk . (Hi/j/t_lrrj/t)
k=1 j=lj'=1:=14¢=1

ng 1

+ kZZ ijt— lrrjt)D’Tng ft}+tlp +O( )

k=1 j=1i=1
where
Q=D +H
B(L)=Djen- L+ Z(L)
Unlike Benigno and Woodford| (2012), however, I am not done: I still have a linear term, dealing
with the realized excess return rr;. Approximating the no-arbitrage constraints to second-order

yields
Eirrjipimo + Egrrji1 Dymo - Y1 + Egrrjip1 Demo - §41 = (’)(63) (76)

where I used that 77; = 0. Solving for E;rr;;41 and replacing back in ,[ﬂ

o B 1 ~ ~ ~ ~ ~
Vig=Euy ) B {55Q Gt + G Ge-1 + 5iB(L) - & (77)

t=to

+ 3" mgtagrrie (Dymo - i + Dem - &)

Jj=1
J I J 1
+ Z Z gtM z]t lrrgt + Z Z th 17"7']15)
j=1i=1 Jj=1li=1

J J I I
1 n .
Ty Z Z Z Z ijt1775t) Do Fie - (Ougriarrn) + tip.+O(€))

44When t = to, I have a similar expression coming from the promise-keeping constraint,

- _ 3
TTjto Mo + 75t Dymo « Jtg + T7j¢0 Demo « &y = Mty + O(€7).
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where

ng
MY =" N (D} Fy, — D7, Fymy ' Dymo)
k=1

nrg
MG, =" N (D2 Fi — D7, Fymg ' Demy) -
k=1

A linear-approximation of the constraints yields

I J
DyF Y+ DgF “Yi—1 + Z Z Dt F - (H_ijt,lrrjt) + DgF & = 0(62) (78)

i=1 j=1
DX -y +DyXj -y 1+ DeXj- & —rry = 0(62) (79)
Dyg - i+ Deg - & + Dyg - Eyfiy1 = O(e?) (80)
EtTTt+1 == 0(62). (81)

and the additional initial constraints

Dyg - yto—1+ Deg - &o—1 + Dgg - Uty = Gt (82)
Ty = TT0 (83)

Now, I am ready to define the “almost” linear quadratic problem.

Definition 2. The “almost” lincar-quadratic problem is to choose {g, rr, 6;}72,, to maximize

subject to - (83).

If it were not for the portfolio, one could maximize this approximate function with respect to
a first-order approximation of the constraints. In the language of Benigno and Woodford| (2012),
the objective is “purely quadratic” in (y;,7r¢) conditional on {6}, so knowing their first-order
behavior would suffice. The issue is, of course, that I do not know what {6;}{2, is optimal. The
“almost” linear-quadratic problem defined above suggests maximizing also with respect to {0},
- a nonlinear problem. Next, I show that such an approach correctly identifies a portfolio that is a
local maximizer around the deterministic steady state. As argued above, it is critical for the validity
of the approach that the planner has the degrees of freedom to choose portfolios independently. In
section I show that in environments where the portfolio is determined by agents’ optimization
given the other policy variables, such an approach would violate feasibility in a neighborhood of
the steady state. In this case, I show that keeping track of an additional quadratic constraint is
unavoidable.

A.3 Equivalence to a linearization of the nonlinear FOC using a bifurcation
theorem

In typical models without portfolio choice, one can apply the implicit function theorem to the system
of FOC - to determine the existence of functions e.g. {y:(¢)}{2,, and characterize their
first-order behavior with respect to ¢ by differentiation. In the class of problems treated in this
appendix, however, the regularity condition fails: the Jacobian is singular. This is easily seen by
noting that the no-arbitrage constraint and the planner’s FOC with respect to the portfolios
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(64) are equivalent to first-order and equal to
Evrrep = O(€),

which implies that the Jacobian drops rank. In other words, the FOCs with respect to the portfolio
do not add any restrictions to first-order and the system is underidentified.

I tackle this problem in two steps. First, I consider the system of FOC plus the constraints
except for the FOC with respect to the portfolio and apply the implicit function theo-
rem to establish the existence of analytic functions y;(e, {0:}224,), rre(e, {0:124,), Me(€, {0:3524,)
(€, {0: 124, ), me(e, {0:12,), and ne(e, {0:}2,,) around € = 0 and an arbitrary {Gt},?itoﬁ Hence-
forth, I assume this system is exactly identified, i.e. the only equations that drop rank are the FOCs
related to the portfolio. This yields:

E [J(L)Yt41] + E¢ [B(L)Ee+1] + ZEt [Mk /\kt—o—l} ZEt { ,u]t—f—l]
ng J
+ Y ME(L)dre + Z ZM (Osje—17752) + Y mg H(Dymo) iajrrje = O(e?)
k=1 i=1 j=1 7=1
(84)
1 !/ ! /
Z Diji—1 (ij> g+ Zéijt—l (ij) <& +mg iy Dymo - G + my i Demo - &
=1 -
J np I I I np
+ Z Z Z 71]1& 101 'glt— lAkD’T ’TFkrr]’t + Z Zewt lDTFk )\kt + 770]15 1— th - O( 2)
J=1k=1i=1i=1 i=1 k=1
(85)

J(L)=Q-L+R-L*+ 3R

ML) — (Zwym) LS DBy

k=1

J J
S (DyX5) | L+ B (DyX;)

j=1 j=1
Ng
M ( IZ i9%) )'”Zwm’
I np
o1 =B "mofioje-1+ Y Y Oiji 1 A DFF - fir 1+ZAkDTFk Oiji1
i=1 k=1 =1

where I used that 7 = 0 and Eyrryy 1 = O(€?). Note that fi—1 is just a translation of the Lagrange
multiplier associated with the constraint , which will prove convenient later (all the terms in

45The derivative, product and sum of analytic functions is analytic. Thus, I can apply the analytic version of
the implicit function theorem (stated as Theorem 3 in [Judd and Guu| (2001)) to establish that the implied implicit
functions are also analytic.
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the definition are predetermined at t).

This system of equations holds given an arbitrary {6,}72, but I do not know whether {6;}{2,
is a solution to the first-order conditions of the non-linear problem as ¢ — 0. I solve the problem
forward, e.g. I solve for 6y, taking {6:}:~+, as parameters of the problem. For this, I need to use
the set of equations I have not used yet: the FOC with respect to the portfolio given by , which
can written as

Hijto (01507 € {et}z?;to) =0 (86)
where I used the result from the implicit function theorem in the first step to define

nr

Hijig (B0, €6 {00}2240) = Eurrjigin (B0, 6{0:3220) % D (Mtor1 (B0, {03224 ) D1 Fk (B, 6 {01324, -
k=1

(I abuse notation in the argument of Fj). Note that, since I assumed that & was a bounded-vector
stochastic process and that all functions are analytic, H;;; is also an analytic function.[ﬂ

I am interested in finding functions 6;4,(e; {0;}73,,) that are valid as € — 0. That is, I want
to find a bifurcation point. To do so, T use a bifurcation theorem stated in [Judd and Guul (2001)
(Theorem 5), reproduced below for convenience.

Theorem 1. Suppose H: R" x R — R" is analytic near (z9,0) and H(z,0) = 0 Vo € R".
Furthermore, suppose that

DzH(«%’o, 0) = 0n><'rL
D H (z0,0) =0,
det(D2 (x0,0)) # 0.

Then, there is an open neighborhood N of (z9,0) and an analytic function h(e) : R — R™ such that
h(€) # 0 for € # 0 and H(h(e),€) =0 for (h(e),e) € N.

Consider the optimal portfolio choice at ¢ = to. Clearly, Dy, Hy, (61, € {ét},?gto) = 0 since
r7; = 0; i.e. the portfolio is irrelevant at the steady state. Typically, one finds the bifurca-
tion point by looking for zy such that H.(z¢,0) = 0. Since Et% = 0, however, T have that
DcHy, (01, €{0:322,,) = 0 V(4,05 {6:}52,,)- Thus, this approach does not work. Indeed, the theo-
rem’s regularity condition is not satisfied: I have that D2, H = 0 V(6y,,0; {0;}72,,). To see this, first
compute H,. to obtain

OHijty =+ Orrjtg+1
0 N N DT F Byl )
aeaﬁi/j/to ; t 86891‘/]‘%0

Next, note that differentiating the no-arbitrage condition (53) with respect to € and 6 around € = 0
and {6;}52, yields:
TTjto+1 0
Y000,

which implies the result. Intuitively, no matter what portfolio agents hold, they are always risk-
neutral to first-order. Thus, on average the excess return must be zero - for any portfolio.
To make progress, I use the “divide by epsilon” trick (see e.g. |[Judd and Guu| (2001)) and define

46The composition of analytic functions is an analytic function.
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a new function H;j;, given by

Hijtg (@076;{@1‘,}{’;0)

o E0) ez 0 }
DeHijty (019, € {0:38%4,) if e =10

ﬁijto (§t07€; {gt}?gto) = {

Since Hyjt, (01y,0; {6:}52,,) = 0 V{6:}52,,, I have that Hyjy, = ¢Hij1,. Thus, T can rewrite
as
Hiﬁo (9150’ €; {Qt}gto) =0.
First, note that

aﬁijto | ) o 8Hijt0 (ét()a € {ét}?;to) | _ =0
6351, ({0e}52,¢=0) = 9edb;jr, ({0:}24,6=0) — V-

The condition det(Dgt0 H) # 0 is a regularity condition that I henceforth assume to hold. Note
that this will typically be the case in well-behaved portfolio problems: the elements in the diagonal
are non-zero as they reflect how the portfolio varies with the risk-premium, i.e.

%| i _ OH 1, (étoa € {ét}?;to) 0
00, jt,0¢ 191)i=t5:<=0) Dededd '
To find the bifurcation point, thus, I set
8ﬁijto s B OH;jy, (0_1507 € {e_t}togto) -0
Oe  {Oe}2,e=0) — Oele o

Note that this is, essentially, a second order approximation of the planner’s portfolio optimality
condition. Thus, the procedure is analogous to that of Devereux and Sutherland| (2007) who use
these second-order approximations to solve for a bifurcation point in the system of equations that
describe a competitive equilibrium.

A second-order expansion of H;j, yields

ng nrg
Eiorito+1 Y MeDTFi + Eiorriegr D M (D3 Fr - Girg 11 + DTe Fi - €41 + D35 Fe - Gt )
k=1 k=1
J I ng
+EtOTTth+1 Z Z D’%’ﬂ;, Fk . ei’j/torrj’to—i-l + EtOT’I“th+1 Z )\kto+1D7§F = 0(63)
j=1i=1 k=1

The system of equations - together with the linearized constraints - characterize
only the first-order behavior of 774, 11. Crucially, note that {0,}{2;, are irrelevant to determine the
solution - a consequence of certainty equivalence. Since I have a linear term in 774,11, I need to
use the second-order approximation of the no-arbitrage constraint. Using to replace the linear
term and that Eyrrj+1 = O(€?),

Etorrjtg+1 (Mz] “Yto+1 + Mij '5t0+1)

J I ng
+Et07"7"jt0+1 Z z D%fj Fk . H,L‘/j/trrj/toJrl + EtOTTjt0+1 Z )‘kto—&-lDTiF = 0(63) (87)
j'=1i'=1 k=1
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Now all terms are purely quadratic. Thus, I can evaluate this express1on using only the first-order
behavior of Trjt0+1, Uto+1, and )\fo_l,_l, which can be found from . 5)) together with the linearized
constraints . Crucially, this first-order behavior is 1ndependent of {Gt}t>t due to certainty
equivalence. To see this, simply take time-t + 1 expectations in the system comprised by . .
and - and note that the porfolio drops out. Thus, {6;}¢2, is irrelevant to determine 6y,
This a system of J x I equations that I can solve to find the J x I bifurcation points at ¢ = tg; i.e.
solutions {ét}‘t’ot to the nonlinear system of equations that are valid as € — 0. In a non-stationary
environment, I could then use the solution at ¢ = ¢ to do the same trick for ¢ = ¢ty + 1 and so on.
Here, the problem is stationary so the solution is the same in every period, i.e. 0; = 0y, V.

Remark 1. Because of the certainty equivalence property, optimal portfolio decisions are separable
over time. That is, to zero-order, {6} o2, 18 irrelevant for the optimal portfolio decision at o, 01, -

Now I am ready for my main result. Note that: (i) the FOC with respect to ; yields (84));
(ii) the FOC with respect to rrj; yields ; and, finally, the FOC with respect to 6;;; yields (87
Thus, the first-order conditions of the ALQ problem coincide with a perturbation of the non-linear
FOC.

Proposition 17. The first-order conditions of the ALQ problem (definition [3) coincide with the
system of equations - , and (@ - , which are a perturbation of the first-order

conditions of the non-linear problem around the deterministic steady state.

Remark 2. There are typically many solutions to . Thus, keeping track of an approximate
welfare function not only allows us to check whether the solution is a local optimum, but also find
the best local optimum.

A.4 The case with multiple no-arbitrage restrictions

Next, I consider a case with I x J additional constraints per period,
EtTTjt+1mi(yt+1aft+1) =0 .] = 17 ey J77’ = 1) ceey Ia (88)

where m; are positive functions. These constraints have the natural intepretation of being no-
arbitrage conditions for agent ¢ between assets j and O the reference asset). The new problem is,

thus, to maximize the objective (49)) subject to ( . and ( .

Consider the new FOC the non-linear problem, where the new terms are highlighted in red:
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nr nr

Dy, &) + Y Mt DyFr(yn, To & ve-1) + BB Y Mee1 DyFr(yegrs Terns s i)
k=1 k=1

J J
+BE Y piti1 Dy X (e, Eerive) + O win Dy X (ye, &3 ye-1)

j=1 j=1
g g I J
+571 Z ert—1Dgg(ye—1, &—15y1) + E Z ekt Dyg (e, & vra) + 87D D mijeoarrjiDymi(ye, &) =0
k=1 k=1 i=0 j=1
(89)
ngp I I
SN i1 e DT Fr(ye, Ty &5 9e-1) — e + 871> mije-ami(ye. &) =0
k=1 i=1 i=0
(90)

nr
Errjeq1 (Z /\kt+1D7;Fk(yt+1,7?+1,§t+1§?/t)) =0,
k=1

(91)

Like before, a steady state satisfies fi; = 7r; = 0, and (g, A, @) solve - 1@) Crucially, however,
a portfolio only pins down a linear combination of the Lagrange multipliers {7; }._:

I 1
B 0jemo(5,0) = = > Oy e D1 Fiu(9,0,0:9) + iy — B> Mijimi(9,0)
=1 =1

In other words, the dimensionality of the “indeterminacy” problem is no longer J x I per period, but
rather 2 x J x I. Intuitively, the Lagrange multipliers added in this extension are also indeterminate.

Following the same steps as before, it is straightforward to see that is still a valid expansion
of the objective function (49). However, maximizing subject to - no longer yields a
portfolio that solves the problem as ¢ — 0. The reason is that such a portfolio typically violates
. To see this, note that while the FOC of the ALQ problem are still the same, perturbing the
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FOC of the nonlinear problem yield{"|

ng J
E[J(L)gts] + Ee [B(L)&e41] + ZEt {Mk( ))‘kt—i-l] + ZEt { j (L ):U’jt—&-l}
k=1 o
Ng ;
S S My G- s

I J
+671 Z Z (Dym; — malmiDymO) Tijt—1TTjt = O(€?)

i=1 j=1

(92)

I I I np
> Oijea (M%)/ U+ Z Biji—1 (M%)l &+ Y iDL F A
i=1 i=1 k=1

i”Fz

j'=1k=11=14

’th 161 Tjlt— lAkDTT/ Fkrrr]’t + 770]t 1— N]t

IIPﬁN

I
+871) M1 (Dymi — mg 'miDymo) - G+ 87 Z Niji—1 (Dem; — mg 'm;Demy) - & = O(€?)

=1
(93)
where
I np
ﬁOjtfl =pf lzmznmt 1+Zez]t 1)\]CDTFk+ZZHZ]t 1)\kDTyF Yi— 1+Zez]t 1>\kDTFk
=0 =1 i=1 k=1 =1

The terms in red represent the difference between this sytem of equations and the ones from the
ALQ problem. Note that, unless all the Lagrange multipliers of the other no-arbitrage conditions
{7t }52, are zero as € — 0, the systems will differ. This would be the case if the private agents and
the planner made the same decision, e.g. the model in this paper when there is an infinite mass of
foreign arbitrageurs.

One can still solve this problem using a perturbation approach to identify bifurcation points of
the system of non-linear equations, which now include the multipliers. Using the same arguments
as before, one can show that this involves approximating the no arbitrage equations to second
order:

Eerrjiims + Eerrjin (Dyms - Gesr + Demi - &) = O(€°)
and then using the agent 0 no-arbitrage condition to eliminate the linear term:
EtTTjt+1 ((Dymz — malmiDymg) : yth + (Dymi - malmingi) . €t+1) = 0(63). (94)

This adds the necessary J x I equations required to pin down the J x I Lagrange multipliers {77,-}2-1:1.
Furthermore, note that if one amends the ALQ problem to include as a constraint, one obtains
once again the same system of equations.

4"In this new “first step”, the parameters are not only {0}, and e but also the new Lagrange multipliers
I,
{nit}z‘:of,t:to~
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Proposition 18. The generalized “almost” linear-quadratic problem (GALQ) is to choose {gy, 11y, ét}fito
to mazimize subject to (78) - (83), and (94). The first-order conditions of the GALQ prob-
lem coincide with the system of equations (@ - @, , (@ - and , which are a

perturbation of the first-order conditions of the non-linear problem around the deterministic steady
state.

Remark 3. This problem is significantly less tractable: It has twice as many degrees of indeterminacy
and, as a result, twice as many nonlinear equations. This makes showing properties analytically
substantially harder. However, it is fairly easy in a computer and the approach can still be used
to check the conditions for local maxima and pick the “best” solution whenever there is more than
one.

