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Abstract: A patient seller decides whether to build a reputation for exerting high effort in front of a se-
quence of consumers. Each consumer decides whether to trust the seller after she observes the number of
times that the seller took each of his actions in the last K periods, but not the order with which these actions
were taken. I show that (i) the seller’s payoff from building a reputation is at least his commitment payoff
for all K and in all equilibria, and (ii) the seller sustains his reputation for exert high effort in all equilibria
if and only if K is below some cutoff. Although a larger K allows more consumers to observe the sell-
er’s opportunistic behavior, it weakens their incentives to punish the seller after they observe opportunistic
behavior. This effect undermines the seller’s reputational incentives and lowers consumers’ welfare. I also
provide conditions under which coarsening the summary statistics observed by the consumers encourages
the seller to sustain his reputation and improves consumers’ welfare.

Keywords: limited memory, reputation sustainability, summary statistics, robust behavioral predictions.

1 Introduction

In many settings of economic interest, people have limited information about their trading partners’ past

records and can only observe some summary statistics of their recent behaviors.

To fix ideas, consider a market where consumers mainly learn through word-of-mouth communication

with other consumers. This can happen due to the lack of record-keeping institutions. After a consumer

interacts with a seller, she remembers who the seller is and her experience with the seller for some time,

during which she can share it with future consumers. However, it is hard for consumers to communicate

more detailed information such as who bought before them and what they learnt from others. This is because

information transmitted through word-of-mouth is often filtered. For example, senders may omit complicat-

ed details due to the costs of describing them (Banerjee and Fudenberg 2004, Neihaus 2011) and receivers

may not have enough capacity to process detailed information. As a result, consumers may only know the

number of times that the seller provided good and bad services within a certain time frame, but it might be

hard for them to know other details of the seller’s history, such as the exact timing of these actions.
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Li, Qingmin Liu, Wojciech Olszewski, Larry Samuelson, Ali Shourideh, Vasiliki Skreta, Alex Smolin, Takuo Sugaya, Caroline
Thomas, Matthew Thomas, and Alex Wolitzky for helpful comments. I thank NSF Grant SES-1947021 for financial support.
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This paper examines a patient player’s incentive to sustain his reputation when his opponents can only

observe the summary statistics of his recent behaviors. Focusing on the case where players’ stage-game

payoffs are supermodular, my main result shows that the patient player sustains his reputation in all equilibria

if and only if his opponents’ memory length is below some cutoff. The intuition is that longer memory

weakens the short-run players’ incentives to punish the patient player when he deviates occasionally.

My baseline model is a repeated game between a patient player (e.g., a seller) and a sequence of short-

run players (e.g., a sequence of consumers). The seller discounts future payoffs since the game ends with a

positive probability after each period. Each period, the seller chooses his effort and a consumer chooses the

extent to which she trusts the seller after she observes the number of times that the seller took each of his

actions in the last K periods.1 The seller is either a commitment type who exerts the highest effort in every

period, or an opportunistic type who maximizes his payoff. The seller’s reputation is the probability that the

consumer’s belief assigns to the commitment type.

The consumers in my model understand that the seller’s action may depend on the game’s history, such

as his reputation. However, they cannot observe when the game started and cannot observe the order with

which the seller took his actions.2 As a result, they cannot use strategies that depend on the details of the

game’s history and longer memories have ambiguous effects on consumers’ ability to monitor the seller:

When memories are longer, each consumer receives information about a larger number of actions, which

implies that the seller can be punished by more consumers after he shirks. However, each consumer’s

signal about the seller’s action in any given period also becomes more noisy. My model stands in contrast

to Fudenberg and Levine (1989) as well as existing reputation models with limited memories such as Liu

(2011), Liu and Skrzypacz (2014), and Pei (2022), where consumers can observe the order of the seller’s

actions. My model describes situations where each consumer interacts with the seller once, but remembers

the seller’s action against her for K periods and communicates information about that action to consumers

who arrive in the next K periods. She, however, does not communicate other details such as the identities

of her predecessors and what she learnt from them, probably due to the costs of describing these details.

My analysis focuses on games that satisfy a monotone-supermodularity condition: Players’ actions are

strategic complements and the seller’s payoff decreases in his effort and increases in consumers’ trust.

First, I show that the seller’s best reply in the repeated game must satisfy a no-back-loop property: The
1In Section 3.5, I consider more general summary statistics, which is characterized by a partition of the seller’s action space

such that each consumer only observes the number of times that the seller’s last K actions belong to each partition element.
2One potential concern is that consumers need to make Bayesian inferences about the seller’s current-period action after observ-

ing the summary statistics of the seller’s last K actions, which can be quite complicated in some equilibria. I address this concern
by showing that my theorems apply even when we focus attention on equilibria where consumers’ inference problems are simple
and intuitive, such as equilibria where consumers believe that the distribution of the seller’s current-period action is close to the
frequency of the seller’s actions in the last K periods. I provide more a more detailed explanation in Section 3.3.
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seller will not shirk when he has a positive reputation and then restore his reputation to a positive level in the

future. This property applies regardless of the seller’s discount factor as well as the consumers’ strategy it

best replies to. My no-back-loop property rules out reputation cycles in which the seller milks his reputation

when it is strictly positive and then exerts high effort until he has a positive reputation again.

When the opportunistic-type seller’s strategy satisfies the no-back-loop property, there is at most one

period over the infinite horizon where he has a positive reputation but does not exert the highest effort.

Since the commitment type exerts the highest effort in every period and consumers do not know when the

game started, consumers believe that the seller will exert the highest effort with probability close to one when

he has a positive reputation. This leads to Theorem 1, which shows that in every equilibrium, consumers

will play a best reply to the seller’s highest effort when the seller has a positive reputation. This implies that

the seller can secure his commitment payoff by exerting the highest effort in every period.

Nevertheless, the fact that the seller can secure his commitment payoff by building a reputation does not

imply that he will do so in equilibrium, since other strategies may give him a higher payoff. Focusing on

games where the highest effort is the seller’s optimal commitment action, Theorem 2 shows that a patient

seller exerts the highest effort with frequency close to one in all equilibria if and only if K is below some

cutoff. This implies that longer memory hurts reputational incentives and lowers consumers’ welfare.

The rationale behind Theorem 2 is that having a longer memory undermines consumers’ incentives to

punish a seller who shirks occasionally. For a heuristic explanation, suppose consumers believe that the

opportunistic type will shirk in periods 0,K, 2K, ... and will exert the highest effort in other periods. Since

consumers cannot observe calendar time, they believe that the seller will shirk with probability close to 1
K

after they observe that the seller shirked once in the last K periods. When K is large, 1
K is small, each

consumer believes that it is unlikely that the seller’s current-period effort is low, so she has no incentive to

punish the seller even though she knows that the seller is opportunistic. If this is the case, then the seller

prefers shirking once every K periods to exerting the highest effort in every period, making consumers’

beliefs self-fulfilling. This leads to an equilibrium where the opportunistic-type seller’s reputation is always

zero. One can also construct equilibria where the seller shirks n times every K periods, provided that

consumers have no incentive to punish him when he shirks with probability n
K .