A.5 Mapping to the model

Consider an infinite-horizon version of the model in section 2| (nested in the general framework
of appendix extended to allow for long home-currency bonds that decay at rate 6 € (0,1],
international interest-rate shocks R* and a convenience-yield shock ¥, as in Section The controls
are yr = {Cr¢, Er,nfas, Ri}, the portfolio is B, and the shocks are (Y1, Zi, Cf, Rf, Uy, RY 1, ;).
& is defined as the deviation of these shocks with respect to their steady-state values.[ﬂ The
objective function comes from the planner’s problem

m(yt, &) = V(Cri, By, Zy).

There is just one F' constraint, the budget constraint:
Fi(ye, Te, §4591-1) = nfay + Cre — Te — Y — Ry_ynfaz1, (95)

where Ty = rrBi—1 and nfa; = By + B}. The realized excess return of the home-currency bond is

Xy, ye—1,&) = (Upq+6+(1- 5)Rt_1) - Ry ;.
There are no forward looking constraints g; the only forward-looking constraint is the foreign no-

arbitrage equation,
Eerrepr U'(Clyp)  =0.
N——
=mo(yt+1,§t+1)

This completes the mapping.

Next, suppose that the foreign agents that trade the home-currency bonds are not large relative
to home, i.e. C; cannot be taken as given. Instead, assume that foreigners have an endowment
{Y;*} and they can also borrow at gross rate 37!, as in section 4/ and appendix In this

case, the controls are y; = {Cry, C}, Ey,nfar,nfaf, R}, the portfolio is B, and the shocks & are
(Yre, Z, Y, RY, Ve, Ry, ¥;—1). In addition to , there is another F' constraint:

FQ(ytv 7;7 gta yt—l) - ’I’lfCLZ + C’;t + 7; - Y;t - R;:—lnfa:—h

48The static model is not strictly nested in the abstract infinite horizon model I presented in this section, but it is
straightforward to construct an analogous proof for this case or, more generally, a case with a finite horizon.

491 stack the lag of Ry and ¥, inside &; to save notation in the general framework and keep it similar to [Benigno
and Woodford| (2012). Equivalently, one can allow £;—1 to enter directly the X function. Extending the proof to that
case is straightforward.
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which already imposes market clearing in the home-currency bond. In addition, there is an addi-
tional forward looking constraint, the Fuler equation of foreigners:

Q(ytaft; yt+1) = BR:U*/(C?H) - U/(C:)-

In section I also analyze a model with sticky prices & la Calvo. In this case, there is
an additional F' constraint, which defines the inflation rate, and two forward-looking constraints
that capture the firms’ optimal pricing decision. This system of three equations simplifies after
linearization to the Phillips’ curve.

B Proofs and extensions

This appendix is organized into five sections. Sections and [B.3| prove the results in sections
and [b] respectively. Section presents an infinite-horizon version of the model of section
with Calvo pricing and formal results that prove robustness in this extended setup. Section
extends the model of section {4| in two different directions: (i) mark-up shocks and (ii) multiple
non-tradable sectors, each with their own nominal rigidity. I formally characterize the conditions
that lead to a non-zero approximate tax in this environment.

B.1 Proofs for section [3

B.1.1 Proof of lemma (2|

The FOC of with respect to e yields
€s — edm,s(B) + XBZ(es - ein,S<B)> =0.
Rearranging yields the desired result.

B.1.2 Proof of proposition [2]

I start by deriving the optimal portfolio. Let W(B) denote the objective in . After some algebra,
the FOC with respect to B yields

OW(B) xko

- ~ , )
aB = (1 + XB2)2 {XB U@d'm,ﬁ’m + B (XO"]—Cm - O-ed'm) — O-edvnﬁm} (96)
Since the term inside brackets is a quadratic in B there are two solutions to 8Vgé3) — 0. However,

the only one of them that is a maximum is

(Xo'%—cm - Ugdm) + \/(Xa%m - O-gdm)2 + 4X (Ued7n7—cm)2
2X0-8dm7:3m,

B=-

, (97)

which has the opposite sign as o, 7.,.. To see this, note that in an interior optimum, the second-
order condition becomes
82W(B ) Xko

8B2 - (1 + XB2)2 {2XBUedm7—Cm + (Xo-%—mn B szm)} : (98)
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Using the first-order condition holding with equality, this becomes

oB2  ‘1+xB? B

Thus, in an interior optimum the portfolio must be of the opposite sign as o, 7., to be a maximum.
This proves the first part of proposition
To see that with perfect correlation one can attain the first-best, one only needs to show that
there exists a B such that
€dm,s = ein,s(B) + 0(62) Vs

Since shocks are perfectly correlated,
€dm,s = kame

_ 1
ein,s<B) = _Ekcm‘E

for some constants kg, ke, where € is the only source of uncertainty in this economy, i.e. zs = ke,
ys = kye, c; = kere for some constants k., ky, ker. Thus,

— kcm
B=-
kdm

attains the first-best by closing both gaps in the welfare function. One can then check that this
coincides with in the case of perfect correlation.

B.1.3 Proof of proposition

This follows directly from . In an interior optimum,

PPW(B) xko

D, - — B{BU m Tem + 0-2 }
OB (14xB2)* " Ter

Note that implies
CegmTem B + a%—cm > 0.

3’>W(B)
Thus, =5 55
B > 0 and vice versa.
Using the implicit function theorem on immediately implies that | B| increases with 03. /o

Next, note that

has the same sign as B and, by the implicit function theorem, B increases with y if

2
€dm”

OW(B) xkoo?, .
_ — dm B —1).
080Gt fo%) (x5

Using the first-order condition holding with equality, this becomes

O-ed'rrL7~Cm

2 2 )
838(06dm7~cm/0€dm) (1+XB2)2 > (XU’Tcm Uedm)

Thus, by the implicit function theorem, XO'%—C"L — o2 > 0 implies that increases in the covariance

between both targets (an increase in o, 7., when o, 7.. > 0 or a decrease in o, 7., When

Oeyr Tom < 0) implies |B| decreases. The converse is true when Xa%m —oZ <O.
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B.1.4 Proof of lemma
The derivative of with respect to w yields

Lo
In terms of 7, and egy,,
802 2 1 2 1
87; = _2<1 - w)aedm + 2wBZ U%m - 25(1 - 2w)0—7-cmedm'

Replacing the optimal w = and rearranging,

xB
l—i—XB2
do? 2 1

dw  B1+ B2

(XBZO-T;'rnedm, + (XU%W - Ugd7ﬂ> B - 0-7:,'77Ledm/) ’

Note that the parenthesis coincides with the term in brackets in . Thus, if B is an interior
optimum, %‘f =

Next, suppose that the solution is at a corner. Consider first the case B = K. Since B cannot
be increased further, optimality of B implies that the parenthesis is positive. Thus, %Z}g > (0. Next,
consider the case B = —K. Since B cannot be decreased further, optimality of B implies that the

2
parenthesis is negative. Thus, %‘Le > 0.

B.1.5 Proof of proposition

For this proof, note that

2 2
O. 2 2 1 O”n’”i 1 U m7’Cm
26 :(1 —(.U) + w ?T 2W(1 —CU)T 6d2 (99)
Uedm €dm Uedm

Part i

The effect of x is given by:

do? 002 Ow

dxy  Ow &
The prqof of lemma (3| established that %C;i > 0. Noting that the optimal weight is given by
w = %, it follows that g—; > (. Thus, ddc;e > (0. The effect of a%—cm/agdm is given by:

do? a1

dlor, jo2, ) B

€dm

> 0.
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Part ii The effect of x is given by

do? 090% dw OwdB ., 2 OF 1 oe,, T 1 dB
= (—F+ s )+ | w32+ 2w(l —w) s—= | =— <0.
dx 5(: Ox OB dy B2g2 B o2, B dy
= M +

The first effect is the composition effect, which by lemma[3]is zero. The second effect is the change in
volatility coming from the insurance target when B changes. This term is unambiguously negative.
Thus, the total effect is negative.

The effect of 03. /o2 is given by

do? ~ Oo? ( ow n Ow dB )
da%—cm/agdm _é(ﬁ/ 8U%m/ogdm OB da%—cm/agdm
=0

€dm

2 0% 1 oe, 7. dB 5 1
+ _ 27 cm + 2 1 _ dm /fem + _
( ¥ B3 2 ol w)BQ o2 da%—cm/agdm Y B

In this case, there is an additional direct effect given by the last term. After some algebra, using
(96) and the optimal w, one can show that:

2 o2 1 oe, T B 1
2 cm €dm Jem 2
22 T Tem 901 — w bl =
( g, ( )B2 O-gdm ) dU%—cm/O'gd 32

2 2 -1
_ (2
X2B? <1 +X07fm> (1+xB%)" (2 B ijT X —dem 1> <0,

€dm €dm €dm

where the last inequality follows from the fact that the second-order condition implies that the
last term in parenthesis is negative. Thus, the effect of the insurance target always dominates the
direct effect on volatility. It follows that volatility decreases when U%—Cm Jo? . increases.

B.1.6 Proof of proposition [6]
In the main text. This is also a special case of proposition [12| (see section |B.2.10| for a proof).

B.1.7 Proof of lemma [

This is immediate from the approximate objective .

B.1.8 Proof of proposition [7]
Replacing the optimal exchange rate into yields

1 xko 12 2 2 A : 3
= A7 B —2f(B t.ip.+ O 100
W=-3 1+ xf(B)? f(B)Y oz, ) + 07, —2f(B)oT eqno) | +Eip.+O(”)  (100)

demand-management ~ insurance align targets
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Since 1) is identical to 1} with f(B) = —B and agd’ ) instead of ogdm, it is immediate that

propositions and M| hold with f(B) = — l—iB instead of B and eg,,(0) instead of egy,,. Proposition

holds in terms of f(B) with the opposite sign, i.e. f(B) has the same sign as O Temeam(0)-
Rewriting the optimal exchange rate rule in terms of rry,,

1
TTfs = (1 - w)edm,s(o) + @w’nm,s + 0(62). (101)
Following steps analogous to the proof of lemma
do? 2 1 - ) , B
ow f(B) 1+ Xf(B)2 (_Xf(B) O Temeqm(0) + (XUTCm — Uedm(0)> f(B) + UTcmedm(O)) .

The term inside the parenthesis has the same sign as the FOC with respect to f(B). Suppose
B = —K. Then, f(K) = K/(1—uK) > 0. Optimality of f(B) implies that the term in parenthesis
is positive and thus the whole term is positive. Suppose B = K and 1 — uK > 0. Then, f(K) =
—K/(1 — uK) < 0. Optimality of f(B) implies that the term in parenthesis is negative and thus
the whole term is positive. To see why the condition 1 — uB < 0 is required, suppose B = K and
1—puK < 0. Then, f(K) = —K/(1 — pK) > 0. Note that, in this region, the planner cannot
increase B which implies it cannot decrease f(B). Thus, optimality of f(B) implies that the term
in parenthesis is negative and thus the whole term is negative.
The proof of part (ii) of proposition |5| is identical with o2, i/ O'gdm (0) instead of oZ/ol

B.1.9 Proof of proposition
Note that

Thus, for x € {X;, - Tcm

edm (0)

e

do? 1 00, 2 2aB
— _ 4 )
Jdr  (1—uB)? Ox 1-— ,uB ¢ Ox

_ o2
The result in part (i) assumes |B| = K so 8— = 0. Thus, 51gn( ) = sign(—4.L*). Proposition
I 7| then 1mphes the result. For part (ii), note that when B < 0, a larger 1mportance of insurance

implies bot 5. <0 (since f(B 3) increases). Since 1 — , 836 < 0. By contrast,
when B > 0 and 1 — uB > 0, the second term in the parenthesis is positive so the overall sign is
ambiguous.

B.1.10 Proof of proposition [9]
This is a special case of proposition (see section [B.2.10| for a proof).

B.2 Static model: General framework

I present the general static model in detail and prove all the results in section [l Section [B.2.1]
describes the set up and characterizes the competitive equilibrium. Section presents the
planning problem. Section describes the deterministic steady state. Section derives
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a second-order approximation of home’s flow utility. Section presents and proves lemma
which approximates the objective function of the planning problem as a function of three loss terms:
lack of insurance, output gaps, and price dispersion. Section presents and proves lemma
which writes the objective function in terms of the deviation of exchange rates with respect to two
exchange-rate targets, as in the baseline model of section 2l Sections[B.2.7] [B.2.8] [B.2.9] and [B.2.10]

prove proposition [I0} lemma [5] and propositions [I1] and [I2] respectively.

B.2.1 Set up and competitive equilibrium

Consumers Consumers solve

max WSU(CTS7CN87LS;§S) (102)
{Crs,.CNs;Ls}s,{O;}5 7
subject to
Z(1+Tj)@j+@0 =Ty (103)
J

1
EoCro + PyaOnxa = EY(&) + WaLs + / Ty (7)di (104)

0

+ 3 RiEX; (Vs £)0; + B0 + T
7>0

where IIy;(7) are profits from firm ¢, and

1
Vs = {OTS,ONS,LS,E;lpws,Jzi,\,,—lws,E;1 / HNsu)dz',Es}
0

are the aggregate ex-post endogenous variables of the model in foreign-currency (taken as given
by the representative agent). Optimization over labor and tradable and nontradable consumption
yields

oU ou Py
= 1
Ol R (10
oU ou W
— —(s) = =2 1
(5 g = (106
Optimization across varieties gives rise to the standard CES demand,
Pys(i)\ "
CNS(,L') = ( NS(Z)) Chs, (107)
PNs

where Py is the ideal price index of nontradable goods,

Py = </01 PNs(i)lndz) = . (108)

Asset optimization yields a no-arbitrage condition,

S (1 7) R (Vi) — 1) s (5) =0, (109)

s
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Foreigners Foreigner optimization, together with the asset market clearing condition, yields

du* (Y*(és) — LY (R X (Vs &) — 1)®j)
dC*

Zﬂ-s (Rij(ys§£s) - 1) =0 (110)

Intermediate good producers Firms have access to a neoclassical technology
COns(1) = F(Ls(1); &s)- (111)

Note that technology is identical across firms and there are no idiosyncratic technology shocks. A
set ¢ of firms i € {fix} cannot reset their price:

Pns(i) =1 for i € {fix}. (112)

A set of firms 1 — ¢ i € {flex} can reset their price. I assume that there is a labor subsidy 77, that
offsets these firms’ desired mark up, i.e. 1 — 77 = ”T_l Optimality gives rise to the condition,

1

Pns(i) = T@Ws for i € {flex}. (113)

oL

Taxes The central government rebates the proceeds of the financial taxes {7;} lump-sum at
t = 0 and the cost of the labor subsidy 77, lump sum at ¢t = 1:

T, - 3",
J
Ty = -1, WsLs.

Goods and labor market clearing Solving for O using (103), replacing Oy, firms’ profits
and the lump sum taxes into (104), and using nontradable market clearing yields the country’s
budget constraint:

Crs = Yr(&) + > _(R;X;(Vs, &) — 1)0;. (114)
J

The market clearing condition for labor is given by
1
L, = / Ly (i) di. (115)
0

Competitive equilibrium Next, I formally define a competitive equilibrium in this economy.

Definition 3. Given a Central Bank policy ({Es}s.{7;};), an allocation ({Crs}s,{Cns}s,{Ls}s,

{Cns(9) }is {Ls(7) }i,5,{©;};) together with prices ({Pns}s,{Ws}t {Pns(i)}is,{R;};) is a competi-
tive equilibrium if and only if they solve (105)—({115)).
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B.2.2 Planning problem
As in Farhi and Werning (2016), I define the following indirect utility function:

1
V(Crs, Es; &) = max u(Crpg, C S,/ Lg(i)di; & 116
(Crs, Bsi &) (CnosLosPo Wb s {Crys (1), L (i), Pyo (i)} 1.0} (Crs, Oy 0 (i)dis &) (116)

subject to(105)) — (108)), (111) — (113]), (115).

Since {7;}; is a policy variable, it can always be chosen to make 1} hold.[ﬂ
Similarly, using the solution to this problem one can write a “reduced-form” return of financial
assets:

Xj(CT57 Es;gs) = Xj(y*(CT57 Es?&s);gs)

where Y* are the endogenous variables, e.g. nontradable consumption, as a function of the two
remaining endogenous variables (Crs, Fs) and shocks &.
Using these two objects, I can write the problem in a similar way to the one in the main text.

Problem 3. The planner’s problem is to choose {Crs, CF, Es, {©;};} to maximize

W = Zﬂ's {V(CTSa Es;gs) + mS‘U*(C:)}

subject to

YT(ES) + Z(Rij(CTm Es?&s) - 1)@j = Crs

J
au* (Y*(gs) — > (R X;(Crs, Es; &) — 1)@j)

qc =0.

Zﬂ's (Rij(CTs;Es;gs) - 1)

s

B.2.3 Steady state

Suppose there is no risk. The first best involves no inefficient fluctuations of consumption

Crs = Cr = Yr,
all intermediate-input firms producing the same amount since they are all ex ante identical
Cns(i) = Cns = Cn
Cn = F(L;0),

and the equalization of marginal rates of substitution and transformation between non-tradable
goods and labor

ov or __ou

OOy 0L OL’

which determines the steady-state L.

%0This system of equations typically has a unique solution so there is no real maximization involved. This is the
case, for example, in the baseline model where L, and Cn; are determined by and .
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Since monetary policy does not play an insurance role at the steady state, it can attain this
allocation by ensuring that flexible-price firms would like to set their prices in home currency equal
to the fixed-price firms, i.e.

Then,

Py = Py (i) =1 Vi.

oU

E — BCT PN
8CN

_ OF _

W=""P
oL

ensure that 1 , 1 , and 1} hold. Finally, R]E’*l =1Vj. As usual, {(:)j}j is indeterminate
at the deterministic steady state.

B.2.4 Second-order approximation to home’s flow utility

In this section, I derive a second-order approximation to the general flow utility function ((102]).

Lemma 6. Around the deterministic steady state, home’s flow utility is approzimately given by

U(CT57 CN87 L87 gs)

where
App =
Acl -

A =

Ay = —

Al§ =

_ _ _ 1 _ _
+ CrersAee - & + AqCrers Ll — §A”L2l§ + Ll Aje - & + tip. + O(€%)

ICN
02U
(8C’Tc’)CN
02U
ICTIC N
< oU 0’°F

ou Cn ?92};77
W 5, ( s | n>o
oL
oF o*U

VoL T acor

D§F+‘DCT§U
0*U ,0F

OCN OL?
o0*U

9*U OF o )
OCNOL

ou
aCy

D¢F +

oU 1 1 1 . .
= 50.Cr <CTS + ﬁs) 5w </o (prvs(?) ‘pNS)Q‘“)

oL

oF
OL

b SO o T )IE LU s
8012\, oL O0CNOL’ OL

DCNfU + DLfU

10%U
2 802

CTCTS

(117)

(118)
(119)
(120)
(121)

(122)

I use the following notation: D,G = {gTG}z denotes the gradient of function G with respect to = (a

row vector), and D> 2y G is the Hessian of G with respect to x and y, i.e.

(1,7) denotes 8(%

and L are scalars.

Thus, Acg, Alg € RIXK,

A second-order approximation of U(Crs, Cns, Ls; &) yields
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oUu ou 8U 1,0U 0°U

U(Crs, Cns, Ls; &) ==——Crers + ——Cnens + — L —— C7)Crc? 123
(Crs,Cn £s) aCy TCTs + aCx NCN 8L + (80T + acz T)Crep, (123)
U L PU - , )
+ (m)CTCNCTsCNs + (m)CTLCTsls + Crers Do, U - s

1, 0U 0’U . - PU . - ~

,(ﬁ + @CN)CNC?VS + (m)CNLCNSZS + CNCNSD%‘NgU . €S

1 8U 82U 712 = 2 . 3
Let Ay be defined as

R F(Ly:8)

Ll ?

n

(fo D) T)

which is a measure of output dispersion across variety producers, and rewrite the definition of the
composite nontradable good as follows,

Cns = AS_IF(LS§£S)-
A second-order approximation yields

_ 1 OF 16°F _ . ,
Cn (ch + Qc?vs> —ACn + aTL(l + 5@) + §@L2z§ + LIsDpeF - &6+ tip. + O(€%)
(124)

where I used the fact that there is no dispersion to first order, i.e. Ay = O(e?). A second-order
approximation of A; yields

1 CN 277 ! . .
Ay = 5 <1 (g%L) ) n </0 (pns(i) —pNS)2d2> +O(e).

Replacing back in (124)),

_ 1 1 C _ ! , ‘
Cy (cNS + 20?\]5> =-3 1- 1\;ng77 nCn (/ (pns(7) —pNs)de) (125)
(8L) 0
oF - 10%F - )
+ a—LL(lS + 12) + iﬁﬁz? + LID}¢F - &g + tip. + O(€)

Replacing (125)) into (123]), discarding higher-order terms and simplifying yields the desired expres-
sion.

B.2.5 Approximate problem: Three loss terms (lemma [7))

In this section, I derive an approximation to the objective function with three loss terms: deviations
from complete markets, price dispersion, and output gaps. I also show that the only difference
between the global and the home planner is how much they care about insurance and the transfers
that they desire. The proof uses lemma [6] which is presented in section
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Lemma 7. Around the deterministic steady state, the planner’s objective function is approximately
given by

1 1 /0U [dU* 2 1, > . 3
W= 22 {(ATT+7 <80T Ad0*>>(7; Tcm,s)+2AﬂpNs+Ax:cs}+t.z.p.+(9(e)

S

(126)

where T Z O, iTTjs 18 the total transfer received by the home country from abroad in state s (rr;s
is the realzzed excess return of asset j relative to asset 0 in state s), Tem s are the transfers the
planner would choose under complete markets and flexible prices given by:

L1 (oUu  LdU* -1

T 15 the output gap, and pns is the non-tradable price index. The constants are given by:

U 1
AT =55 <7T+ — ) >0 (128)
ouU .
Ate = Ace + Ay A Aie + - oC,, (TrDeYT + 797 DY) (129)
oy OF _
Ay = C?V(a—L) 2A; >0 (130)
¢
)\71- = (1_¢> App >0 (131)
oUu\ ! (82U Lo
aC agcz T
dUs\ "t d2U
= (=) —= >0 1
i (dC*) acz ” " (133)

ou
Note that a global planner (95& = ) would put a smaller weight on the insurance term and choose
dc*
larger transfers under complele markets than a home planner (A = 0).

If prices were flexible, then fo (pns(i) — pns)?di = 0 and maximizing 1) with respect to I
would yield the flexible-price allocation given some crg,

LI = A A Crers + Ayt Aje - €+ O(€2). (134)

Using this, I can rewrite 1) in terms of the output gap, x; = C_)’R,l(C]%eSX —Cps) (given cpg), which
is to first order given by
_o19F OF -

N o Ls = 5% + O(e%). (135)
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This yields

oU 1 U A%\ - , A
U(Crs,Cns, Ls; &) =5~ Cr(crs + 56%5) + ( > C3.c3y + Crers (Acg + Azg) &s

oCr 0 A Ay
(136)
1 ! . A 3
- §APP (pNs(z) - pNs) di | — 5)\:(:‘735 +t.1p. + O(E )7
0
where \; is given by (130).
A first-order expansion of the price index (108) yields
1
pNs(1) = ﬂpNs + O(€?) for i € {flex}. (137)
Using this, I can rewrite (136]) as
oUu _ 1 U A%
U(CTsa CNsyLs;gs) :ﬁCT(CTs + 56%5) +5 < A > CT Crs (138)
1

1 = Ac .
- 5)\7rp?\fs - 5)%1‘5 + Crers (ACE + fllAlf) &+ t1p. + 0(63)7
i

where A, is given by (131).
A second-order approximation of the country’s budget constraint (114) yields

_ 1- 1
Crers + 5(JT(:%S = D¢Yr - &+ §g;D§EYT s+ To +0O(3) (139)
Adding (138) over states, using (139), and discarding higher-order terms yields

> wU(Crs, Cs, Ls; &) Zw = 82—U+A— 7'2—7)\ L yea?
- s Tsy “Ns;tis) Qs s aCT aCQ A” WpNs 9 Vs

ACZ 82 Acl s 3
+7T; A05+A—”Alg+ ac2 w DeYr ) - & p + tip. + O(e%)

Next, add a second-order approximation of foreigners’ flow utility with weight mA\:

?U A 2 Ay O*U A%
s s Ac ——A D Y, 'Ss
W= ZW{@CT <802+A”)7; +T< g-i-A” l£+<a A”> T) §
1., 1 dU* L) 1 S U o o : 3
- §>\ﬁpN5 2)\xx —I—m)\dC*C’ < + 5Cs ) + im/\dc%zc o+ tip. +O(e)

A second-order approximation to foreigners’ budget constraint yields

_ 1_ 1
C*ct + 5(J*c;? = DY - &+ EDZY™ - & — ET; + O(e%).
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Replacing back and discarding higher-order terms,

B 5er 5\ AU A s 1 1,
W—Zﬂ's aus dC*T 'TTT +7s TE gs_ WpNS 5 2T

dC* 2
U 9
s 90 U « )

where A7 and Ag¢ are given by (128) and (129), respectively. A second-order approximation to
the foreign no-arbitrage condition yields,

d*U* . 1 .
Zm + 3 mT o (DgY & - mT) = 0(e).
Thus,
1 1 ou  dU* 9
_ 1 1 o~ _ . 14
W ZW{ 2<A77+m7 ((%,T dc*x))z + ToAre - £ (140)
Ly o Ly o . 3
— 5/\pr5 — 5/\35375 + t.i.p. + O(€”)

When prices are flexible and markets are complete, the optimal transfer maximizes (140)). Solving
this problem yields (127). Using the expression for 7, s, one can rewrite (140)) as desired.

B.2.6 Approximate problem: Two exchange rate targets (lemma

Next, I prove that the objective function can be written as in the baseline model with two loss terms
and two targets: a demand-management target, and an insurance target. The proof uses lemma
which is presented in section

Lemma 8. Around the deterministic steady state, the planner’s objective function is approximately
given by

- 2
W = —%k‘o < — 251459 > ZTI‘S {(es - edms((:)))2 + xf(©)? (es — em,s((:)))Q}—l—t.i.p.—i—O(e?’)

Z R; @j acT s
(141)
where
. 1-Y,R©;5% ZjR'é'(DfX‘J'_%DEYT)
€dm s(@) - kek + kecDeYT + kee &5 (142)
9 5
1_ZjNJR39J - R; @JE)C

1§ the demand-management target, which attains a zero output gap and zero price dispersion when

0 =0,

_ - = 85X
B 1— R@ ZR@ DgX‘-l-i]DgYT
€in s(@) _ ( Z J 80T> s — J ( oCr ) . ES (143)

ZR@JaE ZR@J@E

is the insurance target, which replicates the complete-market transfers when © = O, the balance-sheet
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exposure to monetary policy f(©) is given by

_ Ky 0O
OER L
1 - Zj 1450;
where kyye = R is the response of the return of asset j when the exchange rate changes, and

ko = (f@?AW + ) (k4 kez) 2> 0

- 1 /oU  dU*\\, 5 2
N <ATT+ m! <6CT - dC*/\>> (A A k)2 0

B OF _,02F\ '1-— 1-¢ 0F _, U -
- (0X; 0X;
=1 (G + k5 E). (145)

where ke. and key are given by and , respectively.

A first-order approximation of (105) yields

es = pns + k1cCrers + kyLls + kig - & + O(€%)

where
e = —( ou ., 0% N ou )_182U
= Yacy’ aCnaCr T tacy’  ack
by = —( ou ),182U87F_( ou ., 0%U N ou )1 0*U 8£+(8U )1 0?U
=90y’ ac% oL ‘aCy’ ACNOL | aCr’ 9CrdCy OL ' 0Cr’  9CTIL
ou 0*U ou ou 0*U U
kie=—(=)" " D¢F — (——)"'D% U -1 D¢F D U.
Using (134)), I can rewrite this in terms of output gap deviations (given crg):
€s = PNs t+ kecC_’TCTs + ke{ &+ kegxs + 0(62) (146)
where
kec = klc + kllAﬁlAcl (147)
kee = kie + ku Ayt A
- OF
key = CN(aL) Yew. (148)

A first-order expansion of the definition of realized excess returns of asset j relative to asset 0
in state s yields:

_ ~ 0X;
rrjs = RjX;r; + R;

X;
= Creps + Rja J Ees + RiDeX; - &+ O(e2). (149)
dCrs OE

Agsuming all shocks are mean zero and noting that the planner would never deviate in expectation
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from demand-management /|

X
CTCT3+RJ§ JEes—i-R DgX §S—|—O( )

X;
TTjs = R] 907,

Next, multiply each equation j by the steady-state position (:)j and add over j to obtain

X 0X;
st ZR@]aC CTCTS—FR@]aE]EeS—i-R@DgX s + O(2).

\ﬁ,_/
=T

Using a first-order approximation of the country’s budget constraint (114) and solving for 75 yields

1 0X; 0X;
7;= — <R® Ees+R8<DX—|— DY>-£S>+(962 150

Replacing this expression into (146]) and solving for e5; when pys = 0 and x4 = 0 yields the demand-

management target (142)).
Using this, (146]) can be rewritten as

(1-3; Ry éaacT)
1_Zj:“]

(PNs + kexTs) + €am.s(0) + O(€?). (151)

€s =

Combining (105)) and (106]),

ou ou W

or. D 56,9 = oo

Approximate this to first-order to obtain:

PNs — Wg = kgcéTCTs + kglz/ls + kzg €+ 0(62) (152)
where
ou ., 0*U ou ., 0F _, 0°U
koe = (5~—) 7" + (7)) (m)
oCy’~ O0CNOCT 0CnN oL OLOCyp
oU 0%U OF ou 0*U oUu OF _,0°U
foy = —1 gt ~1 1
2 (acN) acz or 2oy aonar (8CN) Gr) o
U, U U, oU _, OF _, 0 U _ OF |
= D:F D2 —_— D:F — —)\) D

A first-order approximation of (113)) yields for i € flex,

OF L O°F_ = OF

5!If shocks were not mean zero, then the following expressions would hold in terms of the innovations, i.e. 7, =
ys — Eys for any variable y. The remainder would be unchanged. See appendix for an example with infinite
horizon where shocks at ¢ 4+ 1 conditional on the time-¢ information set are not mean zero and, hence, innovations are
considered explicitly.

pns(8) + (57
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Next, use (152 to get rid of ws,

, OF _,0°F ou __, OF _ _ _
pns(i) —pns + (8L) ! 22 (Is(i) — 1) + (ﬂ) 1(87) Y (AuCrers — AyLls + Aje - &) = O(€?)

In terms of the output gap x,

2
psli) = o+ (G IS L) — 1) — (51) ) Az, = O(E)

A first-order approximation of demand ([107)), and production (111)),

oF oF

C L@Ll() _n(pNs() pNs)+C LaLl

Using the first-order expansion of the price index (137)) and replacing,

PNs = RZs (153)
where £ is given by ([144). Using (153)), I can solve for z, from (151)):
1 ) - Z 15O 9 ~ 2
e . es — €dm,s(0)) + O(e”). (154)
’ (n+kzez (1—2 RJBCT )(S ms(©))

When the planner cares only about insurance, it chooses e;, s such that (150) is equal to Tem s

(1= 5, Ri5226;) Tomss = 50, By (DeX; + 552 De¥r) ©; - €
e

ein,s(é) = — X ~ = +O(€2)
Z] R]TJ@]E
Using this, the insurance loss term can be written as
A ZR OXi6,E (es — ems(©)) + O() (155)
s cm,s — _ — J OF in,s .
Z R] BCT
Putting (154) and (155) together and rearranging yields (141]).
B.2.7 Proof of proposition
The optimal exchange rate is still given by
xf(©)? . 1 5
es_izns@ 7dms@ 156
1+xf(©)? (©)+ 1+xf(©)? ©) 150
Replacing this expression into (141]) yields after some algebra,
L 9X. =~ = N\ 2
1 X > RG5O E A A 2 . :
W=—_k _ J o{ (€ns(8) = eams(©))°} + tip. + O
2 0(1+xf(@)2) <1—Z.R.6ng D7 (€ns(0) = €am,s(0))" + tip. + O(')
j oy Vi s
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Using (150) and (146]) evaluated at pys = 25 = 0, one can show that

1

Tins®) = s

Z ©;77dm,js(0)

where Ty, s(©) is the equilibrium transfer when e = ey, 5(©) and © = © and TTdm,js are the
realized excess returns under demand management when © = 0,

~ 0X;
TTdm,js (0) R;

_ 0X;
J EYo) Eedms( )+Rj <D€Xj+ oCr DEYT> - &s

Using 1} evaluated at es = e;, 5(0) and subtracting,

) (1%, B2,
ein,s6 —€ m,sG = — J— 7::771,5_ @TT m,s
I (zR @E) 1—Zu] Z "

Define éj = (1 Zj ) > @ The objective becomes
—lko <X> (a% + O©'Var(rr g, (0))0 — 20’ Cov(Tem, rrdm(O))) . (157)
27 \14xf(©)? em

First, I solve for the optimal portfolio {(:) i}; given some balance-sheet exposure to monetary policy
f(©). Let ke = {R;5 cas) E}J € R’ and 7 denote the multiplier of the constraint ©'k,... = f(0).
The FOC with respect to @] yields

© = Var(rrgm (0)) ™ {nksre + Cov(Tem, r7am(0))} .

Replacing in the constraint and solving,

1
Var(rrgm(0)) ™1 kppe

n= {f((:)) k. Var(rrgm (0)) "1 Cov(Tom, rrdm(()))} .

k/

rre

Replacing back, } B
© = keo + koy f(©) (158)

where

for = (1 — Var (r7gm (0)) " eprekl e
00 = k! Var(rrgm(0)) ke
Var(TTdm(O))_lkrre
ke = 77 R

k!, Var(rrgm (0)) = kype

) Var (r7gm (0)) "L Cov(Tem, 774m (0))

Next, suppose that k..,e = 0 Vj. Then, only f(©) = 0 is feasible. The FOC without the f(©)
constraint yields the desired result.
Note that one can recover the original portfolios ©,; by solving the fixed point in the definition
of (:)j7
~ 1
0; = : _
1+ 15 (kejo + ke, f(©)

] (ko0 + ke, 7 f(©)) .
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B.2.8 Proof of lemma
Replacing (158) into (157)) yields this result.

B.2.9 Proof of proposition

The robustness of propositions and in terms of £(O) is immediate from lemma Furthermore,
note that using the definitions of gy, s and Tem, s, the optimal exchange rate rule (156) can be written

as _
_ xf(©)?
T T ORI @y 2 OO

Replacing the optimal portfolios (:)j, given by 1} and rry,, given by ,

xf(0)?
1+ xf(©)?

The proof of the result for the volatility of rrs, is identical to that in proposition

T = f((:))_lﬁm,s + 7 dm, s (0).

1
1+ x/f(©)?