My main technical contribution is to show that if K is small, then in every equilibrium, consumers have

no incentive to play their best reply to the highest effort when the seller’s reputation is zero,3 i.e., the seller

is guaranteed to be punished after losing his reputation. The seller sustains his reputation for exerting high
3My technique can analyze other repeated games with limited records and incomplete information. For example, in a work in

progress, I use these techniques to analyze anonymous random matching games between a population of patient players. I provide
conditions under which patient players cooperate in all equilibria, which is novel compared to the existing results in this literature.
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effort in all equilibria since he cannot obtain his commitment payoff via other strategies.

When K is small, Theorem 2 delivers a sharp prediction on the patient player’s behavior that applies

to all equilibria. This stands in contrast to most of the existing results in the reputation literature that focus

exclusively on equilibrium payoffs or players’ behaviors in some particular equilibria. It stands in contrast

to the behavioral predictions in Fudenberg and Levine (1989), where Li and Pei (2021) show that there are

equilibria where the seller shirks with frequency bounded away from zero. This is because when consumers

can observe the entire history of play, the seller may still receive his commitment payoff after he separates

from the commitment type. The lack of punishment leads to equilibria where the seller shirks. In my model

with a small K, the seller sustains his reputation since he is guaranteed to receive his commitment payoff

when he has a positive reputation and is guaranteed to be punished after he loses his reputation.

From the above perspective, Theorem 2 contributes to the discussions on the sustainability of reputa-

tions. Instead of focusing on the patient player’s long-run behavior as in Cripps, Mailath and Samuelson

(2004), I examine the discounted frequency with which the patient player plays his commitment action.

Compared to the criteria for reputation sustainability in Cripps, Mailath and Samuelson (2004), my criteria

has a comparative advantage in evaluating the uninformed players’ welfare and social welfare.4 My main

result provides a tight condition under which the patient player sustains his reputation in all equilibria.

Theorem 2 also has implications on societies’ ability to sustain cooperation when people have limited

information about others’ past behaviors. Most of the existing works on this topic focus on repeated games

with anonymous random matching such as Kandori (1992) and Ellison (1994). A notable exception is

Bhaskar and Thomas (2019) who study a repeated trust game without commitment types between a patient

player and a sequence of myopic players, each has a finite memory. They show that cooperation cannot be

sustained in any purifiable equilibrium when the short-run players can perfectly observe past outcomes, but

can be sustained in some purifiable equilibria when past outcomes are observed with noise. By contrast, I

study a reputation model and examine the effects of memory length on a patient player’s incentive to sustain

cooperation when his opponents can only observe the summary statistics of his recent behaviors. I provide

conditions under which the patient player sustains his reputation in all equilibria.

I also study an extension where consumers learn from coarse summary statistics, in the sense that there

is a partition of the seller’s action space such that each consumer only observes the number of times that the

seller’s last K actions belong to each element of that partition. This assumption fits when consumers cannot

precisely communicate the seller’s actions to future consumers and can only tell which of the several broad
4Ekmekci, Gossner and Wilson (2012) and Liu and Skrzypacz (2014) propose another criteria for reputation sustainability, that

the patient player can secure his commitment payoff at every history in every equilibrium. My Theorem 1 implies that for every
K ≥ 1, the patient player can secure his commitment payoff at every on-path history of every Nash equilibrium.
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categories the seller’s actions belong to (e.g., good actions, bad actions). I show that whenK is intermediate

and the seller has at least three actions, coarsening the summary statistics may improve the welfare of the

consumers. Intuitively, consider a partition where each consumer only knows the number of times that the

seller exerted the highest effort in the last K periods but cannot tell the difference between other actions.

Under such a partition, it is never optimal for the seller to take any action other than the highest effort and

the lowest effort. Ruling out intermediate effort levels provides consumers a stronger incentive to punish the

seller after he loses his reputation. The threat of punishment encourages the seller to exert the highest effort.

2 Baseline Model

Time is indexed by t = 0, 1.... A long-lived player 1 (e.g., seller) interacts with a different player 2 (e.g.,

consumer) in each period. After each period, the game ends with probability 1− δ with δ ∈ (0, 1). I assume

that player 1 is indifferent between receiving one unit of utility in the current period and receiving one unit

of utility in the next period. Under this assumption, the seller discounts his future payoffs by δ.

In period t, player 1 chooses at ∈ A and player 2t chooses bt ∈ B from finite setsA andB. Their stage-

game payoffs are u1(at, bt) and u2(at, bt). I introduce two assumptions on players’ stage-game payoffs. I

provide examples that satisfy them later in this section. First, I assume that players’ actions are strategic

complements and that player 1 prefers to lower his action but prefers his opponents to raise their actions.

Assumption 1. There exist a complete order on A, ≻A, and a complete order on B, ≻B , such that:

1. u1(a, b) and u2(a, b) have strictly increasing differences in a and b.

2. u1(a, b) is strictly increasing in b and is strictly decreasing in a.

Let a∗ ≡ maxA be the highest element in A under ≻A. Let b∗ be player 2’s lowest best reply to a∗

under ≻B . Let u1(a∗, b∗) be player 1’s commitment payoff.

I introduce a condition in the comparative statics literature which ensures that player 2 has single-peaked

preferences over her actions regardless of her belief about player 1’s action. Let B ≡ {b1, ..., bm}, where

bm ≻B ... ≻B b1. For every i ≤ m − 1 and a ∈ A, let γa(i) ≡ u2(a, b
i) − u2(a, b

i+1) be player 2’s gain

from locally decreasing her action from bi+1 to bi when player 1’s action is a. Let I ≡ {1, 2, ...,m− 1}.

Definition 1. γa : I → R has single crossing property if γa(i) ≥ 0 implies that γa(j) > 0, ∀ j > i.

Definition 2. γa : I → R and γâ : I → R satisfy signed-ratio monotonicity if:

1. For any i ∈ I such that γa(i) > 0 and γâ(i) < 0, we have −γâ(i)
γa(i)

≥ −γâ(j)
γa(j)

for every j > i.
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2. For any i ∈ I such that γa(i) < 0 and γâ(i) > 0, we have −γa(i)
γâ(i)

≥ −γa(j)
γâ(j)

for every j > i.

Assumption 2. Player 2’s stage-game payoff function u2(a, b) satisfies:

1. For every a ∈ A, γa has single-crossing property.

2. For every (a, â) ∈ A×A, γa and γâ satisfy signed-ratio monotonicity.

Notice that Assumption 2 is trivially satisfied when |B| = 2. Assumption 2 has bite only when |B| ≥ 3,

in which case it is satisfied by a non-degenerate set of parameters.

According to Theorem 1 in Quah and Strulovici (2012), single-crossing functions f and g satisfying

signed-ratio monotonicity is necessary and sufficient for all convex combinations of f and g to have the

single-crossing property. Therefore, if u2 satisfies Assumption 2, then for everyα ∈ ∆(A),
∑

a∈A γa(i)α(a)

has the single-crossing property. This implies that u2(α, b) is single-peaked with respect to b, in which case

either player 2 has a unique pure-strategy best reply to α, or she has two pure-strategy best replies to α that

are adjacent elements under ≻B . Therefore, if u2 satisfies Assumption 2, then any pair of elements in

B∗ ≡
{
β ∈ ∆(B)

∣∣∣ there exists α ∈ ∆(A) such that β best replies to α
}

(2.1)

can be ranked according to FOSD. That is to say, player 2’s mixed-strategy best replies to player 1’s actions

can be completely ranked according to FOSD.