B.2.10 Proof of proposition
Using equations ([146)) and (153) to replace es and pys in the expansion of realized returns (149)),

rrjs = krrj7-7; + krrjxxs + krrjf “&s + 0(52)

where
Krrjw = Ry (K + Kez) Z)E(J E
Krrje = R (Dng + aaé( DeYr + (ke + keeDeYT) gg >

Using lemma [7] the planner problem can be written as

1 ou  _dU* 5
- 5 A ' —A s = Jem,s 159
{7;7{7"171:;?;(1'7333}3 ZW { < 7T+ m! (aCT dC*)) (Ts = Tem,s) (159)

s

1
+2@AW+Kﬂﬁ}%%ﬂpm+O&%

subject to
7; = Z @j’l“?“js
J

TTjs = krrj7~7; + k?“?“jﬂﬁxs + kr7'j£ ) fs'
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The first-order conditions yield

1 ,(0U -dU* _
- (ATT+ m! ((‘)CT N /\dC*>> T Tome) 001 Zj:CJSka -

_(K;Aﬂ' + )\m>xs + Z stkrrjm =0
J
_(:)j)\s + st =0

Z TsAsTTjs = 0
S
Replacing (162)) into (161)),

(KAr + As) Z@ Krrjo | As-

Thus, using the portfolio optimality condition (163)),

g TsTsTTjs = 0.
S

(160)
(161)

(162)
(163)

(164)

This shows that the planner always chooses output gaps such that they are uncorrelated with the

returns of the assets.

Replacing (162)) into (160)),

1 oU -dU* ~
A * T. —T. 1 E O k. T s
( m <8C’T )\dC* >) (75 = Tem.s) - gy | A

Then, using the portfolio optimality condition (163)),

g 7Ts Ts — CmsrT]S_O

This shows that the planner always chooses transfers such that they are uncorrelated with the
returns of the assets. Using the definition of 7, s provided in lemma |7, one may rewrite this as

1 ,[0oU —dU
— <A7—7—+mv (8(}[ dC*>> 2%7}7“7“]5 ZTFSTTJSAT$ & =0.

Next, consider the home and foreign no-arbitrage conditions,

(165)

where rrj; = R;jX; — 1 is the excess realized return before taxes. Approximating both equations to
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second-order and combining them to get rid of the linear term in 77, yields

OF\ ' U )
— 25: T ATTTsrrjs + Zs: Ty <8L> CnAgrrjsts + ES: TerrjsATe - & = ETj + O(e).

=0

Equation (164)) implies the second term is zero. Using (165) and rearranging yields the desired
result.

B.3 Dynamic model: Three period model

This appendix contains details of the three-period model of sections Section formally
defines the competitive equilibrium and the planning problem. Section derives a second-order
approximation of the objective function (equation . Section [B.3.2 derives a first-order approxi-
mation of the constraint (equation [44]). Sections [B.3.4] [B.3.5] [B.3.6] and [B.3.7] prove propositions

and [L6] respectively.

B.3.1 Competitive equilibrium and planning problem

As argued in the main text, optimization yields conditions analogous to the ones in the static model.
These hold for all s, ¢:

a Cng

— E./Px. 166
T—a Cry Dot/ Pt (166)

C% W,

-1 Nst st

koILe st 167
C%st Pt ( )
C'Nst = Zstht (168)
Pry = 1. (169)

The home and foreign no-arbitrage equations, coming from asset optimization at ¢t = 0, are

ouU
zsjns (rrs — 7B) 3Co (s,1)=0 (170)
oU*
zs:ﬂsrrsac;(s, 1)=0 (171)

Next, I formally define the competitive equilibrium and the planner’s problem.

Definition 4. Given a Central Bank policy ({Es1, Es2}s,78, {75 }s), an allocation ({Crst}st,{CnNst}s.t,

{Lst}st,{nfas},B) together with prices ({ Pnst}s.{ Wit }s,Ro, Rs) and realized excess returns {rr},
is a competitive equilibrium if and only if they solve — and (166)—(171)).

Problem 4. The planner’s problem is to choose ({Fs1, Es2}s,75) to maximize subject to (37)
~ (@1) and (166)— (I71).

B.3.2 Approximate welfare

A second-order approximation to flow utility yields

1+ 1 ® l+o \* . 3
——(1 1-— s _ — t.ip. + O
a_‘_(p)aCTst 2( +‘P)( 04) <e(t+a+(chst Oé—l-gOZSt + t.1.p. + (6 )

U(s,t) = (

7



Using a first-order approximation of and the definition of the output gap (135), this can be

rewritten as

1+¢ 1 .
s (p)acTSt — 5(1 + )1 —a)*z? + tip. + O(e%). (172)

Approximating and (41)) to second order yields,[g_fl

U(s,t) = (

1 1
acrs1 + 5040%31 +nfas = ayprs + 50@%51 +Ts + (9(63)
ac 1 2 _ } 2 * O 3
Ts2 + 2acTs2 = ayrs2 + 204?JT52 +nfas +nfasr; + O(€)

Replacing in (172), adding both time periods and discarding higher-order terms yields

1+ 1 _ _ \
W:Zs:ﬂs{ (a—l—i) (7;—2a T2 — o 'nfa — y1sTs + nfas (yris — yras + o 17;+7"8)>

_ %(1 +o)(1—a) Z mzt} + tip. + O(e)

t=1,2

Using a second-order approximation of the foreign no-arbitrage condition (171)) and replacing,

1+ * * 1 _ — — *
W= gws{ <04+Z> (7 Tocl = 50 Y72 — a7 'nfal — y1s T + nfas (yris — yros + o ' To + rs)>

_ %(1 +¢)(1—a)? Z ajgt} + tip. + O(e?)

t=1,2

If prices were flexible, maximizing over nfas; would yield the optimal savings conditional on some

transfer 7,
1
nfagb(ﬁ) = 5 (a(yls - y25) + 047": + 7;) .

Using this and defining n}’as = nfas — nfa®(7;), the objective function can be rewritten as

1+S0 1 _ 1 3 2 1 1 * * %

_ %(1 +¢)(1—a)? Z x?t} + t.ip. + O(e)

t=1,2

If prices were flexible, setting n}as = xg4 = 0Vs,t and maximizing over T would yield the complete-
markets transfers:
Toms = —a(ys1 + yo2) + o + 2a7"cl.

Armed with this, the objective function becomes

140\ /1 s -2\ 1 ,
W:—ZS:WS <a+¢>a1<4(7;_%m’5) +nfas>+2(1+go)(1—a)32:c§t + t.ip. + O(e)

52Recall that, for ease of exposition, I assumed nfa = 0.
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Rearranging yields .

B.3.3 Approximate constraint

Using a first-order approximation of the budget constraints and to substitute out crg in
the definition of the output gap yields

Y 15 -1 L+¢
1-— = — Brrg — —
( 04)1’51 es1 + at o (yTsl + rrs — & nfas) o+ (pzsl
_ 1+
(1 - a)xSQ = €52+ ﬁ (yTSQ + 1nfas) - o +ZZSQ.
Assuming w.l.o.g. that shocks are mean zero and replacing into (43),
15 _ 1+
rry =0 <a i " (yTs1 +a 'Brr, — o 1nfas) — ﬁzsl - (11— a)x81> (173)
@ - I+ .
+ (1 — (5) <Oz—|—<p (ym + « 1nfas) — mzsg — (1 — 04)1'32> + (1 — (5)<’¢3 — 7“5).

After some algebra, I can rewrite this in terms of n}as =nfas — nfaP(0) — %BTTS,

—1 B -1,
Trs = Trdm,s(o) — (1 =a)(dzs1 + (1 = 0)zs2) + Z_}_i (=0+(1—10))nfas + ;2+ZBTTS7

where 774y, 5(0) is the solution to 1) when B = 0, nfas = nfa?(0), and 241 = x50 = 0 (equation
. Rearranging yields .

B.3.4 Proof of proposition
The planner chooses {xs1, 52, n}as} to maximize subject to 1) The solution is given by

- 1 Y ! 5
= (5 - 2) <52 +(1—0) +)><2— /;2 (6—(1- 5))2> (1= B rr =rrams @) (T4
1 5 .
R (52 T =04y 26— (1 6))2> (U= pB)rrs = rram () 1)
1 -5 _
va= 1= (5= e T 5))2) (1= 4B) rry — rrams(0) . (176)

The results are immediate from these expressions.

B.3.5 Proof of proposition
Replacing (174) — (L76)) into and solving for 77% yields

sav __ 1 1—a+ Ckil)zflu _
Te =2 <5 o 2) <52 +(1=06)2+x 26— (1— 5))2> ((1 - ,uB) rre — ”“dms(o)) )

The results are immediate from this expression.
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B.3.6 Proof of proposition

The fact that lemma, [2] carries over in terms of f(B) is immediate from the approximate objective
. Replacing the optimal realized excess returns into (48]) yields

L xko P2 2 2 A : 3
W= T (B FB) O rg(0) T T, +2f(B)0Trry,(0) | +E1P-+O(€)  (177)
demand-management  insurance align targets
Since (177) is identical to (20 with f(B 0y and o7, rr,. (0) instead of B, agdm, and o7 rro(0)s
respectively, the extension of proposmons ', and M) is immediate.

Rewriting the optimal returns in terms of rryg,

1 2
i Toms + O, (178)

Following steps analogous to the proof of lemma [3| (see appendix ,

17t = (1 — w)rrgm,s(0) +

do? 2 1 _ .
rr 2 2 2
5 = T 1T f B (B0 7rran) + (X0h = 020 @) FB) = 0Tepirrin(@)) -

The proof is then analogous to the proof of proposition [7| (see appendix [B.1.8]).
Finally, note that B
r7s = —(1 — pB)rrg

is identical to . Thus, proposition [8| carries over.

B.3.7 Proof of proposition

See the proof of the general model with infinite horizon in section While this case is not
strictly nested within that case, it is straightforward to counstruct an analogous proof.

B.4 Dynamic model: General framework

In this section, I extend the analysis of section [4] to an infinite-horizon setting with Calvo pricing.
Section [B.4.1] presents the formal setup in detail. Section [B.4.2] presents the planning problem.
Section describes the steady state of the dynamic model. Section derives a quadratic
approximation of the objective function (up to the portfolio) with four loss terms: lack of insurance,
output gaps, inflation, and savings distortions. Section derives a first-order approximation
of the constraints. Section [B.4.6] presents the approximate problem and discusses the additional
constraints one needs to add to make the solution optimal from the “timeless perspective”, as
discussed in section Section [B.4.7] solves for the optimal path of variables in expectation in
the periods after the shock hits. Section [B.4.8] solves for the optimal innovations in the period
when a shock hits. Sections and describe the optimal realized returns the planner
promises and the optimal transfer from the rest of the world, respectively. Section presents
proposition and lemma which describe the optimal portfolio choice, extending proposition
and lemma [] in the main text, respectively, to a dynamic setting. Section presents
proposition 20] which extends proposition [[I] when there is a single “endogenous” asset, i.e. an asset
whose return depends on policy - see section for a formal definition. Section shows
how to solve the model when there are more endogenous assets. Section [B.4.14] presents proposition
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which extends proposition [I2] without any qualifications. Finally, section [B.4.15| shows how to
back out the optimal time-varying capital controls (savings taxes) and how to solve the problem if
only time-invariant capital controls are available.

B.4.1 Set up and competitive equilibrium

Financial assets Home agents can trade J + 1 < K assets with the rest of the world. For
ease of exposition, I assume that one of these assets, labeled asset 0, is a short risk-free asset in
foreign-currency with yield R*(&;). The remaining assets may be of two categories: nominal assets,
©; € Jn, which have payoffs denominated in home currency, and real assets, ©; € Jr, which have
payoffs denominated in foreign currency (i.e., tradable units). That is, let

1
V= {cTt,cNt,Lt,EfPNt,Et1Wt,Et1 / HNt(i)di}
0

denote the real value of aggregate equilibrium variables (i.e., in foreign currency). Real assets
have foreign-currency payoffs given by X (J4; &), where X (-) is a positive function. For example, a
claim on the tradable endowment would be X ();;&;) = Y7(&). Nominal assets have home-currency
payoffs given by X()s;&), so that their foreign-currency payoff is E; ' X()s;&). For example, a
short home-currency bond would be X (), &) = 1. Accordingly, the yields R; for real and nominal
assets are denominated in foreign and home currency, respectively. Note that the return of a real
asset may still be endogenous to monetary policy. For example, claims on the dollar value of
nontradable firms would be X (V;; &) = E; ! fol I ¢ (2)di.

In addition, I assume an asset j bought at ¢ pays a coupon @X(%; &) att+1 and 1 —6; units
of the asset at ¢ + 1. Furthermore, each unit of asset j pays a convenience yield W;(&;), which is
zero at the steady state, i.e. U;(£) = 0 (the convenience yield of asset 0 is normalized to 0). In
sum, the realized excess return with respect to the short risk-free asset is given by

i1 = Rj {‘I’(&) + X (Vg1 &41)05 + (1 — 5j)Rj_tl+1} — R*(&) for j € Jr (179)

rrj = R By Bl {‘I’(ft) + X (Vi1 &41)85 + (1 — 5j)Rﬁi1} — R*(&) for j € In. (180)
Consumers Consumers solve

o0
max Eo Y BU(Crs, Chi, Lt; &
{Cr¢,Cnt,Le,nfar,©: 152, ; ( )

subject to

Cr + EfletCNt + R*(&)_lnfat(l + TOt) + Z @jt(Tjt — TOt) = (181)
7>0
1
YT(ft) + Et_IWtLt + Et_l /0 HNt(i)d’i +nfa_1 + Z Trjt(ajt—l + T;.

3>0

where Iy (7) are profits from nontradable firm i and nfa; = R*(&) Z}]:o ©j is the country’s net-
foreign-asset position multiplied by the foreign-currency short interest rate (a convenient normaliza-
tion). Note that agents take as given 7r;,. Optimization over labor and tradable and nontradable
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consumption yields

ou ou Py
S () 50 = 5 (152)
(-5 ) 50 = 3 (183)

As in the general static model of section [d] T assume is a Cy is a CES composite of a continuum
of varieties Cn¢(7) with elasticity of substitution 7. Optimization across varieties gives rise to the
standard CES demand,

o) = (2 e (184)

where Py is the ideal price index of nontradable goods,

Py = (/01 PNt(i)l_”di> o . (185)

Asset optimization yields a no-arbitrage condition,

oU ou
BEtTTjt—O—lE(t -+ 1) = E(t)(qt — 7'01}) (186)
and an Euler equation,
oU oU
RE——(t+1)=(1 —(1). 187
IB t tach( + ) ( +TOt)aCT() ( )
The country’s assets satisfy a no-Ponzi condition,
t
lim || R 'nfa; =0 a.s. (188)
t—o0 =0

Foreigners 1 assume there are two types of foreigners. First, there is a large set of unso-
phisticated investors that provide an infinitely-elastic supply of the short risk-free asset in foreign
currency at rate R;. Their consumption is unaffected by policy at home. Second, there is a finite set
of measure m of sophisticated investors that are willing to trade any asset with the home country
and can also trade the risk-free asset with the unsophisticated investors. Asset optimization by the
sophisticated investors yields

au*
E, TTjt+1d—C*(t +1)| =0. (189)
for assets j > 0. Since they can save and borrow in the risk-free bond
au* . . dU*
a0 (8) = 07 (&) R (&) Ee = (E + 1) (190)

I assume that, at the steady state 8 = 8*. Using asset market clearing, their budget constraint is

Ci 4+ R* (&) 'nfaf =Y*(&) —m™! erjt@jt,1 +nfa;_q, (191)
Jj>0
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where nfaf is the (normalized) net-foreign-asset position of the sophisticated investors, which also

satisfies a no-Ponzi condition:
¢

tliglo H R nfaf =0 a.s. (192)
s=0
I assume that if {C}}; = {Y*(&)}+ foreigners are indifferent between lending and borrowing, i.e.
equation holds. Thus, given some path for output, interest rate shocks R} are rationalized by
B* shocks. Note that, since there is an infinitely elastic supply of the foreign-currency bond by the
unsophisticated investors, nfa; + nfay # 0.

Intermediate good producers Firms have access to a neoclassical technology
COne(i) = F(Le(2); &)- (193)

Note that technology is identical across firms and there are no idiosyncratic technology shocks.
Thus, from the perspective of production efficiency, all firms should produce the same amounts. A
set ¢ of firms i € {fix} cannot reset their price:

Pri(i) = Pyy_1(i) for i € {fix}. (194)

A set of firms 1 — ¢ i € {flex} can reset their price. The probability of belonging to this set is
i.i.d. over time and across firms (i.e., Calvo pricing). T assume that there is a labor subsidy 77, that

offsets firms’ desired mark up, i.e. 1 — 77 = "n;l Optimality gives rise to the condition

K¢ Z(ﬁ@SAH—s {PNt(i) — 6—F(L L — Wt+s} <PNt(Z)> Cnits = 0 for i € {flex}, (195)
s=0 oL \Li+s (1); Etas)

where A,y is the firms’ stochastic discount factor@

Taxes The central government rebates the proceeds of the financial taxes {7;} lump-sum and
the cost of the labor subsidy 7,

Ty = o R (&) nfar+ Y (7je — 100) O — LWL
7>0

Goods and labor market clearing Replacing firms’ profits and taxes into (181), and using
nontradable market clearing yields the country’s budget constraint:

Cre+ R*(&) 'nfay = Yr(&) + nfae 1+ > 170 1. (196)
7>0

The market-clearing condition for labor is given by

1
Lt:/o Lt(l)dl. (197)

%31t would be natural to assume that this discount factor is that of home households. In any event, since the
deterministic steady state is efficient, the choice of A:4s is inconsequential in the approximate model.
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Shocks Shocks follow a first-order Markov process,
&= V&1 + €,

where V; is a matrix with eigenvalues of absolute value strictly less than one and ¢; is a compact-
valued random variable.

Competitive equilibrium Next, I formally define a competitive equilibrium in this economy.