Before choosing at, player 1 observes all the past actions ht ≡ {as, bs}t−1
s=0 and his perfectly persistent

type ω ∈ {ωs, ωc}. Let ωc stand for a commitment type who plays his highest action a∗ ≡ maxA in

every period. Let ωs stand for a strategic type who maximizes his discounted average payoff
∑∞

t=0(1 −

δ)δtu1(at, bt). Let π0 ∈ (0, 1) be the prior probability of the commitment type. For future reference, I call

a∗ player 1’s commitment action and actions that belong to A\{a∗} opportunistic actions.

Before choosing bt, player 2t observes the number of times that player 1 took each of his actions in

the last min{t,K} periods,5 where K ∈ N is a strictly positive integer that measures memory length. In

contrast to the reputation models of Fudenberg and Levine (1989,1992) and existing reputation models with

limited memories such as Liu (2011), Liu and Skrzypacz (2014), and Pei (2022), player 2 cannot observe the

order of player 1’s actions. For example, if K = 3, then player 2 who arrives in period 4 cannot distinguish

between (a1, a2, a3) = (a∗, a∗, a′), (a1, a2, a3) = (a∗, a′, a∗), and (a1, a2, a3) = (a′, a∗, a∗).

5Section 3.5 studies an extension where player 2 learns from coarse summary statistics. Each coarse summary statistics is
characterized by a partition of A ≡ A1 ∪ ... ∪ An and player 2t only observes the number of times that player 1’s last min{t,K}
actions belong to each partition element. My baseline model corresponds to the finest partition of A.
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The short-run players cannot directly observe calendar time. They have a common prior and update their

beliefs after observing their histories.6 Since the game ends with probability 1−δ after each period, for every

t ∈ N, the probability player 2’s prior assigns to calendar time being t+1 equals δ times the probability her

prior assigns to calendar time being t. Therefore, player 2’s prior assigns probability (1 − δ)δt to calendar

time being t.7 In Section 4.2, I extend my theorems to other prior beliefs about calendar time, which can

distinguish the role of player 1’s patience and the role of player 2’s prior belief about calendar time.

Let H1 ≡
{
(as, bs)

t−1
s=0 s.t. t ∈ N and (as, bs) ∈ A×B

}
be the set of player 1’s histories. Let

H2 ≡
{
(n1, ..., n|A|) ∈ N|A| s.t. n1 ≥ 0, ..., n|A| ≥ 0 and n1 + ...+ n|A| ≤ K

}
(2.2)

be the set of player 2’s histories. Strategic-type player 1’s strategy is σ1 : H1 → ∆(A). Let Σ1 be the set

of player 1’s strategies. Player 2’s strategy is σ2 : H2 → ∆(B). Let Σ2 be the set of player 2’s strategies.

Let σ ≡ (σ1, σ2) be a typical strategy profile. The solution concept is Perfect Bayesian equilibrium, under

which it is without loss of generality to focus on σ2 : H2 → B∗, i.e., player 2 plays a best reply to some

α ∈ ∆(A) at every history. My results extend to the solution concept of Nash equilibrium.

Examples: I present a few examples where players’ payoffs satisfy Assumptions 1 and 2. My leading

example is the product choice game in Mailath and Samuelson (2015) where players’ payoffs are:8

seller \ consumer Trust No Trust

High Effort 1, 1 −cN , x

Low Effort 1 + cT ,−x 0, 0

Once players’ actions are ranked according to H ≻A L and T ≻B N , both assumptions are satisfied when

0 < cT < cN and x ∈ (0, 1). That is, the seller’s cost of effort is lower when consumers trust him and

consumers are willing to trust the seller if and only if the probability of high effort is at least x.

For an example where players have more than two actions, suppose A ⊂ R+ and B ⊂ R+ are finite

sets, where a ∈ A is the seller’s effort and b ∈ B is the extent to which consumers trust the seller. Each con-

sumer’s payoff function is −(a−b)2. The seller’s payoff function u1(a, b) is strictly decreasing in a, strictly
6Because the first K short-run players observe fewer than K actions, they can perfectly infer calendar time based on their

histories. All other short-run players know that calendar time is at least K after they observe their histories.
7A similar assumption on the prior belief about calendar time is made in Cripps and Thomas (2019). Section 4 in Hu (2020)

provides two interpretations for such a prior belief. The first interpretation is that the short-run players enter in a fixed order, and
they are uncertain about their own identities and they hold an identical prior over their own identities. The second interpretation
is that the short-run players know their own identities, but are uncertain about their entering periods. Hu (2020) also constructs a
distribution over the entry process under which any two agents who observe the same history share the same belief.

8Following Mailath and Samuelson (2015, page 168), I interpret “Trust” as purchasing a premium product or a customized
product and “No Trust” as purchasing a standardized product. Under this interpretation, future consumers may observe the seller’s
effort even when the current-period consumer does not trust the seller.
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increasing in b, and has strictly increasing differences. Verifying that these payoffs satisfy Assumption 1

is straightforward. To see why they satisfy Assumption 2, notice that for every α ∈ ∆(A), player 2’s best

replies are the elements in B that are closest to the expected value of player 1’s action under α. Therefore,

player 2 either has a unique pure best reply, or has two pure best replies that are adjacent elements in B.

Although Assumption 1 restricts attention to games in which player 1’s actions can be completely

ranked, both of my theorems can be generalized to the case where (A,≻A) is a lattice with a unique highest

element a∗. This fits situations where the seller’s effort is multi-dimensional, e.g., the seller chooses both

the quality of his product and the quality of his customer service. It also fits when the seller interacts with

m ∈ N consumers in each period: The seller chooses his effort against each consumer from a lattice, the

commitment type chooses the highest effort against all consumers, and every consumer observes the number

of times that the seller took each of his actions against consumers who arrived in the last K periods. That is

to say, every consumer who arrives after period K can observe the summary statistics of Km actions.

3 Results

Section 3.1 establishes a no-back-loop property that applies to each of the long-run player’s best reply under

any discount factor. Section 3.2 uses this property to show that the long-run player receives at least his

commitment payoff in all equilibria when his discount factor is above some cutoff. Section 3.3 shows that

the commitment outcome (a∗, b∗) occurs with frequency arbitrarily close to 1 in all equilibria if and only

if K is below some cutoff. I discuss the effects of memory length on consumers’ welfare and whether

consumers can attain a higher welfare when they observe coarser summary statistics of the seller’s history.

3.1 The No-Back-Loop Property

Let πt ∈ [0, 1] be the probability player 2t’s belief assigns to the commitment type after she observes the

summary statistics of player 1’s actions in the last min{t,K} periods. I call πt player 1’s reputation in

period t. For every t ≥ K, πt > 0 if and only if player 1’s history ht ≡ (as, bs)
t−1
s=0 belongs to

H∗
1 ≡

{
(as, bs)

t−1
s=0

∣∣∣t ≥ K and (at−K , ..., at−1) = (a∗, ..., a∗)
}
. (3.1)

Intuitively, H∗
1 is the subset of histories where player 1 took his commitment action in each of the last K

periods. Let H1(σ1, σ2) be the set of player 1’s histories that occur with positive probability under (σ1, σ2).

Let U δ
1 (σ1, σ2) be player 1’s discounted average payoff under (σ1, σ2) when his discount factor is δ.
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For every σ2 and every pure strategy σ̂1 : H1 → A, I say that σ̂1 satisfies the no-back-loop property with

respect to σ2 if there exists no ht ∈ H1(σ̂1, σ2)
⋂
H∗

1 such that when player 1 uses strategy σ̂1, he plays an

action that is not a∗ at ht and reaches another history that belongs to H1(σ̂1, σ2)
⋂
H∗

1 in the future. I say

that σ̂1 best replies to σ2 if σ̂1 ∈ argmaxσ1∈Σ1 U
δ
1 (σ1, σ2). Recall the definition of set B∗ in (2.1).