Definition 5. Given a Central Bank policy ({ E+}+,{7j:};¢), an allocation ({Cr¢ },{Cni }e,{ Lt} {nfar }+,

{Cne () i A Le (D)} {CT o {nfai },{Oji }j>04) together with prices ({ Py te, { Wit {Pne(i) bia { Rje }>0,0)
is a competitive equilibrium if and only if they solve (182)—(|197).

B.4.2 Planning problem

The planning problem is to choose ({E;}+, {7j:};¢), an allocation, and prices to maximize

Eo Y  BYU(Cre, Cni, Li; &) + mAU* (Ciy; &)}
t=0

subject to (182)—(197). In section below, T add “promise-keeping” constraints to the problem
so that the resulting policy is optimal from the “timeless” perspective in the sense of |Benigno and

Woodford| (2012). To arrive at a recursive formulation of the problem, it will prove convenient to
define the value function,

[e.o]

Vig = Z B0{U(Crt, Ont, L &) + mAU™ (Cy; €0) -

t=to

B.4.3 Steady state

I study the solution around a deterministic steady state, which solves the planning problem in the
absence of shocks once I add the relevant promise-keeping constraints in section E] At the
steady state, R* = ~!. Tradable consumption consumption is given by

CT = ?T + (1 — 5)71?(1
I assume nfa* = 0 so C* = Y*. The steady-state price of asset j is given by

po_1-B01-9)

= -,
B6; X(Y,€)
The remaining steady-state variables (C’N,E, %\’, %) solve the same equations as in appendix

SWithout these constraints, the solution would not be stationary: In the first period, the planner could “surprise”
markets and engineer realized returns in favor of the home country (if A = 0). The models in |Chang and Velasco
(2006) and Du, Pflueger and Schreger| (2020) feature this mechanism. To study the problem without the initial
promise-keeping constraints, one would first need to derive the appropriate non-stationary solution in the model
without shocks and then approximate around this point. This would mostly affect the results in the first period; the
analysis for subsequent periods would be essentially the same as the one I characterize in this appendix.
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B.4.4 Approximate problem: Four loss terms

In this section, I derive an approximation to the objective function with four loss terms: deviations of
the transfers from the first-best, deviations of savings from the first-best given transfers (henceforth,
“savings gap”), output gaps, and inflation.

Lemma 9. Around the deterministic steady state, the planner’s objective function satisfies

1 —to 1-p . [ oU oU* 2
Vto :Ato - i}EtO Z Bt ' { <ATT + <m> v (aC'T B oCT A)) (7; a %m,t) (198)

t=to

ou - ~ \2 .
+ Xo? + M7y + =T <nfat71 - ﬁnfat) + ti.p. + O(e3)
oCT

where Ty = Zj>0 ©;rrji is the transfer received by the home country from abroad at t, Tem+ are the
transfers the planner would choose under complete markets and flexible prices,

1-8\ ,/0oU oU*\\ "
Temit = (ATT+ <m> ¥ <({9C'T — aCT)\>> A7’§€t, (199)

x¢ 15 the output gap, wn¢ s non-tradable price inflation, and n}at 1s the “savings gap”, t.e. the
difference between the actual nfa position nfa; and the one that the planner would choose given
some exogenous transfers {T;}, nfa{b, which satisfies

nfal’ :nfa{b_l + Ti + ke&, (200)
and Ay, collects terms that, given a Ty, promise at to — 1, are taken as given at to,

ou  oU*

Ato = -AHto + AFto + <8C\17’ - )\E

1
) (T =7 TuDey” -y 477 1= 8)T2).
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The remaining constants are given by

oU 1
Arr =0 —=B)5~- aCy <7T + 7 ) >0 (201)
8U * * 7.
Are = aCr (7 DeY™ + Bryrke + kg) (202)
ke = 7" (keVe — kre) (I — BVe) ™! (203)
- oU \ !
ke = —yr (DeYr + pnfaDeIn R*) + <8CT> (Ace + Ayt A Are) (204)
kre = ke — Deln R* (205)
o
A = A,y >0 206
1-Bo)I—9) ™ (206)
ouU 3
At = a0, -1 {1 = (=BT + (k‘g + Bwkg) -fto} (207)
1 0U ~ 2
- 5@(1 = B)r (nfago—l - nfat0_1>
du~ 1 dU*
Arty = —=znfay, 4 (1 + (1 =8 _1720 — 7 DY fto) — id—C*(l — B)y*m1 (nfaf0_1)2

dC*
(208)

The constants Ay, Aa, Ace, Au, Aig, Ao, Y7 and v* are still given by 4118]) (119), (120), (121)),
122), (130), (132) and (139), respectively. Note that a global planner (dU* = \) would put a

smaller weight on the insurance term and choose larger transfers under complete markets than a
home planner (A = 0).

First, note that the approximation to flow utility given by lemma @] is still valid. Adding (117))
over time and taking expectations at t = tg:

= ou 1 ! , )
Uy =By Y B tO{OCCT (CTt + CTt) — 54 (/ (pve(z) — pNt)2d1> (209)
t=to 0
U AR\ - - Ay
5 (aCQ Ay > C%Cgrt + Crery <Ac£ + A”Al§> & — 5 A} } + t.ip. + O(e )

where, as in equation (136, I have rewritten flow utility in terms of the output gap. Using a
second-order approximation of the country’s budget constraint (196)), adding over time, using the
no-Ponzi condition (188)), and taking expectations at t = ty, yields

[e.e] _ 1 o0
Eiy y 570y ( i 2> = nfa,1 + By Y B0 (Tt fnfaDen R - &)+ O(®) - (210)

t=to t=to

In addition, I use the following result from [Woodford| (2003),

Zﬁt (/ pe(i) — pNt)2di> ( —ﬁgb Zﬁtﬂm (211)
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Using (210) and (211]), one may rewrite (209)),

ou oU 1
Uto = Enfato—l + Eto t_zt:o /Bt fo { aCT ( t+ /anath In R* ft) 2 7r7TNt (212)
o*U AP A, 1 ,
< > Ctcty + Crery <Ac§ + A”lAl&) &t — 2)\3:933} +t.ip. + O(e%).

Next, I use a first-order approximation of the budget constraint,
Crery + Bnfay — BnfaDeIn R* - & = DeYr - & + Tr + nfai—1 + O(e?),

to rewrite (212)) as

oU
U, = Tnfat()—l {1 - ’YT’];O + kﬁ ) fto} (213)
| U 1
+ Ey, Z B T — ’YTT 30T (nfa—1 — anat) + Byrnfa Ty
= 80
1., 1
+ Teke€e + B (ke - &1 — ke - &) nfae ) = SAxm — 2/\13% + tip. + O().

Next, I use the following lemma to define the “savings gap”: the deviation of the actual savings rate
nfa; from the one that would emerge if transfers were independent of the monetary and savings

policy, nf a{b.

Lemma 10. ’ Given some exogenous path for transfers {T;}i2, and initial foreign position nfafg_l,
marimizing without constraints yields xy = iy = 0 Vi and .

Proof. The FOC of with respect to nfa; yields
—BEmfally + (1+ B)nfal® —nfal® | =T, — 7 ke - & + vy ke - Ei&rp.
Using the law of iterated expectations for s > 0,
—BEmnfal 1+ (1+ B)Emfal, —Emnfal | = =77 kre  Eelirs + 7 ke - Eeersir.

This can be written as a system of difference equations with a root outside the unit circle, a unit root,
and K stationary roots corresponding to the shocks. Picking the initial condition n fa; appropriately
so that the system does not diverge, I obtain (200]). O

After some algebra, one may rewrite 1D in terms of “gaps”, n}at = nfa; —nfall,

oU 1 1 - N 2
Usy = Atz + By } gt { en (T 5= A T? = Syr (nfay - Bnfa,) (214)
t=to

1 1 .
+Ti (/% + 57Tk§> §t> = AT — 2%%?} +t.ip. + O(€%).

where A, is given by (207).

87



Next, I approximate foreign utility, U = > .2, i to B* (&)U (C':’;t)

. dU* R d2U*
us, :Etozﬂt { 100+ 56t s O (215)
t=to

* G st* Yk x .
+ B (Deln* - &) (Sz:;)ﬁ d—C*C ct+1+s> } + t.i.p. + O(€®).
A second-order approximation of the foreign budget constraint yields

0 B 1. 0
By, » B0 (c*c: + 20*(;:2> =nfaj,_1+By, Y B0 (=m VT + Bnfa;Den R - &) +t.ip.+O(€)

t=to t=to
(216)
Using (216)), one may rewrite (215)),
. dur o, o~ au* .
Uy = —cenfag, +Et0t§;06t tO{ — m~ VT + ana DelnR* - & (217)
dQU* *2 S * ok . 3
+ 2em Ok 22+ B(Deln B* - &) 25 dC*c Chirgs | ¢+ tip. + O,
Next, I use a first-order approximation of the foreign budget constraint,@
C*¢ + Bnfa; = DeY™ - & —m™ ' T + nfai_y + O(e)
and, iterating forward this equation and using that E; ;7; = O(€?),
- (Z 5SC*C:+1+S> =nfa +E Z B (DeY™ - &rats) + O(€%),
s=0 s=0
to rewrite (217)) as follows,
. dur s o~ o AU _
U, = @nfato_l (1 +m lry 7;0) + Ey, Z Bt—to dC*{ —m~ 7 (218)
t=to

* * * 1 * * * * — *
+ Bnfa; (D¢ln R* 4 DefB*) - & — 57 (nfaj_, — anat)2 —~*Bm Yinfa}
1 .

7 (nfaf_y — Bnfa}) DeY* & — S m T 44 m DY a} T tip. + O().

A first-order approximation to the foreign Euler equation yields

Y*C*c; = — (Deln R* 4 Def*) - & + v C*Eycyy g + O(€7)

%51 use the convention that Hto LBr(gs) = 1.
%6Recall that I assumed nfa” = 0.
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Since R* is consistent with y; = ¢f Vt if 7, = 0 Vt,
VDY* - & = — (Deln R* + Def8*) - & + 7" DY ™ - Er&ryr + O(€%) (219)
Thus, for all s > 0,
CFcf = DeY* - & = C*EeCfy oy — DeY™ - Eebrrsrn + O(6%).
Then, using the budget constraint,
nfa; = —m T + nfa;_; + O(e?)

Replacing back in (218) and using E;_17; = O(e?) and (219) yields, after some algebra,

> *
Us, = Aptg +Eig Y Bt’to% (—mlﬁ +mT Ty DY - & — %m”(l - 5)7*722> +t.ip. + O(e”)
o (220)
where Apy, is given by (208).
A second-order approximation to the foreign no-arbitrage condition yields, for ¢ > o,
B Ti = Y Bt Te (DY - & — (1= B)ym™'Tr) = O(€%) (221)

Using (221)) to replace the linear term in transfers for ¢ > ¢ in (214) and (220), and noting that
Vg = Uyy + mAU,,

1 1-B\ ,[0U dU*-
VtOZAt0+2EtOZBt{_<ATT+( m >’Y <8CT_CZC*)\>>7;2 (222)

t=to

ou

+ TiATe & = Aoty = My = ST

- N
(nfatfl - anat> } + t.ip. + O(e?).

Note that, at t = o, there is no analogue of (221 so A, includes terms with 7Tz,. If markets are
complete, then the planner can attain the first best, eliminating inflation, savings and output gaps.
Setting x; = mny = nfa, = 0 Vt, and maximizing (222) with respect to 7; subject to E;_17; = 0 for

t > to yields (199) 7] Replacing back in (222) yields (198).

B.4.5 Approximate constraints

In this section, I derive an approximation to the constraints of the problem: the Phillips curve - a
log-linearized version of (195]), and the law of motion of asset prices and transfers as a function of
realized excess returns.

Phillips curve Following the usual steps, one can show that a log-linear expansion of (195) yields

TNt =kt + BEsT N1,

STAt t = to, Tem,t, 1S the one that would have been chosen at ¢ = to — 1 if the initial period had been t =ty — 1.
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where

— 17¢ ].fﬁgb _— aiUil
R_< ) ><177(8F)_282F0N>CN Gy A

oL OL?

Asset prices First, note that using equilibrium relationships, one can rewrite the payoff function
as a function of tradable consumption at ¢, Cp;, the output gap, x¢, and output and price dispersion,
A and AP, respectively:

Xj(z4, Cre, Ay, AV &) = X5 (Ve(we, Cres Ay AV €0)3 &)
To see this, note that L; is by definition related to the output gap and flexible-price labor
F(Lt; &) = Onae + F(L{™ (Ore, &); &),
Cn: is related to labor and output dispersion A,
Cne = A7'F(Ly &),

Pnyi/Ey; and W,/ E; follow from the FOCs (182)) and (183)), and the nontradable mutual fund return
satisfies,

1
B! / Iy (i)di = B ' Pni APCny — E7 "W Ly
0

1 A\ 1-n
PNt(Z)> .
st= [ (22) s,
t 0 Py !

Since A; and A? are zero to first order,

where

0X 0X -
Xt = %J,‘t + ECCTt + D;;'X : ét + 0(62).
A first-order approximation of (179) and (180) yields
DV, Oln X _ Oln X
Brrjt+1 = (1 — 6(1 — 5])) ( )—E(S] . gt + 8CT CTCT+1 + Ti41 + Dg InX - £t+1> (223)
j

— B(1=6;)rjis1 — LiegyAery1 — DeIn R* - & + 15 + O(€),

where 1;c 7, is an indicator that takes a value of one if asset j is a nominal asset.
Next, note that equation ([146)) is still valid, i.e.

et = PNt + kecéTCTt + ke{ &+ kegxy + 0(62)- (224)

Using this and a first-order approximation to the budget constraint to substitute out Crery, (223)
becomes, after some algebra,

Brrjiss = =B = 8 rjesr + 1+ Ky e &+ hpe Gen
Oln X Oln X
+ (1= B(1-45)) <<9CT (Tex1 +nfag — pnfasir) + o $t+1>

—Ljegy (Mneg1 + kee (Tig1 — Te) + (L + B)nfar — pnfar —nfar—1) + keaAxii1)
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where

DV, _
kpre = (1= 8(1-65)) < )?5;) — DeIn R* + 1je gy (keeDeYr + keeffnfaDe In R* + kee)
Oln X olnX -
1 _ ) *
krjé = (1 — ,3(1 — (5])) <D5 In X + aCy DgYT + aCy ,anan InR >

—1jcgy (k:ecDgYT + l{:ecﬁn}aDg In R* + k:eg) )
Rewriting this in terms of gaps n}at,
Brrjipr = —B(L = 8;)rjea1 +7je + kryne - & 4 Krje - &1 (225)
#0606 (% (1= 8) (nfal + Tow) + nFa, — BnFacas) + i)
— Ljeqy <7TNt+1 + kee ((1 — B)Tex1 + (L + B)nfa, — Bnfa,q — n}at—1> + ke:rAxtH)

where

krire = Ky re — kecLjegy ke
Oln X -

kT‘jf = k}“]{ - B (1 - B(l - 6])) ka + BkecleJngf'

Next, use that to first order E;rrj;41 is zero to solve for the yield rj;,

rit = B(1 = 0;)Eerjent — krjne - & — Krje - Beyrn (226)

- (1-p(1~- 53‘)) <881(I;;( ((1 - 5)nf@£b + n}at - 5Etn}at+1) + alat)(EtIt+1>

+ 1j€JN (Etﬂ'Nt+1 + kec ((1 + 5)71}@,5 - ﬁEtn}at_,_l — n}at_1> + kexEtAxt—i—l) .

Next, T use that iterating backwards, nfal® = 32! T.+nfafP(0) where nfaiP(0) is the net-foreign
asset position consistent with 7, = 0 Vs < t. Then, I define the associated no-gaps-no-transfers

yield T’jt(O),

7jt(0) = B(1 = 6;)Eerji41(0) — kpire - & — krye - Ee&pr — (1 — B(1 = 95)) (69(91?32:((1 - B)nfa?(O)) .

Note that 7;(0) is independent of policy. Henceforth, it will prove convenient to define a “normal-
ized” yield of asset j, 7j;, given by

_ dln X - i .
Tje = 1t — 15¢(0) + 82’T (1-p) (nfat + Z 7;) + Ljcqy (kexast - kecAnfat) .

S§=—00

After this normalization, (226 can be rewritten as

it = B(1 = 0;)EaFjis1 — kyp,nBamni1 — ke aBaigr — Bk BeAnfay (227)
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where

Oln X
krrjb = 5]' <keclj€jN - )

oC
Jdln X
krr]-m =(1-8(1- 5j)) (6:1: - kemljeJN>

krrﬂr = —1j€JN.

Next, I define the no-gaps-no-transfers realized returns r;;(0) analogously:
Brrjee1(0) = —B(L = 6;)rje1(0) + 15¢(0) + Ky Le - & + Ky - €t (228)

#0006 (Fem (= Bnfal )

Subtracting (228) from (225)) yields, using the definition of 7, (227),

Brrjiet —Brrjis1(0) = 70— B(1—0;)Fjr1 +kern TNt +rryo Tt +Bher pAnfay o +Bu T +O(€?)
(229)
where

_ Oln X
pj=pB"11-p) <30 - kecljeJN)

B.4.6 Approximate problem: Set up

In this section, I set up the approximate problem. I begin by discussing the problem from the
perspective of time ty. Then, I derive the set of “promise-keeping” constraints one needs to add
to make the problem recursive, i.e. study the optimal policy from a “timeless” perspective, as
discussed in section This justifies studying the problem around the deterministic steady state
characterized in section [B.4.3] Before doing so, I will sort assets into two classes: endogenous assets
Jp and exogenous assets Jx. Intuitively, endogenous assets are those whose returns can be affected
by policy. Note that endogenous assets are not necessarily nominal. In general equilibrium, the
return of a real asset can be endogenous to policy, e.g. claims on non-tradable firms.