No-Back-Loop Lemma. Suppose (u1, u2) satisfies Assumptions 1 and 2. For any δ ∈ (0, 1) and player

2’s strategy σ2 : H2 → B∗. If player 1’s pure strategy σ̂1 : H1 → A best replies to σ2, then σ̂1 satisfies the

no-back-loop property with respect to σ2.

The no-back-loop lemma implies that under each of the long-run player’s best reply in the repeated

game, either he does not take any opportunistic action when he has a positive reputation (i.e., he never

milks his reputation), or his future reputation is always zero after he milks his reputation (i.e., he never

restores his reputation). This conclusion applies for all discount factors and for all strategies of the short-run

players where they only play (mixed) actions in B∗. In Section 4.1, I explain why this lemma hinges on the

combination of (i) supermodular stage-game payoffs and (ii) the short-run players not being able to observe

the order of the long-run player’s actions. My lemma rules out the reputation cycles in Liu (2011) and

Liu and Skrzypacz (2014), where the long-run player milks his reputation and then restores his reputation.

Those papers assume that the long-run player’s stage-game payoff is strictly submodular and the short-run

players can observe the order of the long-run player’s actions. Both features stand in contrast to my model.

My lemma does not follow from existing results on supermodular games.9 This is because even when

players’ stage-game payoffs are monotone-supermodular, it is not necessarily the case that when the game

is played repeatedly, the long-run player has a stronger incentive to play higher actions at histories where

the short-run players’ actions are higher. Intuitively, the long-run player’s action in the current period affects

future short-run players’ observations, which in turn affects future short-run players’ actions as well as the

long-run player’s continuation value. Hence, the long-run player’s incentive depends not only on the current

short-run player’s action, but also on future short-run players’ responses after they observe his action.

The formal proof is in Appendix A. I provide a heuristic explanation that focuses on player 1’s pure

strategies that depend only on his actions in the last K periods, including the order of these K actions.

Suppose by way of contradiction that there exists σ̂1 that best replies to σ2 : H2 → B∗ such that when

player 1 plays according to σ̂1, he plays a′ (̸= a∗) at a history where he has a positive reputation, and after a

finite number of periods, reaches a history ht that satisfies (at−K , ..., at−1) = (a′′, a∗, ..., a∗) where a′′ ̸= a∗

but a′′ and a′ can be the same, and then he plays a∗ at ht, after which he has a positive reputation again. I
9Most of the existing results on supermodular games focus on one-shot games, and it is well-known from the insightful work of

Echenique (2004) that a repeated supermodular game is not necessarily supermodular.
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(a′′, a∗, ..., a∗) (a∗, ..., a∗, a′)

(a∗, ..., a∗) (a∗, ..., a∗) (a∗, ..., a∗)

(a′′, a∗..., a∗) (a∗, ..., a∗, a′′)
a′a∗

Player 1 uses strategy σ̂1
that violates no-back-loop

Player 1 uses Deviation A

a′

a∗

a∗

a∗

a′′

Player 1 uses Deviation B

Figure 1: The green circle represents a history where player 1 has a positive reputation. The white circle
represents a history where player 1 is one-period-away from having a positive reputation. The blue circle
represents a history that is reached after player 1 milks his reputation. The yellow circles represent histories
that are reached on the path from the blue circle to the white circle when player 1 plays σ̂1. The pink circles
represent histories where a′′ was played once and a∗ was played K − 1 times in the last K periods.

depict player 1’s on-path play under strategy σ̂1 in the left panel of Figure 1.

If σ̂1 best replies to σ2, then player 1 prefers a′ to a∗ at the green circle and prefers a∗ to a′ at the

white circle. No matter whether player 1 is currently at the green or the white circle, he will reach the green

circle after playing a∗ and will reach the blue circle after playing a′. Hence, the differences in player 1’s

incentives at the green and the white circles cannot be driven by his continuation value. This implies that

such differences in incentives can only be driven by player 1’s stage-game payoff, which is affected by the

current-period short-run player’s action. Since u1(a, b) has strictly increasing differences and a∗ ≻A a′, it

cannot be the case that player 2’s mixed action at the green circle strictly FOSDs her mixed action at the

white circle. When u2(a, b) satisfies Assumption 2, any pair of elements in B∗ can be ranked according to

FOSD. This implies that player 2’s action at the white circle weakly FOSDs her action at the green circle.

I propose two deviations for player 1 starting from the white circle, which I call Deviation A and Devi-

ation B, respectively. They are depicted in the middle and right panels of Figure 1:

• Deviation A: Plays a′ at the white circle, and then follows strategy σ̂1.

• Deviation B: Plays a′′ at the white circle, then plays a∗ for K − 1 consecutive periods after which

play will reach the white circle again, and then follows strategy σ̂1.

Since player 2 cannot observe the order of player 1’s actions, she takes the same action at the white circle

and at every pink circle. I compare player 1’s continuation value at the white circle when he uses strategy
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σ̂1 to his continuation values at the white circle under Deviation A and Deviation B, respectively.

1. Compared to σ̂1, Deviation A takes a lower-cost action a′ at the white circle, skips the green circle,

and frontloads the payoffs along the blue lines (i.e., the blue, yellow, and white circles). If player 1

prefers σ̂1 to Deviation A, then his average payoff from the circles along the blue lines (i.e., the payoff

that Deviation A frontloads) must be strictly lower than his stage-game payoff at the green circle.

2. Compared to σ̂1, Deviation B takes a lower-cost action a′′ at the white circle, skips the green circle,

and induces payoffs along the red lines in the next K − 1 periods (i.e., the pink circles). If player 1

prefers σ̂1 to Deviation B, then his average payoff along the red lines must be strictly smaller than a

convex combination of his payoff at the green circle and his average payoff along the blue lines.

Therefore, if player 1 prefers σ̂1 to both Deviations A and B at the white circle, then his stage-game

payoff at the green circle must be strictly greater than his average payoff along the red lines. Since player

2 can only observe the summary statistics but not the order of player 1’s actions, player 2’s action at every

circle along the red line coincides with her action at the white circle. This leads to a contradiction since

player 2’s action at the white circle weakly FOSDs her action at the green circle, and player 1’s stage-game

payoff is increasing in player 2’s action. This implies that at the white circle, either Deviation A or B yields

a strictly higher payoff for player 1 relative to strategy σ̂1. Hence, σ̂1 cannot be a best reply to σ2.

3.2 The Returns from Building Reputations

I use the no-back-loop lemma to show that for every K and at every on-path history of every equilibrium,

the patient player’s continuation value is at least u1(a∗, b∗). My proof implies that he can secure payoff

u1(a
∗, b∗) by playing a∗ in every period. Let a be player 1’s lowest action. For every π0 ∈ (0, 1), there

exists δ(π0) ∈ (0, 1) such that for every δ > δ(π0), all of player 2’s best replies to the following mixed

action: {
1− (1− δ)(1− π0)

π0

}
a∗ +

(1− δ)(1− π0)

π0
a

are no less than b∗ under the order ≻B defined in Assumption 1. Such δ(π0) exists since b∗ is the lowest

best reply to a∗, (1−δ)(1−π0)
π0

→ 0 as δ → 1, and best reply correspondences are upper-hemi-continuous.

Theorem 1. Suppose (u1, u2) satisfies Assumptions 1 and 2, and δ > δ(π0). The strategic-type player

1’s discounted average payoff at every on-path history of every equilibrium is at least:

(1− δK)min
b∈B

u1(a
∗, b) + δKu1(a

∗, b∗). (3.2)
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Theorem 1 suggests that when players’ actions are strategic complements, the patient player can secure

his commitment payoff at every on-path history of every equilibrium even when his opponents can only

observe the summary statistics of his recent behaviors. My result applies as long as δ is above some cutoff

and no matter how small K is. This stands in contrast to existing reputation results that require either an

infinite K (e.g., Fudenberg and Levine 1989), or a large K (e.g., Theorem 2 in Liu and Skrzypacz 2014),10

or the short-run players observing the entire history of some noisy signals that can statistically identify the

patient player’s past actions (e.g., Fudenberg and Levine 1992, Gossner 2011, and Theorem 2 in Pei 2022).11

Each short-run player in my model receives only one signal, which is the summary statistics of the long-

run player’s recent behaviors. As a result, she cannot observe everything her predecessors observe. Because

of this, Theorem 1 does not follow from the arguments in Fudenberg and Levine (1989, 1992) and Gossner

(2011), which require each short-run player observing everything her predecessors observe.

Since each signal received by the short-run player is affected by all of the long-run player’s actions in the

last K periods, the short-run player in my model face a novel lack-of-identification problem. For example,

when K = 2, player 2t cannot tell the difference between (at−2, at−1) = (a′, a∗) and (at−2, at−1) =

(a∗, a′). This stands in contrast to the lack-of-identification problems faced by the short-run players in

Ely and Välimäki (2003) where the monitoring technology has a product structure, that is, each short-run

player’s signal is affected by exactly one action of the long-run player.

My proof develops a novel argument using the no-back-loop lemma. I show that when δ > δ(π0),

player 2 has no incentive to play any action lower than b∗ when calendar time is at least K and player 1 has

a positive reputation. This implies Theorem 1, since when the strategic-type player 1 deviates by playing a∗

in every period, player 2’s action is no lower than b∗ starting from period K.

Proof of Theorem 1: Let Σ∗
1 be the set of player 1’s pure strategies that satisfy the no-back-loop property.

For every integer t ∈ N, let Et be the event that player 1 is strategic and has a positive reputation in period

t. Fix any σ1 ∈ Σ∗
1 and σ2, let pt(σ1, σ2) be the ex ante probability of event Et when the strategic-type

player 1 plays σ1 and player 2 plays σ2. Since player 1 is the commitment type with probability π0, we

have pt(σ1, σ2) ≤ 1 − π0 for every t ∈ N. Let N∗(σ1, σ2) ⊂ N be the set of calendar time t such that

pt(σ1, σ2) > 0 and t ≥ K. For every t ∈ N∗(σ1, σ2), let qt(σ1, σ2) be the probability that player 1 does not

play a∗ in period t conditional on event Et. Since σ1 ∈ Σ∗
1, if player 1 plays according to σ1, as soon as he

10Theorem 2 in Liu and Skrzypacz (2014) shows that for every π0 > 0, there exists K ∈ N such that the patient player can
secure his commitment payoff at every history in every equilibrium when the memory length K is above K.

11Theorem 2 in Pei (2022) establishes a reputation result when each short-run player observes all previous short-run players’
actions, an unboundedly informative private signal about the long-run player’s current-period action, and the long-run player’s
actions in the last K periods. He shows that each short-run player’s action is either informative about the long-run player’s action
against her, or this short-run player plays her best reply to the long-run player’s commitment action with probability close to 1.
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plays any action that is not a∗ at any history after period K where he has a positive reputation, he will never

have a positive reputation in the future. This implies that
∑

t∈N∗(σ1,σ2)
pt(σ1, σ2)qt(σ1, σ2) ≤ 1− π0.

Fix an equilibrium (σ̃1, σ2). The no-back-loop lemma implies that σ̃1 ∈ ∆(Σ∗
1).

12 For every pure

strategy σ1 ∈ Σ∗
1, let σ̃1(σ1) be the probability mixed strategy σ̃1 assigns to σ1. This probability is well-

defined since Σ∗
1 is a countable set. Recall that player 2’s prior belief assigns probability (1 − δ)δt to the

calendar time being t. At any history after period K where player 1 has a positive reputation, player 2

believes that player 1’s action is not a∗ with probability

∑
σ1∈Σ∗

1
σ̃1(σ1)

∑
t∈N∗(σ1,σ2)

(1− δ)δtpt(σ1, σ2)qt(σ1, σ2)

π0
∑+∞

t=K(1− δ)δt +
∑

σ1∈Σ∗
1
σ̃1(σ1)

∑
t∈N∗(σ1,σ2)

(1− δ)δtpt(σ1, σ2)
. (3.3)

The denominator of (3.3) is at least π0δK . Since
∑

t∈N∗(σ1,σ2)
pt(σ1, σ2)qt(σ1, σ2) ≤ 1 − π0 for every

σ1 ∈ Σ∗
1, Σ∗

1 is a countable set, and t ≥ K for every t ∈ N∗(σ1, σ2), the numerator of (3.3) is no more

than (1 − δ)(1 − π0)δ
K . This suggests that the value of (3.3) is no more than (1−δ)(1−π0)

π0
. The definition

of δ(π0) together with u2(a, b) having strictly increasing differences implies that when δ > δ(π0), actions

strictly lower than b∗ are not optimal for player 2 at any history after period K and where player 1 has a

positive reputation. This implies that at every on-path history of every equilibrium, if player 1 plays a∗ in

every period starting from that history, then he receives a continuation value of at least (3.2).

3.3 Main Result: The Incentive to Sustain Reputations

The fact that player 1 can secure his commitment payoff by playing a∗ in every period does not imply that

he will do so in equilibrium. My next result focuses on player 1’s behavior, and in particular, the frequency

with which he plays the commitment action. It requires another assumption on players’ stage-game payoffs:

Assumption 3. Players’ stage-game payoffs (u1, u2) are such that b∗ is a strict best reply to a∗,

u1(a
∗, b∗) > max

a∈A,b≺b∗
u1(a, b) and {a∗} = argmax

a∈A

{
min

b∈BR2(a)
u1(a, b)

}
. (3.4)

The product choice game is a leading example that satisfies Assumption 3. The first part of Assumption

3 is generically satisfied since b∗ is defined as player 2’s lowest best reply to a∗. The second part requires

that player 1 cannot obtain payoffs weakly greater than u1(a∗, b∗) when player 2’s action is strictly lower

12One caveat to apply the no-back-loop lemma to prove Theorem 1 for Nash Equilibrium is that it restricts attention to σ2 :
H → B∗, while player 2 may play actions that do not belong to B∗ at off-path histories. However, notice that the proof of the
no-back-loop lemma uses σ2 : H2 → B∗ only when comparing player 2’s mixed actions at the green circle and at the white circle,
both of which occur with positive probability under (σ̂1, σ2). Hence, we can show that σ̂1 satisfies the no-back-loop property with
respect to σ2 if (i) σ̂1 best replies to σ2, and (ii) σ2(h

t
2) ∈ B∗ for every ht

2 that occurs with positive probability under (σ̂1, σ2).
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than b∗. The third part requires a∗ to be player 1’s optimal pure commitment action. Since u1(a, b) is strictly

decreasing in a and a∗ is the highest element of A, b∗ does not best reply to any action other than a∗.