Definition 6. An asset j is exogenous to policy, i.e. j € Jyx if k:,ﬂ,n].,r = k:mnjb = kr,njx =0. If an
asset j is not exogenous to policy, then it is endogenous, i.e. j € Jp. The number of endogenous
assets is Jp = #(Jp).

The problem at ¢t = ¢y is choosing {x¢, Ty, n}at, rre, 7, T, ©¢} to maximize

1 s 1-B\,0U  oU*< .\ . ,
Ato QEto tzto /6 { <ATT + < m (8CT 80T A)’Y (7; 7::m,t) (230)

ou ~ ~ \2
+ Ao + Mpmhy + =T (nfakl - anat) + t.i.p. + O(€)
oCT
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subject to

Eirrji1 =0 (231)

TNt = K2 + BET N1 (232)

Brrje — Brrj(0) = 751 — B(1 — 6;)Tjt + krrynTNe + Kprjue + ﬁk‘rrjbﬁn}% + BT (233)
Ti= rri©ji (234)

j

Vt > tg and j € Jp with n}ato_l,(:)to_l and 74,1 given. To make the problem recursive, I add
two promise-keeping constraints at ¢t = t( for each of the two forward-looking constraints and
. First, note that as long as there is an endogenous asset, i.e. j # (), a home planner would like
to manipulate the initial returns of asset j, 7754, in its country’s favor, i.e. to increase T;,. Thus,
in the initial period one needs to add promises

Tty = TTjto- (235)

Note that this is really only necessary for endogenous assets, which are the ones that the planner
can manipulate. The other promise is standard and relates to inflation,

7TN7§0 = ﬁNto- (236)

Using promises 1) —7 and defining y, = {7y, rre, nfa, ., 7jt—1,©¢-1}, the problem can
be written recursively as follows,

1 1-— oUu oU™ -
V(yt;ft) = max —2Et{5 (ATT+ < mﬁ> (8CT - 3CT)\)7*) (7§+1 - 7Zm,t+1)2

{Yip1.06,Te41,0¢}

U - L N\2 .
X+ BAem sy + et (n Fa,_, — Bn fat) + BV (Yesr gm)} Ftip. + O(e3)

subject to

Nt = K2t + BE TN+
]EtTT’jt+1 = 0,
Brrjt - 5707']‘15(0) = 7:jt—l - /8<1 - 5j)fjt + krrjﬂ'ﬂ'Nt + krr]-xxt + ﬂkrrijn}at + ﬁﬂjlﬁ
Tiy1 = erjtﬂéjt
J

Vj € Jp. This is the problem from the “timeless” perspective. An alternative recursive representa-
tion is to define y, = {Eyn¢q1, nfay, 7} and

1 1—8\ oU oU*- ,
V(yi_1;€-1) = ——E,_ Arr+ - MY (Te — Tem
(Ye—1:&—-1) {yt,T'Tt,Iiilt?l%,ét—l} 5 ot 1{< TT < - >(8CT 9Cy )Y >( t )

(237)

oU ~ ~ \2 )
+ )\ma:? + /\WW]QW + EVT (nfat_l — ﬂnfat) + ﬁV(yt;ft)} +t.ip. + (9(63)
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subject to

Nt = k&t + BET N1
Etfl’l“’l“jt == 0,

IBTrjt - ﬁ’f’Tjt(O) = fjtfl - ﬁ(l - 5j)fjt + krrjfrﬂ-Nt + krrjzxt + 5krrijn}at + ﬁ#]ﬁ
Ti = Z 71011
J

In this case, the planner makes state-contingent decisions for ¢ before uncertainty is realized; accord-
ingly, it needs to respect a promise of expected rather than realized inflation. This representation is
more convenient as it reduces the dimension of the state-space. Note that, by certainty equivalence,
further innovations at ¢t > tg + 1 are irrelevant for optimal decisions at tg and the portfolio chosen
at tg — 1. Thus, w.l.o.g. I assume there is no uncertainty in periods ¢ > ¢y 4+ 1. Iterating forward
on (237), note that one may write the objective as

Vio = Vig + BEg—1V] + tip. + O(e)

. 1 _ oU ~ ~ \2
V= ) Z Bt {)\x (Et0—1$t)2 + Ar (Eto—lﬂ'Nzt)2 + =T (Eto—lnfat—l - 5Eto—1nfat) }

et oCr

(238)

T:_l A 1-0 8U_8U*5\ N B 2 5
V=5 (drr+ (50) G — 56 ) (= Ton) (239)

1 _ oU ~ 1\ 2
A ) e () 28 (el )
t>to

where yz are time-ty innovations, i.e. ytT = Yyt — Eyy—1y- To solve the problem, T first study

the optimal path for expectations {Es, 124, Bty 17n¢11, Egg—1nfay, Eyy—17¢}72,,. Next, I study the

optimal ¢ = g innovations {wIO, 7'(‘;th0, n}’azo,rto} that deliver a given set of promised returns 7.
After this, the problem is similar to the static model and I solve for optimal promises of realized
returns for ¢ = ¢y. Finally, I solve for the optimal portfolio at t =ty — 1.

B.4.7 Expectations
Taking to — 1 expectations on the constraints (231 —(234),

KE¢o—12¢ + PEtg—17Ne41 = Egg—17N¢ (240)
B(1 = 05)Eey17jt — krrjaBig—17t = Etg—17j-1 + KprjnBgg—17 8¢ + BkrrjbEto—lAn}at' (241)

The optimal path for expectations of inflation, output gaps, savings gaps, and prices {E; 1z,
Ety— 1TN 41, Ey,— 1nfat, Eyo—17¢ 124, maximizes (238) subject to M and (241) with 7,1, Eto 17TNtO,
and n fatO | given. Let B¢, and B0y, denote the Lagrange multipliers on M and ,
respectively. The FOCs with respect to E—12¢, Eyg—17N¢41, Etg—17j¢, and Ey—1n fa, yield, respec-

94



tively

AeBtg—11t = Kdr + Z krrjxl/jt (242)
J€ID
)\ﬂEtoflT‘-Nt+1 + ¢t+1 - Z kT’Tjﬂ'Z/jt+1 = ¢ (243)
Jj€ID
Vijt+1 = (1 - 5j)Vjt (244)
oU ~ oU ~ oU ~
ﬁ—aCT yrEy—1nfa, 1 — B Z kfrrjbyjt-l-l =(1+ ﬁ)iaCT’YTEto—lnfat - 780T’YTEto—1nfat—1 (245)

JE€ID

- Z krrjbyt

JEID

These four equations together with the constraints and form a system of equations in
differences. There are J + 2 roots outside the unit circle and a unit root.@ Picking the initial
condition {¢¢,, {1, }je JD,n}“atO} appropriately so that the system does not diverge, one obtains
the solution at ¢t = 1,

Eto—lxto == I%ac [{fjto—l}ja Eto—lﬂ-Nto]

Eto_ln}ato = ]%b[{fjto—l}ijto—lﬂ-Nto] + n.}ca’to—l

>

Et—17Nto+1 = kx[{Fjto—1}5, Eto—17TN¢]

Eto—17jty = kr[{Tjt9—1}j: Brto—17 N1, -

Note that there is no interaction between n}atofl, the return terms {7 —1};, and Ey,_17n¢,. This

is easy to see from the system } —: if some path {E¢ 124, Ety—17N141, Eto,ln}'at, Ety—17¢}
solves the problem for some nfa, 4, then {Es_12¢,Eyy17n¢ 41, Eyy—1nfa, + €, Egy_17¢} solves the

problem for n}ato_l =nfay,_1+e.
Note that the solution is of the form

. N N N ~ 2
Vi=—— {Am (Et0—17TNt)2 + 27‘20,1147»” (Ety—17Nt) + 7”2071Arr7“t0—1 + Abbnfato,l}

where A, and Ay, are positive scalars and A, is a positive definite matrix.

*®More precisely, only long assets (§; < 1) feature an exploding root. If an asset j is short (§; = 1), then E ;s = 0
YVt > to and one can “drop” the asset-pricing constraint from the continuation problem, i.e. the problem for ¢ > ¢o.
Intuitively, the expected asset price in future periods is irrelevant for welfare since agents are not exposed to it at
t =to.
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B.4.8 Innovations

The optimal time-ty innovations from ¢ > ¢y + 1 onwards solve the same problem as the ty — 1
expectations from t > to onwards. Replacing the solution into the objective (239),

ou  oUur

-4 (e (52)

oCr 0Ct

+ IBAT”T <773th0+1)2 + QB (fg()‘f’l)/ Arﬂﬂ-;r\fto-l-l + B <’FZO)/ ATT (f;ro)

(52 yr+ ,BAbb) (n}aIO)Q } +tip. + O()

Taking to- and ¢y — 1- expectations on the constraints (231))—(234)) and subtracting,

T T
TrNto - Iiwio + Bﬂ-Nto#»l
ﬁtho - 57“7’3‘150(0) - 5#3‘ to = —ﬁ(l — 0 ) ;rto

The innovation problem is to choose {:z:IO, W;thO, W}Vto 41> {f;to Yiedns n}a;} to maximize

o} 1) and 1} Let gbio and y;to denote the Lagrange multipliers of

The FOCs with respect to z)

7”"] 7Tt0+ 1

T
to> M2 Meo+1

T

+ k'rT]ﬂ'T"Nt + krrjxxto + /Bkrrjbnfato

246

_)\xxj;o + /ﬂb;[o + Z krrjxl/;to =0
j€ID

7T7Tt0

Aﬂﬂﬂto-l—l

¢t0 + Z krrﬂr

, =0

JE€EID

Z AWTJ Jto + ¢t0 =0

JE€EID

7 1
_Abbnfato + Z krrij]TtO =0

The solution to this problem yields

JEID

> A ity — (1= 80, =0.

3'edp
= kL (Brrji, — Brrjin(0) = BuiTe) je
= k Fr (BTTgto 57“7”3'160(0) - /Biujﬁo)jejl)
= kL (877t — Br7to (0) = BitjTeo) e 7,
=k (Brrjig = Brrjee(0) = By T) e 7,
= K (Br7jtg — Br7jig (0) = B Teo) e 7,
= kL (Brrji, — Brrjin(0) = BuiTe) ez
= kb (Brrjey — Brrje (0) = B Tiy) se )
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X)f) (Toy = Temao)* + e (21,) "+ 2e (2h,) (246)

(247)
(248)

subject

247) and (248]), respectively.

n}a;, and F;f,to yield, respectively,

(249)
(250)
(251)
(252)

(253)



for some vector of constants k:jr, kz}7r7 k:l, k:Z, k:l, kl € R’? and a square positive definite matrix

ki, € RIp>Jp, By the envelope theorem,

1
Vip = =5 (Brije, = B17j20(0) — B Teo)se Kb (Brrjtg — Brrjeg (0) = By Teo) se (254)

1 1-8\ OU U N\ . ... )
5 (ATT+< —~ >(3CT 6CT)\)7 > (Tto — Temty)” + tip. + O(e”)

B.4.9 Optimal returns

Next, I solve for the optimal combination of realized returns {rr;;,};c7, that delivers a given
transfer 7;, when agents hold portfolio ©,_1. Of course, this step is unnecessary if there is only one
endogenous asset, i.e. if Jp = 1. When Jp > 1, I maximize 1) subject to Zj T7t0Ojto—1 = Tio-
This yields

1- 9{7D150—1'u~7D
_ -1 _
@&Dto—l (kl) Opte-1

x| Ty — 7(/:)20_1 7T, (0)
1- GJDto—llu‘JD

where I use the notation that ys7 = {y;};es for a generic vector y and set J of natural numbers.
Replacing into (254) T obtain

_1 _
{rrjte = 17560 (0) — 15 Teo } e 7 = — <k‘l) O 1pto—1

1 k ~ ~ - 2
o 0 2
Eto_lvto - _5 éi’]Dto—lX(:)JDto—lEto_l { (G&Dto_lxngto_l) (7;0 B %m’tO) + (7;0 B @;()_17“”0(0)) }
(255)
where
1-p oU oU™ -
= A — *
a9 1-06 8U_8U*— . A\ 1
X=18 (ATT+( ) Gam— e ) () (256)

_ 1 _
Ojtp—1 = = Ojto—1
Jto (1_@&Dt0_1/«LJD> Jto

Intuitively, x controls how expensive it is for the planner to deviate from the demand-management
policy after choosing the optimal combination of output gaps, inflation, and savings distortions.
Indeed, when Jp = 1, the problem is isomorphic to the one in the static model.

B.4.10 Optimal transfers

The optimal transfers 7;, maximize (255)). This yields,

6/57Dtoflx@thO_1 1
cm,to + =/ ~
L+ @tho—lx@thO*l

O'rr4,(0) (257)

to = = =
1+ @&Dto—IX@JDtO*l
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Replacing back in (255), and taking time t = ¢ty — 1 expectations:

1 ko
2 1 + C.-'):7Dt071X@ijtO_]-

Eto_lvjo = {o%—cm’t0 + ééo,l\/ar(rno (O))éto_l (258)

- 2(:)2071 Cov(rr4,(0), Tem.to) }

B.4.11 Proposition [I9; Optimal portfolios
Here, I prove an analogue of proposition [10| and lemma

Proposition 19. Given some position in endogenous assets © 7, 4,1 the optimal portfolio on ex-
ogenous assets solves

Ogxto—1 = (1= 07, _1175) Var(rr gy 1,(0)) ' x

© _
{COU(TTthO (O>? 7::m,to> - COU(TTJXtO (0)¢ T Tpto (0)) 1_ (:);7D’t0 1Mj } .
JIpto—1 D

Taking the first-order condition of 1) with respect to © 7, +,—1 and rearranging yields the
desired result.

Lemma 11. The optimal portfolio on endogenous assets solves

1 1 i )
max — —kg = = o2 +0, ,  Var(rr 7,4,(0))0 7,11 (259)
2 (1 + Q&Dto—lx@th01> { 7'(3771,1&0 thO DUto pto

_2®f7Dto—1 CO[U(’FTJD,tQ (O)a %m,to) }

where
7~.Cm7t0 = lrcm,to - COU(T~TJXt0 (0)7 7ZTn,L‘o)/‘/7(174(7:717)(150 (0»_17‘7”\7)(750 (O)v
T~TJDt0 (0) =TTIpto (0) - COU(T~TJXt0 (0)7 ,':TthO)/ Var(ﬂrjxto (0))717“7"\7)(% (O)
Note that, if #(Jp) = 1, this simplifies to the ezpression in lemma 5|

Replacing the result of proposition [19|into (258) yields the desired result.

B.4.12 Proposition Robustness when there is a single endogenous asset
Here, I prove an analogue of proposition

Proposition 20. If there is a single endogenous asset, i.e. #(JIp) =1, then pmposition carries
over to the dynamic model unaltered with f(©y—1) = O 7p10—1 and returns rrry = f(Or—1) " Tom,to-

This result follows immediately from the fact that the optimal transfer and the objective
function have the same form as in the static model. By contrast, when #(Jp) > 1,
is more complicated since © and x are multidimensional and, hence, there is not a closed form
solution. As a result, one cannot define a single-dimensional measure of exposure to monetary
policy f(©) or its returns r7y.
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B.4.13 Solving when there is more than one endogenous asset

When Jp > 1 there is no closed form solution for the portfolio problem. However, there are a

finite number of solutions. To see this, define f (ét_o—l) = 6/;7Dt0*1 XO 7,t,—1 and solve the problem
conditional on an exposure to monetary policy f(©y,—1). This yields

Var(,,:ertO)éthO*l - COV(T~TJDtO’ ﬁmio) - S\XéJDtO*l =0
@&Dt()—lxe)jpto—l = f(étO*l)'

Solve for © 7,4, 1, 3 3 R
@JDto—l = (Var(r”ertO) - )‘X)_1COV<T~TJDt07 nm,to)

and replace to obtain an equation in 5\,

COV(T~T\7Dt0’ Ifcm,to)/(va’r(":erto) - )\X)—IX(Va,I‘(’I:TthO) - )‘X)—ICOV(T~TJD7507 ﬁm,to) = f(éto—l)‘

Note this can be written as

Pi(\)
(P2(X))?

where P;()) is a polynomial of degree (Jp —1)% and P5()) is a polynomial degree Jp. Thus, there
are at most J% solutions which need to be checked. Using this and then maximizing over f(©) one
can compute the optimal portfolios. Unfortunately, O is nonlinear in f(©) if Jp > 1, so there is no
analogue of proposition [L1]in this case.

= f(Oty-1)

B.4.14 Proposition Optimal portfolio taxes

Proposition 21. In an interior optimum, the optimal tax on asset j relative to the risk-free asset
1S given by

1-8 ou*
Tito—1 — TOtgp—1 = <> (1 - %CUT A) v Cov(Tey, T7t,) + O<€3>-

m

oCr

To prove the result, it is helpful to take a step back and consider the first-order conditions with
respect to the realized returns {rry,}, the transfers {7;,} and the portfolio ©;,_; before replacing
the optimal innovations. That is, maximizing the expected value of subject to ,
and the definition of the transfer,

7;0 == @/’I“T‘to.

Let )¢, denote the Lagrange multiplier on this constraint. The FOCs with respect to rr; ., Tz, and
étofl yield

_6V;to + éjto—lAto = 0 (260)

1-8\,0U oU* . . i
~(arr e+ (22) (B = SA) (i~ Tom) — A Ay =0 ()
Eto—lrrjt()Ato =0 (262)

Next, note that the FOC (249) - (253) imply that one can write the optimal innovations
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- ~ T .
{a:IO, W}L\,to, W}L\,toﬂ, {T}to}jejD,nfatO} as a function of {I/;to}j, e.g.
T . 1
Tty = Z kle/jto
J

Using (260)), one obtains that the optimal innovations are proportional to A, e.g.
-1 7 .a-1
‘TIO = B Z kIJ Jto—1 )\tO
J

Intuitively, this equation reflects the fact that the planner introduces distortions into the economy
to improve insurance. Therefore, the portfolio optimality condition (262]) implies that the optimal
innovations are uncorrelated with the returns of the asset, e.g.

I —
Egy—124,771, = 0.

Similarly, T obtain that the remaining innovations {Wj\,to, W]T\,to 1 {F}to }iedns n}a;ro} are uncorrelated
with the returns of the assets. For future reference, note that replacing (261)) and the definition of
Tem (199)) into the portfolio optimality condition (262)) yields

1-8\ oU U~
<AT7' + ( m ) <8CT — aCy )\)'y >Et0—17;07"7'jt0 — ATgEtO—IGtOTTth =0. (263)

Next, I combine a second-order approximation of home and foreign private marginal utility to
obtain:

—ATTE 01 Teor7jte + ATeEig—1€40TT5t0

U - OF\ oU
+8 <8CT) VTEtoflnfanrrth + (8L) Agafirrie, = <8CT) (Tjto—1 — Totg—1) + O(€”)  (264)

=0

Replacing into and rearranging yields the desired result. The intuition is similar to
the static model: the distortions (now both savings & output gaps) introduce wedges between
private and social marginal utility. However, these wedges are related to the value of insurance and,
therefore, they are uncorrelated with the return of every available asset under the optimal policy.

B.4.15 The role of time-varying capital controls

As discussed in section [5] the planner does not want to distort portfolio decisions in the limit, but
they do want to manipulate savings decisiouns, i.e. put time-varying taxes that are the same for all
assets. Indeed, one may back out the optimal taxes from a first-order approximation of the Euler
equation (|187):

- - L (oUNT'(oF
-7 (Anfat — ﬁEtAnf(lt+1) + CN (M> <8I/

aggregate-demand externality

—1
) AaEiAzi 1 = 7o

pecuniary externality

100



Interestingly, A, may take different signs for standard utility functions (see equation [119). If U is
GHH with a CES tradable-nontradable aggregator and CRRA with respect to the composite, then

ou \ ! 1
— Ayg=—->0,
<<9CT> "o

where p is the elasticity of substitution between tradables and nontradables. Thus, agents always
overvalue tradable goods in booms. Instead, if U is separable in labor,

<8U>_1Al=m_l
aCT Ci p )

where v is the CRRA risk-aversion parameter. Thus, depending on whether tradables and nontrad-
ables are Edgeworth complements (py < 1) or substitutes (yp > 1), agents will under- or over-value
tradable goods in recessions, respectively, yielding potentially opposite predictions on savings taxes.

The theoretical results described in this appendix also extend to a setting where the planner
can only put time-invariant taxes on financial assets, i.e. the planner cannot manipulate private
savings@ In such a case, the only difference is that one should add

-1 -1
-7 (Anfat - 5EtAnfat+1) +Cn <886[‘JT> (?2) AgEiAzi 1 =0

as a constraint in the problems analyzed in sections [B.4.7 and [B.4.8 Naturally, since there is an
additional constraint in the ability of the planner to provide insurance, the cost of deviating from
demand-management, controlled by x at the end of that section, will be higher. The remainder
of the analysis is isomorphic. Importantly, note that the planner would still use the same time-
invariant asset-specific taxes 7; — 79 to control steady-state portfolios. One may think of this case
as one where controls are “sticky”, i.e. the planner cannot move taxes over the business cycle, but
it can put time-invariant controls. In appendix I compare the solution with and without these
taxes in the calibrated model.

B.5 Examples of non-zero approximate taxes

In this section, I study two extensions of the general model of section | that illustrate common
reasons why the approximate no-tax result may not hold. To emphasize the role of the multi-
dimensional aggregate-demand externality, I focus on the small-open-economy case m — oco. The
two extensions share one critical feature: the aggregate-demand externality is multidimensional
but the planner has no additional tools. Despite this, in both cases the result on taxes is subtle
and crucially relies on non-separability between tradable and non-tradable goods. When they are
separable, the tax is still approximately zero@

The first extension studies a model with mark-up shocks. Mark-up shocks create variation
in output gaps that is unrelated to the value of insurance. The optimal policy prescribes booms
when mark ups are low and recessions when mark ups are high to alleviate the cost of inefficient
price dispersion. As a result, even under complete markets, asset returns may be correlated with
output gaps if they are correlated with mark-up shocks. I show that a standard model with GHH

%9In a previous version of this paper, I characterized more explicitly the solution to this problem. Since it is very
similar, the algebra is omitted from this version for brevity.

60Separability here should be interpreted broadly. For ease of exposition I only introduce non-separability in
preferences. However, a model with separable preferences and non-separabilities in production would be similar to a
model with non-separable preferences.
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preferences implies that agents overvalue tradable goods in booms. Thus, assets that pay in states
where mark ups are high are undervalued.

The second extension studies an economy with multiple non-tradable sectors, each with their
own nominal rigidity. In this case, the argument for taxes is more subtle: even with GHH utility
taxes are zero if prices are fully rigid. I present two simple examples that give rise to a non-zero
tax. The first example features a “mixed” utility function where one nontradable good is separable
from tradable consumption and the other is not. The second example features GHH utility but
heterogeneous degrees of price stickiness across sectors.

B.5.1 Mark-up shocks

In this section, I extend the model of section {4 to allow for shocks to the elasticity of substitution

across varieties. The only equilibrium relationship that changes is the optimality condition of
flexible-price firms ({113]), which now becomes

Pra(i) = M(€,)(1 — TL)aFl(S)WS for i € {flex}, (265)
L

where M(&;) = n?éf)il is the desired mark up. I assume the labor subsidy is such that the economy

is efficient at the steady state, i.e. 77 = (7—1)/7.
Following the same steps as before, one may write the approximate planner’s problem as

1 2 ~ \2 . 3
- alts A s — Jem,s >\7r )\x s — 4s t.1.p. O
o nax ;f{ 77 (T = Toms) + (2n + Ao (35 = 85)° ) + tip. + O(e?)

subject to
7—5 = Z éj’l“?“js
J
Tris = krrj’/-7;‘ + krrjmxs + Z krrjkgk’&
k

The key difference is that, because of mark-up shocks, the planner does not seek to stabilize output
gaps. Rather, when mark ups are high, the planner avoids high inflation by creating a recession:

~ )‘“’{% 2

This is a source of “exogenous” variation in output gaps; i.e. output gaps that do not reflect a desire
to provide insurance. As a result, output gaps are generically correlated with asset returns to first
order. Indeed, the FOCs of this problem imply
> welws — Es)rrjs = O(EY). (267)
S

Furthermore, following the same steps as before, portfolio optimality also implies

_ATTZWS,];rer + Zﬂ'srrjsATf Es = O(€3>'
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On the other hand, the expansion of home and foreign no-arbitrage equations is still given by

—1
- ZS: T ATTTorrjs + zs: s <g§> CnAarrjsts + zs:ﬂ's”"jsATE s = aagT 7j +O(e%).

Thus, the tax of asset j is given by:

ou \ OF\ ! i 5
T = ((’30T> zg:ws <€9L> CNAqrrjsTs + O(€”). (268)

Note that, in any model where utility is separable between tradables and non-tradables, agents do
not over- or undervalue goods in booms and recessions to first order under the optimal monetary
policy (Ay = 0)@ Thus, the tax would be zero. With GHH, assets that pay in states where mark
ups are high, which induce recessions & < 0, are undervalued by the private sector and need to be
subsidized. Proposition [22| collects these results.

Proposition 22. Consider an extension of the model of section [J] to allow for mark-up shocks
(described above) and m — oo. In such a model, the optimal policy implies : the return of
any tradable asset j must be uncorrelated with output gap deviations from the target output gap T,
given by . The optimal tax 7; is given by and Ay is given by . In particular, a
model with separable utility implies A = 0 and, hence, zero approzimate taxes. A model with GHH
preferences

_1
1 1=l = a bt
U(CTS7CN87LS) = f ((apCTZ + (1 - Oé)ﬂCNZ ) - ]-—FSDL;+¢>
(1-a)(1+¢)7
plate)?
ups are undervalued (T; < 0) and vice versa.

implies Ag = . In that case, assets with returns that are positively correlated with mark
B.5.2 Multiple sources of nominal rigidities

In this section, I extend the general model of section {4 to allow for M > 1 nontradable goods.
Formally, utility is now given by

Z 7"'st(C'T& {Cms}ma {Lms}m; 58)7

where U is assumed to be locally analytic and concave. Each nontradable good is a composite of a

CES continuum of varieties
L Mm—1 nm

1
Coms = ( / Cos (1) 5 i) T
0
For each variety, there is a firm that produces it with labor,
Cm ('L) =Fn (Lms(i); gs) :

Note that all varieties within a sector have the same technology. Thus, in the first best all firms in
the same sector produce equal amounts.

51Note that the fact that monetary policy is optimal is important for this result. Sub-optimal monetary policy, e.g.
a peg, could introduce another link between private consumption and the output gap. The key observation is that
manipulating tradable consumption does not alleviate the trade off between price dispersion and output gaps.
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The only role of this special structure is to introduce nominal rigidities into the environment.
More precisely, [ assume that in each state of the world a random share ¢,, of the firms have a fixed
home-currency price of P, while the remaining share 1 — ¢,,, can reset their price. I assume there
is a constant sector-specific labor subsidy 72 = 1 — "’;71 L to correct the monopolistic distortion.

Steady-state prices P, are chosen such that the steady state is efficient, i.e.

oF,, oU ou

L, 0C,, 0L,

Second-order approximation to utility A second-order approximation of the utility flow yields

1 ou 1 10%U _ _
U, = —ip;Awps + ECT <CT5 + 2&%) + = 5 802 CTCTS + (L) Aj.Crers (269)

_ 1 _ _ _
+ CrersAceés — 5(Ll)’A,,(Ll) + (L) Age - & + tip. + O(%)

where Ay, Az € RM M, 4;c € RMX, A, € RMXE Ar € RM*M and

0’U  OF, o0*U

Aje(m) =
() = GG 0L 9LmdCr

Age = D? U+2827UD F,

T Ot T L 9C, 00T
Agm. o) = — (1 U PP U OFn0Fy  OU  0Fy QU 0Fy = 0°U
T M= OC, OL2, | 9CmOChy OLm OLny  0COLyy 0Ly 0LmOCyy OLyy  OLyOLyy

U 02U OF, 02U OF,

A )=1 D? Fo+—  —"D.F+—— D¢Fpy + —2D? D?
t6me2) = L= g Plnefn 56 56,0 9L D5 ™ ¥ aL,00,, P T oL, Ponet T DLl

_ Cm Q2Fm, U
Ar(m,m') = 1y ou Om ) ] _moLy, ™

L Cotim :
aCy, ™" (1—¢m (2P y2

and I abuse notation by writing (Yy) to denote {Y,,ym }2_, for an arbitrary variable y € RM. If
prices were flexible, B _
(L) = A  Aje - & + A A Crers + O(€2).

Let zps = Ot gfm (L I, Emlfr‘f;‘) denote the output gap in good m, and define a diagonal

matrix Dy € RM*M with

_ . 0F,
Dl(m>m/) = lp=mv <Cn_11(aL)> :

Thus, one can rewrite the above as

oU 1 I _ )
Us (90 C(T (CTS + 20%3> — iATTC%C%S + CTCTS (Acg + A;cAlllAlf) §S
1 1
= gPhaps = Sl Aems + tip. + O(e%)
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where

o*U

A = _
A, = DflAllDfl.

+ A;CAlglA,C>

Next, note that consumer optimization implies

OU Wi OU
OL,,  Pns 0C,,’

which to first order is equal to

- oU 9*F,, - .
_Alc(m)CTCTS + WWLmlms + A”(m, )(Lls) = (270)
ou ou
(_aT) (Wms — Pms) — WD%mme s+ Alﬁ(ma ) &s + 0(52)

A first-order approximation of flexible-firm’s optimality condition yields,

, OF,\ ! 9%F,, - , OF,,
pms(l) + <8Lm> mLmlms(l) + (C?Lm

Using this equation to substitute out w,s in (270)),

—1
> D%EFm’fs :wms+o<€2)'

—Ae(m)Crers + Y Ay(m,m) Lilms (i) = (—UL,, )Pms(i) + Ae(m, ) - & + O(€?). (271)

m

Defining a diagonal matrix Do,

N $m  OU OFy [ OF,.\ 2 0%F,, -
DQ(m7m) = ]-mzm’1 — b OCy OLmm 1 —1m oL, 78[/%1 Cn |,

and using a first-order approximation to the definition of the price index, (271) becomes
—A1Crers + An(Lls) = Daps + A - & + O(€%).

Rewriting in terms of the output gap and solving,

ps = ks + O(e?), (272)
where k € RM*M jg given by
K= D;lA”'Dfl.
Replacing in the objective function,
e 13.) + S ArrCRc, + Crers (A + Al A7 L i 3
Us —aCTCT crs + 5CTs + 5 71C1rcrs + Crers ( e + AA, Alg) & — 5 Aot + t.i.p. + O(€”)
where

A, = K Apk + Ay
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Using a second-order approximation of the budget constraint and the foreign no-arbitrage equa-
tions,

1 1 -
W=>)" 775{—§A7—7—7;2 + TeAge - €6 — 5x’AIgg} + t.ip. + O() (273)
where 220 ou

Monetary policy Because prices are sticky, the exchange rate can affect the overall level of labor.
Indeed, consumer optimization implies

Uc,,(s) = ES_IPmSUCT(S)
A first-order approximation of this equation yields
(Tr + DAy Ae) To + (Te + Tar Ay Aie + (D + Tar Ay Aie) DeYr) - &+ (TuDy 't — k) 2 =

(274)

ou \ ou \ e U Nt )
1arsa <—€s - <8C’T> ArrTs + <<6C'T> Are =" DeC ) &+ <80T> 1Dy xs | +0(€7)

where I'r € RMx1, I'e e RM*S Ty € RMXM are given by:

rr(m) = 2V U
n=\ac, ) oc,oCr
ou \ * 02U
ram) = (5gz) (et + S gt Pe)
Par(mm’y = 2V T(_PU . PU OF
ML TR =\ ac,, OLnd0C, " OCmdCyy 0L, )

Planner’s problem and optimal tax The planning problem is to maximize (273) subject to
(274)), the definition of the transfer

Ts = Z CHEP (275)
J
and the definition of realized excess returns, given to first order by
krrjc7; + krrjees + krrjarxs + kv‘rjﬁfs =TTys, (276)

where kyr e, krrje € R, kpp,o € RUM ko € RIXS,
Let v, denote the multiplier on (274) and substitute (276]) into (275) and let As denote the
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multiplier on the resulting constraint. The FOC of this problem are

—ArrTe+ Are - &+ viTr — [ 1- Z Ojkrpje | As =0
j

I/;]"]\/[Xl + Z C:)jkrrje)\s =0
J

—Apzs + Z (:)jk;rjx)\s + T =0

J
g TsTTjsAs = 0.
S

where

. . ou \ !
Ir=Tr+TyA; A+ 1 acr A7t

. _ ou \ _
'y =TuD; Yk —1aa <50T> D1 !

Combining the last FOC with the second FOC,

/
E TsTTjsVslnrx1 = 0.

S

Solving for v in the third equation and replacing,
Zwswrrjsxs =0
S

where
- 14 M
w=—Tlixu (F’M) Ay € R (277)

is a 1 x M vector of weights. Intuitively, the planner only allows “average” booms and recessions to
improve insurance. w controls how important each of these output gaps are for welfare.

To study the optimal tax, I combine a second-order approximation of home and foreign no-
arbitrage conditions,

ou
; Ts (_ATT,]; + AECJJS + AT{ : gs) Trjs = ET]'
Combining this with the first FOC of the planner’s problem and portfolio optimality (the last FOC),

Z s (Apxsrrjs) = (;)C[iFT.

where
Ap = — (fT)' <%)71 Ay + Al € RM (278)

As one would expect, a tax is needed if the returns of the assets are correlated with the output
gaps. Crucially, the weights that matter for the wedge between social and private marginal utility
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A, are not typically the same as the one that the planner seeks to stabilize for demand-management
reasons, w. Intuitively, if good j has a high A,(j) relative to w(j), then the economy will feature
significant booms and recessions in good j that matter for the wedge but matter little for welfare.
Thus, ceteris paribus, assets with a high return when good j is booming will be overvalued and vice
versa. There are a few remarkable cases, however, where 4, and w are proportional to one another:
separable utility and GHH preferences (the latter only with rigid prices).

I collect these results in the following proposition.

Proposition 23. In a multi-sector small open economy model (i.e. m — o0), the optimal policy
prescribes that a weighted average of the output gaps is uncorrelated with the returns of available
assets,

Z TsWITjsTs = (’)(63).
S
where w is given by . Furthermore, the optimal tazes are given by

Z s (Agxsrrjs) = Uc, T + (’)(63),

where Ay is given by (278). Therefore, if there exists a constant K € R such that
w=KA,;,

then the optimal tax is zero. Examples of economies where such a constant exists are:
(i) Models with symmetric nontradable sectors;
(i) A model where tradables are separable from nontradables, i.e.

U(CT57 {Cms}mm {Lms}m) - UT(CTS) + UN({Cms}ma {Lms}m);

(i) A model with rigid prices (¢p, =1 ¥Ym) and GHH preferences

£ —
1 1ot Moo pa\et Mo
m
U(CT57 {Cms}rm {Lms}m> = E a%ch + Z amCiils - Z mlf}ntwm )
m=1 m=1

where aT+En]\f:1 am = 1. T wverified this analytically for M = 2, but numerical explorations suggest
it works for an arbitrarily large M € N.

Proof. (i) is immediate from the fact that all rows will give identical results if all nontradable sectors
are identical (ii) when tradables are separable from nontradables, I'" = A;. = Oprx1. Therefore,

oUu \ ! LNl
T — (aC,T> ATT <_11><M <F,]w> A:r) .