Let Eσ[·] be the expectation operator induced by strategy profile σ ≡ (σ1, σ2) conditional on player 1

being the strategic type. Since the game continues with probability δ after each period, the expected sum

of the short-run players’ payoffs depends only on the discounted frequency (or the occupation measure) of

each action profile (a, b) ∈ A×B under strategy profile σ, which is defined as

F σ(a, b) ≡ Eσ
[ +∞∑
t=0

(1− δ)δt1{at = a, bt = b}
]
. (3.5)

Let

Hσ ≡ Eσ
[ +∞∑
t=1

(1− δ)δt−11{πt > 0}
]

(3.6)

be the discounted frequency of histories where player 1 has a positive reputation excluding period 0.

Theorem 2. Suppose (u1, u2) satisfies Assumptions 1, 2, and 3.

1. Suppose b∗ does not best reply to mixed action K−1
K a∗+ 1

K a
′ for every a′ ̸= a∗. There exists a constant

C ∈ R+ that is independent of δ such that F σ(a∗, b∗) ≥ 1 − (1 − δ)C and Hσ ≥ 1 − (1 − δ)C for

every equilibrium strategy profile σ under discount factor δ.

2. Suppose b∗ is a strict best reply to K−1
K a∗ + 1

K a
′ for some a′ ̸= a∗. There exist δ ∈ (0, 1) and η > 0

such that for every δ > δ, there is a PBE strategy profile σ such that
∑

b∈B F
σ(a∗, b) < 1 − η and

Hσ = 0, i.e., πt = 0 with probability 1 for every t ≥ 1 when player 1 is the strategic type.13

The proof of the first part is in Appendix B and the proof of the second part is in Online Appendix C.

Since Assumption 3 requires b∗ to be player 2’s strict best reply to a∗, b∗ does not best reply to K−1
K a∗+ 1

K a
′

for every a′ ̸= a∗ if and only if K is below some cutoff K∗, where K∗ is at least 2 and its value depends

only on player 2’s stage-game payoff function u2(a, b). My result implies that:

1. When K is below K∗, (i) player 1 plays a∗ with frequency arbitrarily close to one in all equilibria

as δ → 1, and (ii) histories where player 1 has a strictly positive reputation occur with frequency

arbitrarily close to 1 as δ → 1. In Section 4.2, I discuss generalizations to situations where player 1’s

discount rate differs from the probability with which the game continues after each period.

2. When K is above K∗, no matter how patient player 1 is, there always exists an equilibrium in which
13I require the constructed PBE to satisfy the no signaling what you don’t know refinement in Fudenberg and Tirole (1991).
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player 1 takes opportunistic actions with frequency bounded away from zero, and starting from period

1, the strategic-type player 1’s reputation is always zero on the equilibrium path.

In terms of how large η can be and how it is related to K and u2, one can show that for every

m ∈ {1, 2, ...,K − 1} and a′ ̸= a∗ such that b∗ is player 2’s strict best reply to K−m
K a∗ + m

K a
′, there

exists δ ∈ (0, 1) such that for every δ > δ, there is an equilibrium where the discounted frequency

with which the strategic-type player 1 plays a′ is approximately m
K . That is, η can be as large as m

K .

In the product choice game of Section 2, the cutoff K∗ is 1
1−x . Theorem 2 implies that consumers

having a long memory undermines the seller’s incentives to sustain reputations. This is because a longer

memory has two effects on the seller’s reputational incentives. An obvious effect is that each of the seller’s

action is observed by more consumers, so that he can be punished by more consumers after he shirks. This

encourages him to exert high effort. However, a longer memory also undermines consumers’ incentives to

punish the seller after they observe a few instances of low effort. This encourages the seller to exert low

effort occasionally instead of exerting high effort in every period. Theorem 2 suggests that the second effect

dominates in terms of determining whether the patient player will sustain his reputation in all equilibria.

In order to understand the second effect as well as how to pin down the cutoff memory length, I focus

on the product choice game and provide a heuristic explanation for why the cutoff memory length is 1
1−x .

Suppose consumers believe that the strategic-type seller will play L exactly once in everyK consecutive

periods. When δ is close to 1, consumers believe that L will be played in the current period with probability

close to 1
K after they observe L being played only once in the last K periods. Hence, consumers prefer to

play T at such histories when x < K−1
K , or equivalently, when K > 1

1−x . If this is the case, then the seller

prefers exerting low effort once every K periods to exerting high effort in every period.

This is the idea behind my proof for the second part of Theorem 2, where I construct equilibria under a

largeK such that on the equilibrium path, the strategic-type player 1 plays a′( ̸= a∗) in periods 0,K, 2K, ...,

and plays a∗ in other periods.14 According to Bayes rule, his reputation on the equilibrium path is always

zero starting from period 1. Starting from periodK, player 2 plays b∗ when player 1 has a positive reputation

as well as at histories where she observes a′ only once and the rest of the last K actions were a∗.

Player 2’s belief at on-path histories has an intuitive interpretation and her optimal action at every on-

path history is easy to compute: She believes that the distribution of player 1’s current-period action is close

to the frequency with which player 1 played each of his actions in the last K periods. In particular, she
14Since the strategic type’s reputation is always zero after period 1, his behavior in this equilibrium does not violate the no-

back-loop property. The behavior I just described is qualitatively different from the reputation cycles in Liu (2011) and Liu and
Skrzypacz (2014), since the strategic-type long-run player has a positive reputation at some on-path histories in their equilibria.
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believes that player 1 will choose a∗ in the current period after observing player 1 has chosen a∗ in all of

the last K periods, and she believes that player 1 will choose a∗ with probability close to K−1
K and a′ with

probability close to 1
K after observing a∗ occurred K − 1 times and a′ occurred once in the last K periods.

Using similar ideas, one can show that for every m ∈ {1, 2, ...,K − 1} and a′ ̸= a∗ such that b∗ is a

strict best reply to K−m
K a∗ + m

K a
′, there exists an equilibrium under a sufficiently large δ where in every K

consecutive periods, player 1 plays a′ in m periods and plays a∗ in K −m periods, and player 2 plays b∗

when she observes a′ being played m times and a∗ being played K −m times in the last K periods.

My main technical contribution is in the proof of the first part. My technique is potable to analyze other

repeated games with limited record-keeping (e.g., games with anonymous random matching between a pop-

ulation of long-run players) and to deliver predictions on payoffs and behaviors that apply to all equilibria.

A major challenge is that characterizing all equilibria in an infinitely repeated game is not tractable in

general. Moreover, ruling out the type of equilibria constructed in the proof for the second part is insufficient

to show that player 1 will play a∗ with frequency close to 1 in all equilibria. One of the reasons is that a

Bayesian short-run player’s expectation of the long-run player’s current-period action may not equal the

frequency with which the long-run player played each of his actions in the last K periods. For example, the

seller may play H with high probability even when he played L in all of the lastK periods, and he may play

L with probability bounded away from 1
K when L was played once in the last K periods.

I explain the ideas behind the proof using the product choice game when K = 2 and x > 1
2 , so that

K < 1
1−x . Readers who are not interested in the proof can skip this part and jump to Section 3.4. In

every period t, the seller’s continuation value and incentive as well as consumer t’s action depend only on

(at−2, at−1). I call (at−2, at−1) the state in period t. Let S ≡ {LL,LH,HL,HH} be the state space, with

s ∈ S a typical element. For example, the state in period t is LH if and only if at−2 = L and at−1 = H .

Fix any equilibrium σ. For every s ∈ S, let µ(s) be the probability that the current state is s conditional

on the seller being the strategic type and calendar time being at least 2 (in the general case, I replace 2 with

K). For every s, s′ ∈ S, let Q(s→ s′) be the probability that the state in the next period is s′ conditional on

the state in the current period being s, the seller being the strategic type, and the calendar time being at least

2. Let p(s) be the probability that the state is s in period 2 conditional on the seller being the strategic type.

Step 1: Decompose the Discounted Frequency of States My proof hinges on the following equation,

which I establish later as Lemma B.1:

µ(s∗) = (1− δ)p(s∗) + δ
∑
s∈S

µ(s)Q(s→ s∗) for every s∗ ∈ S. (3.7)
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The intuition behind (3.7) is that consumers do not directly observe calendar time, so µ(s∗) is a convex

combination of the probability of state s∗ in period 2, which equals p(s∗), and the average probability with

which play reaches state s∗ after period 2, which equals
∑

s∈S µ(s)Q(s → s∗). Since consumers’ prior

belief assigns probability (1− δ)δt to the calendar time being t, the weight on the first term equals 1− δ.

Step 2: The Inflow-Outflow Lemma For every non-empty subset of states S′ ⊂ S, let

I(S′) ≡
∑
s/∈S′

∑
s∗∈S′

µ(s)Q(s→ s∗)

be the inflow from other states to states in S′, and let

O(S′) ≡
∑
s∈S′

∑
s∗ /∈S′

µ(s)Q(s→ s∗)

be the outflow from states in S′ to other states. Since
∑

s/∈S′ Q(s∗ → s) +
∑

s∈S′ Q(s∗ → s) = 1 for every

s∗ ∈ S and S′ ⊂ S, we have:

∑
s∗∈S′

µ(s∗) =
∑
s∗∈S′

∑
s/∈S′

µ(s∗)Q(s∗ → s)+
∑
s∗∈S′

∑
s∈S′

µ(s∗)Q(s∗ → s) = O(S′)+
∑
s∗∈S′

∑
s∈S′

µ(s∗)Q(s∗ → s).

(3.8)

According to (3.7), we have

∑
s∗∈S′

µ(s∗) = (1− δ)
∑
s∗∈S′

p(s∗) + δI(S′) + δ
∑
s∗∈S′

∑
s∈S′

µ(s∗)Q(s∗ → s),

or equivalently,

∑
s∗∈S′

µ(s∗) = I(S′) +
∑
s∗∈S′

∑
s∈S′

µ(s∗)Q(s∗ → s) +
1− δ

δ

∑
s∗∈S′

(
p(s∗)− µ(s∗)

)
. (3.9)

Equations (3.8) and (3.9) imply that

∣∣∣I(S′)−O(S′)
∣∣∣ = ∣∣∣1− δ

δ

∑
s∗∈S′

(
p(s∗)− µ(s∗)

)∣∣∣ ≤ 1− δ

δ
. (3.10)

That is to say, the difference between the inflow to and the outflow from any subset of states S′ is no more

than a linear function of 1− δ.
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Step 3: Inflow to State HH and Outflow from State HH Must Be Small The no-back-loop lemma

implies that either (i) the strategic-type seller never plays L when the state is HH , or (ii) the strategic-type

seller never returns to state HH in the future after playing L in state HH .

In the first case, the outflow from state HH to other states is 0, and (3.10) implies that the inflow from

other states to state HH is no more than 1−δ
δ . In the second case, the inflow to S′ is zero, where

S′ ≡
{
s′ ̸= HH s.t. the seller can reach HH from s′ under one of his best replies to player 2’s equilibrium strategy

}
Inequality (3.10) implies that the outflow from S′ is no more than 1−δ

δ , and the definition of S′ implies that

the inflow to state HH is no more than the outflow from S′, which is also no more than 1−δ
δ . Applying

inequality (3.10) again, we obtain that the outflow from state HH to other states is no more than 2(1−δ)
δ .

Summarizing these two cases, we have:

max{I({HH}),O({HH})} ≤ 2(1− δ)

δ
. (3.11)

Step 4: Consumers’ Incentive After the Seller Loses His Reputation I use inequalities (3.7), (3.10),

and (3.11) to show that when K = 2 and x > 1
2 , either µ(HL) + µ(LH) is bounded above by some linear

function of 1− δ, i.e., µ(HL) + µ(LH) → 0 as δ → 1, or consumers have a strict incentive to play N after

they observe L being played exactly once in the last two periods.

This is because when consumers observe one L and one H in the last 2 periods, i.e., they know that the

state is either HL or LH , they believe that the seller will play H in the current period with probability

µ(HL)Q(HL→ LH) + µ(LH)Q(LH → HH)

µ(HL) + µ(LH)
,

and will play L in the current period with probability

µ(HL)Q(HL→ LL) + µ(LH)Q(LH → HL)

µ(HL) + µ(LH)
.

Since x > 1
2 , consumers strictly prefer to play N after observing one L and one H if

µ(HL)Q(HL→ LH) + µ(LH)Q(LH → HH) < µ(HL)Q(HL→ LL) + µ(LH)Q(LH → HL).

By definition, I({HH}) = µ(LH)Q(LH → HH) and O({HH}) = µ(HH)Q(HH → HL). Inequality

(3.11) implies that µ(LH)Q(LH → HH) and µ(HH)Q(HH → HL) are close to 0 when δ → 1. Hence,
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µ(HL)Q(HL→ LH) + µ(LH)Q(LH → HH) is close to µ(HL)Q(HL→ LH), and µ(HL)Q(HL→

LL) + µ(LH)Q(LH → HL) is close to µ(HL)Q(HL→ LL) + µ(LH). According to (3.7),

µ(HL) ≈ µ(HH)Q(HH → HL)︸ ︷︷ ︸
≡O({HH})≈0

+µ(LH)Q(LH → HL) ≈ µ(LH)Q(LH → HL),

we know that either µ(HL)Q(HL→ LH) ≈ µ(LH)Q(LH → HL)Q(HL→ LH), with the right-hand-

side being no more than µ(LH), is smaller than µ(HL)Q(HL→ LL) +µ(LH), in which case consumers

prefer to play N upon observing {LH,HL}, or µ(LH) + µ(HL) is small in the sense that it is bounded

above by a linear function of 1− δ.

Step 5: States where Consumers Play N Occur with Frequency Close to Zero I use inequality (3.11)

to show that if consumers have a strict incentive to play N upon observing one H and one L, then µ(HL)+

µ(LH) is bounded above by a linear function of 1 − δ. Intuitively, the seller’s continuation value in state

HH is 1. Because he can reach state HH by playing H in two consecutive periods, his continuation

value in any other state is at least −(1 − δ2)cN + δ2. Under the hypothesis that consumers play N when

(at−2, at−1) ∈ {HL,LH}, the state cannot remain in {HL,LH} for too long. This is because otherwise,

the seller cannot obtain payoff weakly greater than −(1− δ2)cN + δ2. In another word, the state must reach

HH or LL within a bounded number of periods. Since the inflow to HH is small, we know that when

µ(HL) + µ(LH) is large, there must be a large inflow to LL from {HL,LH}. Given the relationship

between inflows and outflows in (3.10), there must also be a large outflow from LL to {HL,LH}. Hence,

there exists a best reply of the seller that plays H at LL, plays L at LH , and plays L at HL. However,

the seller’s payoff from such a behavior is strictly less than his payoff from playing L in every period, since

consumers have no incentive to play T when the state is either HL or LH . This leads to a contradiction.