K o

(ii) After some algebra, one can show that when M = 2 and prices are fully rigid,

1
A, = —w.
paT
~——
K

52The symmetry here refers to how they enter into utility; shocks £ can vary across sectors.
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Examples of non-zero taxes A model with asymmetric wealth effects can produce a non-zero
tax. Consider, for example, a model where one good is separable and the other is not:

U(CT, Cl, Cg) =In (a;aTOél_oq C%TC?I - OélLl) + «o In Cg - a2L2

and linear production C,, = Z,,L,, Ym. Simulating this model with ar = 0.4, a1 = a9 = 0.3, and
rigid prices (¢1 = ¢ = 1), I find that A, is relatively larger than w for the second (separable) good.
For simplicity, consider an environment where © = 0 so that the solution features no transfers.
Suppose that nontradable productivity of good 2 goes up. In this case, the planner reacts with a
boom in sector 1 and a recession in sector 2. Since the externality places a higher weight on sector
2, the private sector undervalues consumption in this state. The opposite is true when z; and y are
high (a y shock implies labor would ideally go up in sector 1 and stay constant in sector 2, so the
former will have a recession and the latter a boom). In sum, assets that pay relatively more when
2o is high are undervalued while assets that pay when z; is high are overvalued. Note that the case
of a home-currency bond is non-obvious since the exchange rate moves in the same direction with
both productivity shocks, i.e. z; and zs.

A GHH model with heterogenous degrees of price stickiness can also give rise to a non-zero tax.
Suppose utility is GHH with p = v =1, ar = 04,01 = a2 = 0.3 and ¢,,, = 0.@ Furthermore,
suppose ¢1 = 0.5 while ¢o = 0.9. In this model, per unit of output gap, both goods create the same
wedge between private and social marginal utility. However, prices in sector 1 are more flexible
and, hence, a large output gap implies substantial price dispersion, which is very costly. Hence, the
planner allows for small output gaps in sector 1 and large ones in sector 2. As a result, assets that
pay when sector 2 booms are overvalued, e.g. assets that pay when z; is large.

C Calibration details and additional numerical results

In this section, T present the calibration details omitted in the main text and I conduct additional
exercises to shed additional light on the quantitative relevance of the insurance channel. In every
case, I re-calibrate the volatility of the convenience-yield shock (1) to match the observed portfolios
under the Taylor rule.

C.1 Calibration details

I adopt standard values for the discount factor (0.99), risk aversion (2), and the Frisch elasticity
of labor supply (%) I set the elasticity of substitution between tradable and nontradable goods
at p = 0.74, following [Mendozal (1992), who estimates it in a sample of 13 industrial countries.
I assume that intermediate good producers do not reoptimize each period with probability 0.75,
and set the elasticity across varieties n to 6, as in |Gali and Monacelli (2005). For the remaining
parameters, | use data from Canada, which I take as a benchmark small open economy. I classify
as nontradable sectors those with a very low export share: construction and services related to
real estate services, public administration, education, health services and professional and scientific
services. This leads to a share of tradables in output (o) of 55%. Furthermore, I assume that the net
foreign asset position is balanced (i.e, NF Ass = 0), which is roughly in line with the average NFA
in Canada over the past decade. The coefficients of the Taylor rule are borrowed from [Verstraete
and Suchanek (2018), who estimate the coefficients of the Taylor rule for Canada (table 4a in their

630ne can also get a non-zero tax with heterogeneity in ¢,, or F,, provided ¢,, < 1 or F, is nonlinear in L,,.
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paper)F)EI Since I lack data on the maturity of home-currency external debt, I choose § to match
an average maturity of 6 years, which roughly corresponds to the average maturity of Canadian
government debt ]

C.2 Nominal rigidities

In this section, I study the sensitivity of the results to changes in the parameters that govern nominal
rigidities. First, I assume that nontradable producers reset their prices more often, reducing ¢ from
0.75 to 0.7. Second, I assume a higher elasticity of substitution across varieties, n = 11. Finally, 1
assume a lower elasticity of labor supply, ¢ = 10.

Table [ shows the results. As one may see, the size of the gross positions and the relative impor-
tance of the insurance target increase substantially when prices are more ﬂexible.@ Indeed, under
the optimal policy both objectives become equally important. Like before, portfolio endogeneity is
crucial: if the portfolio were not able to adjust, the demand-management objective would still be
by far the most important goal of monetary policy. As one may expect, the planner can now reap
more benefits out of financial integration. An increase in the elasticity of subtitution has a similar
effect in the opposite direction.

A decrease in the labor supply elasticity has ambiguous effects. On the one hand, it decreases
the exogenous parameter that controls the importance of the insurance motive, x: a given output
gap is more costly if the disutility of labor is more convex (see sectionfor an explicit expression in
the static model). It also strenghtens the wealth effect discussed in section which also decreases
the importance of the insurance motive because short home-currency positions become more costly.
On the other hand, ¢ also lowers the volatility of the realized returns under demand-management,
implying that large gross positions will not typically create large undesired transfers of wealth after
e.g., productivity shocks. In this numerical example, both forces offset each other so that the final
outcome is similar to the baseline model.

C.3 Finite number of foreign arbitrageurs

Next, I consider a deviation from the small open economy assumption that I studied in section
only a mass m of foreigners may access Canadian home-currency bond markets (the risk-free
bond in foreign currency is still in infinitely elastic supply at R*). T consider different m to vary
the amount of total wealth that the foreign arbitrageurs have. Since a finite number of foreigners
introduces a terms-of-trade manipulation effect, I report the optimal tax on home-currency bonds
and consider a fifth policy: the solution under cooperation.

54Note that the coefficients that they report for inflation and output gaps correspond to (1 — p;)¢- and (1 — p;)ds
in my model, respectively.

5Bank of Canada reports government debt by maturity grouped into time brackets: up to 3
months, from 3 months to 3 years, from 3 to 5 years, from 5 to 10 years, and over 10
years (https://www.bankofcanada.ca/rates/banking-and-financial-statistics/government-of-canada-direct-securities-
and-loans-classified-by-remaining-term-to-maturity-and-type-of-asset-formerly-g6/). I compute average maturity as
a weighted mean of the average and the maximum value of the brackets, which takes values between 5.7 and 6.7 for
the years in the sample.

560ne reason why these quantitative results are fairly sensitive to the value of these parameters is that the correlation
between both exchange-rate targets is not very large in the calibrated model (see table . One may see from the
solution to the optimal portfolio problem (see equation ) that, if the correlation were exactly zero, the solution
would be “bang-bang”: pick B = 0 if demand-management is more important, and B/(1 — uB) — 4oo if insurance is.
In other words, there is a threshold value x™ such that the behavior of the optimal portfolio varies drastically around
it. Similarly, in models where the correlation is small, there exists a region of the parameter space where optimal
portfolios become very sensitive to the values of parameters that affect x, such as n and ¢.
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Table [5] shows the results. As the number of foreigner arbitrageurs decreases, the size of op-
timal positions naturally decreases: it is more expensive for foreigners to hold the home-currency
bond because it induces additional volatility in their consumption. Importantly, the home planner
understands that, as the country issues more home-currency debt, the yield on this debt increases.
Thus, it taxes home-currency debt (subsidize home-currency assets) to induce agents to reduce their
home-currency debt against the rest of the world. The tax is substantial; slightly under 100% of
the expected excess returns under demand-management and over 100% under the optimal policy.@
Interestingly, when there are very few foreigners (bottom panel) the tax is so large that under the
optimal policy the observed level of financial integration is actually smaller than under laissez-faire
with a Taylor rule. Furthermore, note that the insurance weight increases as m decreases when the
portfolio is fixed (column 4). This is because the planner starts caring about transfers of wealth not
only because of their effect on risk sharing, but also on the price of the bond. Indeed, one can see
from equation that x decreases with m. Similarly, because this terms-of-trade manipulation
motive exists even under complete markets and flexible prices, there is not much financial integra-
tion even under the first best with non-cooperative policy. As a result, the demand-management
and optimal policies attain a larger share of the potential gains of trading the home-currency bond
with the rest of the world.

Finally, note that the limits to arbitrage in home-currency bond markets imply that there are
substantial gains for the world of cooperating. When the foreign welfare is taken into account, the
planner once again chooses large gross positions under the optimal policy. In addition, note that
the welfare gains of financial integration relative to the first-best decrease with m. The reason for
this is that the model is being recalibrated as m changes to match positions under the Taylor rule.
Since a smaller m naturally makes larger positions more expensive, the required volatility of the
convenience-yield shock also decreases. As a result, the correlation between both exchange-rate
targets increases and the planner gets closer to the first-best without distorting demand.

C.4 Savings taxes and bond duration

In section I emphasized that in a dynamic model the planner does not only rely on monetary
policy but also on savings taxes (i.e., taxes on cross-border flows that are uniform across assets)
to manipulate the realized return of the home-currency bond. Here, I compute the savings taxes
that are implied by the model under the optimal policy and compare the solution to the case where
these taxes are unavailable (see appendix for the theoretical derivation). In that section, I
also emphasized that the optimal savings taxes crucially depends on the maturity of the bond. To
study this, I consider a case with a 1-year bond (§ = 1) and a case with a 10-year bond (§ = ).

Table [6] shows the results. In the baseline calibration, taxes allow the planner to increase the
weight on the insurance motive and reap more benefits from financial integration. However, the
effects are not very large: without taxes the optimal weight only decreases by two percentage
points while the gross position decreases by 7 percentage points of GDP. Taxes are rather small:
their standard deviation is only 0.07%. These taxes become an order of magnitude larger when
considering one-year bonds. Accordingly, the planner can provide much more insurance when they
are available. The intuition is given by proposition[I4. When bonds are short, they promise a stream
of payments with a larger variability over time, i.e. a large payment today and small tomorrow. As
a result, manipulating the path of tradable consumption and, hence, of the real exchange rate that
closes the output gap, is very effective at manipulating the payments of these bonds. By contrast,
when they are long, they promise similar payments over time and, hence, distorting the path of
tradable consumption is less effective at distorting the value of the payment stream.

6"Recall that this tax, like the expected excess returns (i.e., the risk premium), are second-order objects.
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Finally, comparing results across duration, one may see that the planner can provide more
insurance when bonds are long. The main reason is that the parameter that governs the importance
of insurance y increases with bond maturity. When bonds are long, the planner can make exchange
rate promises far into the future. These promises affect the value of the long bonds today, but
create little production distortions: these movements are expected and give firms time to adjust
their prices.

C.5 Other parameters

In the main text, I set a = 0.55 to reflect the share of the tradable sector in Canada. However,
as argued by [Burstein, Neves and Rebelo| (2003)), tradable goods have a large distribution cost
component, which is also nontradable. For Canada, they estimate this distribution cost to be 40%.
Making this correction implies a tradable share of @ = 0.33. Since the nontradable sector is the
one affected by the nominal rigidity in my model, this makes demand-management more important.
Accordingly, the planner reduces the insurance weight to 6.33% and lowers the optimal position in
home-currency debt to 59%.

Next, I study the role of the complementarity between tradable and nontradable goods. 1
consider two values, which correspond to the bounds on the estimates in the literature (see |Akinci
(2011) for a survey): p = 0.4 and p = 1.5. A lower elasticity of substitution decreases the pass-
through of the exchange rate to the output gap, which lowers the cost of providing insurance. In
addition, it makes capital controls more effective: the wealth effect becomes more important (i.e., p
is larger) and, thus, changes in tradable consumption have a larger effect on the exchange rate that
closes the output gap.@ Overall, the effects are significant: at the lower end, the optimal weight
on insurance increases by five percentage points, while it decreases by two percentage points at the
upper end of the admissible values for p.

Next, I vary risk aversion (column 5). I set v = 10 - the upper bound of the range considered
by Mehra and Prescott| (1985). A higher risk aversion naturally makes insurance more important.
Thus, the optimal insurance weight increases, gross positions become larger, and there are larger
gains of financial integration.

Finally, I change the discount factor (column 6). For illustrative purposes, I set 5=0.98, which
is very low for a model at the quarterly frequency. Ceteris paribus the shocks, a higher discount
factor implies transfers become more valuable. It has a similar effect to risk aversion, although its
effects are more modest.

5$When p = 0.4, 0(Tsav) = 0.16%. When p = 1.5, 0(7sav) = 0.04%.
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Table 4: Varying the importance of demand-management

Taylor rule Demand Optimal Optimal: fixed ©
management

A. Benchmark

w 0% 11.37% 1.66%
e) —30.00% —28.97% —85.83% —30.00%
Welfare gains 1.32% 2.28% 6.49% 3.90%

B. Low price stickiness (¢ = 0.7)

w 0% 54.52% 2.46%
e) —30.00% —28.80% —237.28% —30.00%
Welfare gains 1.31% 2.26% 16.25% 4.66%

C. High elasticity of substitution across varieties (n = 11)

w 0% 2.29% 0.95%
e) —30.00% —28.97% —47.38% —30.00%
Welfare gains 0.57% 2.28% 3.68% 3.21%

D. Low elasticity of labor supply (¢ = 10)

w 0% 11.50% 1.64%
e —30.00% —29.67% —88.14% —30.00%
Welfare gains —0.66% 2.36% 6.65% 3.96%

Note: Welfare gains are measured by how much of the welfare gap between the first-best (a model with flexible prices)
welfare(policy)7welfa7‘e(]§?0) %
wel fare(firstbest)—wel fare(B=0) """

Note that the Taylor rule is not guaranteed to deliver positive welfare gains (an economy without home-currency

and an economy without home bonds (B = 0) economy is achieved by each policy:

bonds and flexible prices/perfect demand-targeting may dominate it).
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Table 5: Finite number of arbitrageurs

Taylor rule Demand Optimal Optimal: fixed © Optimal:
management Cooperation
A. Benchmark (m — o0)
w 0% 11.37% 1.66% 11.37%
e) —30.00% —28.97% —85.83% —30.00% —85.83%
7 /risk premium 0% 0% 0%
Welfare gains 1.32% 2.28% 6.49% 3.90% 6.49%
B. Equal number of home and foreign agents (m = 1)
w 0% 6.19% 3.69% 15.77%
¢) —30.00% —20.84% —39.63% —30.00% —80.88%
7 /risk premium —74.17% —176.1% 0%
Welfare gains 0.83% 3.73% 7.01% 6.63% 10.02%
C. Very few foreigners (m = )
w 0% 11.94% 18.78% 31.94%
¢) —30.00% —16.08% —22.86% —30.00% —59.56%
7 /risk premium —82.65% —115.49% 0%
Welfare gains —10.96% 17.43% 24.66% 22.78% 33.60%

Note: Welfare gains are measured by how much of the welfare gap between the first-best (a model with flexible prices)

and an economy without home bonds (B = 0) economy is achieved by each policy:

wel fare(policy) —wel fare(B=0) %
wel fare(firstbest)—wel fare(B=0) 0-

The first-best is computed from the point of view of the home economy in the first four columns, and from the point
of view of a global planner in the last column (i.e. even under complete markets and flexible prices, a non-cooperative

planner would like to manipulate the stochastic discount factor of foreigners).

Note that the Taylor rule is not

guaranteed to deliver positive welfare gains (an economy without home-currency bonds and flexible prices/perfect

demand-targeting may dominate it).
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Table 6: Savings taxes and bond duration

Optimal policy: Optimal policy:
with taxes without taxes

A. Benchmark (6 = 3;)

w 11.37% 9.17%
© —85.83% —77.99%
o (Tsav.) 0.08% 0%
Welfare gains 6.49% 5.93%

B. One-year bonds (§ = 1)

w 6.01% 0.87%
) —67.49% —37.64%
0 (Tsav.) 0.84% 0%
Welfare gains 4.59% 2.62%
C. Ten-year bonds (§ = 45)
w 50.35% 46.81%
) —217.18% —202.67%
o (Tea.) 0.08% 0%
Welfare gains 15.34% 14.45%

Note: Welfare gains are measured by how much of the welfare gap between the first-best (a model with flexible prices)
wel fare(policy)—wel fare(B=0)
wel fare(firstbest)—wel fare(B=0) %.

and an economy without home bonds (B = 0) economy is achieved by each policy:
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Table 7: Other parameters

Taylor rule Demand Optimal Optimal: fixed ©
management

A. Benchmark

w 0% 11.37% 1.66%
6 —30.00% —28.97% —85.83% —30.00%
Welfare gains 1.32% 2.28% 6.49% 3.90%

B. Low openness (o = 0.33)

w 0% 6.33% 1.85%
6 —30.00% —29.86% —58.99% —30.00%
Welfare gains 0.49% 3.66% 6.96% 5.43%

C. Low elasticity of substitution T/NT (p = 0.4)

w 0% 15.33% 1.96%
¢) —30.00% —30.29% —96.50% —30.00%
Welfare gains 1.00% 2.82% 8.38% 4.72%

D. High elasticity of substitution T/NT (p = 1.5)

w 0% 9.36% 1.44%
6 —30.00% —27.87T% —81.35% —30.00%
Welfare gains 1.27% 1.84% 5.27% 3.25%

E. High risk aversion (v = 10)

w 0% 19.16% 6.09%
6 —30.00% —25.71% —58.53% —30.00%
Welfare gains 1.59% 7.29% 16.21% 12.75%

F. High discount factor (8 = 0.98)

w 0% 14.53% 3.03%
S) —30.00% —28.74% —74.36% —30.00%
Welfare gains 2.30% 4.37% 10.62% 7.25%

Note: Welfare gains are measured by how much of the welfare gap between the first-best (a model with flexible prices)
wel fare(policy) —wel fare(B=0) %.

and an economy without home bonds (B = 0) economy is achieved by each policy: welfare(firsthest) —wel fare(B=0)
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