Similarly, one can show that µ(LL) is also close to 0 in all equilibria given that µ(HL) + µ(LH),

I({HH}), and O({HH}) are all bounded above by some linear function of 1 − δ. Suppose by way of

contradiction that the ratio between µ(LL) and max
{
µ(HL) + µ(LH), I({HH}),O({HH})

}
can be

arbitrarily large in some equilibria. Since µ(HL) + µ(LH) is small, the inflow to {HL,LH} must be

small, which implies that µ(LL)Q(LL→ LH) is small. Since µ(LL) is large relative to µ(HL)+µ(LH),

we know that Q(LL → LH) must be close to zero, which implies that the strategic-type seller plays L

with positive probability in state LL. Therefore, playing L is optimal for the seller in state LL, which

implies that it is optimal for the seller to remain in state LL after he reaches there. Since the seller’s

continuation value is no less than −(1 − δ2)cN + δ2 at every history, consumers must have an incentive
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to play T in state LL in order for the seller to receive such a payoff by remaining in state LL. Hence, the

probability with which the seller plays H at LL is at least x, which implies that Q(LL → LL) ≤ 1 − x.

However, (3.7) implies that µ(LL) is close to µ(LL)Q(LL→ LL)+µ(HL)Q(HL→ LL), and under the

hypothesis that µ(HL) is close to 0, we know that µ(LL) is close to µ(LL)Q(LL → LL). This suggests

that µ(LL)
(
1 − Q(LL → LL)

)
must be close to 0. Since µ(LL)

(
1 − Q(LL → LL)

)
≥ xµ(LL) and

x > 0, we know that µ(LL) → 0 as µ(LL)
(
1−Q(LL→ LL)

)
→ 0.

Remark: Appendix B generalizes the above argument to K ≥ 2 as well as to stage games where players

have more than two actions. First, I derive the analogs of (3.7) and (3.10) under a general K. I define each

state as a sequence of player 1’s actions with length K. For every 0 ≤ k ≤ K, let Sk be the set of states

where k of the last K actions are not a∗. The no-back-loop lemma and (3.10) imply that the inflow to S0

from other states and the outflow from S0 to other states must be bounded above by 2(1−δ)
δ (Lemma B.3).

The rest of the proof uses an induction argument. For any two subsets of states S′ ∩ S′′ = ∅, let

Q(S′ → S′′) ≡
∑
s′∈S′

∑
s′′∈S′′

µ(s′)Q(s′ → s′′) (3.12)

be the flow from S′ to S′′. I show that for every k ≥ 1, if the flow from Sk−1 to Sk and the flow from Sk−1

to Sk are both bounded above by a linear function of 1− δ, then the total discounted frequency of states in

Sk is also bounded above by a linear function of 1− δ. Iterate the above argument, we obtain that the flow

from Sk to Sk+1 and the flow from Sk to Sk+1 are also bounded above by a linear function of 1− δ.

The case in which k = 1 is shown in Lemma B.3, i.e., the flow from S1 to S0 and the flow from S0 to

S1 are both close to zero. Establishing the inductive step proceeds as follows. For every k ∈ {0, ...,K}, I

partition Sk ≡
⋃

k Sj,k such that player 2 only observes which partition element the state belongs to. First,

I show in Lemma B.4 that for every Sj,k with k ≥ 1, if the flow from Sk−1 to Sj,k and the flow from Sj,k to

Sk−1 are both bounded above by some linear function of 1 − δ, then either the total discounted frequency

of states in Sj,k is also bounded above by some linear function of 1− δ, or player 2 has no incentive to play

b∗ when the state belongs to Sj,k. Second, I show in Lemma B.5 that for every Sj,k with k ≥ 1, if the flow

from Sk−1 to Sj,k and the flow from Sj,k to Sk−1 are both bounded above by some linear function of 1− δ,

and player 2 has no incentive to play b∗ when the state belongs to Sj,k, then under Assumption 3, the total

discounted frequency of states in Sj,k must be bounded above by some linear function of 1− δ.15

15Since player 1 receives u1(a
∗, b∗) after playing a∗ for K periods, he cannot remain in Sj,k for a long time given that his payoff

is less than u1(a
∗, b∗) when the state belongs to Sj,k. If the flow from Sj,k to Sk−1 is small, and every Si,k occurs with discounted

frequency close to 0 when player 2 has an incentive to play b∗ at Si,k, then there must exist a best reply for player 1 under which
he reaches Sk+1 starting from Sj,k. If he never returns to Sj,k after reaching Sk+1, then states in Sj,k are transitory and therefore,
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3.4 Implications of Theorem 2

The Short-Run Players’ Welfare: In the equilibrium I constructed in order to show the second statement

of Theorem 2, player 1 plays some a′ ( ̸= a∗) once in every K consecutive periods, and player 2 plays

b∗ either when player 1 has a positive reputation or when player 1 has played a∗ in K − 1 of the last K

periods, and has played a′ once in the last K periods. Player 1’s payoff in this equilibrium is approximately
K−1
K u1(a

∗, b∗) + 1
Ku1(a

′, b∗), which is strictly greater than his commitment payoff u1(a∗, b∗).

Hence, Theorem 2 implies that player 1 can obtain a payoff that is strictly greater than his optimal

commitment payoff u1(a∗, b∗) in some equilibria if and only if K is above some cutoff K∗. Under an

additional assumption that u2(a, b) is strictly increasing in a, i.e., consumer’s payoff is strictly increasing in

the seller’s effort, Theorem 2 implies that player 2’s discounted average payoff is arbitrarily close to their

first best payoff u2(a∗, b∗) in all equilibria if and only if their memory length K is below the cutoff K∗.

Corollary 1. Suppose (u1, u2) satisfies Assumptions 1, 2, and 3.

1. Suppose b∗ does not best reply to mixed action K−1
K a∗ + 1

K a
′ for every a′ ̸= a∗. For every ε > 0,

there exists δ ∈ (0, 1) such that for every δ > δ, and in every equilibrium strategy profile σ under δ,

player 1’s payoff is no more than u1(a∗, b∗) + ε and player 2’s welfare satisfies

Uσ
2 ≡ Eσ

[ +∞∑
t=0

(1− δ)δtu2(at, bt)
]
≥ u2(a

∗, b∗)− ε. (3.13)

2. Suppose b∗ is a strict best reply to K−1
K a∗ + 1

K a
′ for some a′ ̸= a∗, and u2(a, b) is strictly increasing

in a. There exist η > 0 and δ ∈ (0, 1), such that for every δ > δ, there exists an equilibrium σ such

that player 1’s payoff is more than u1(a∗, b∗) + η and player 2’s welfare is less than u2(a∗, b∗)− η.

The proof directly follows from that of Theorem 2, and is omitted in order to avoid repetition. Corollary

1 implies that longer memories enable the seller to obtain a higher payoff at the expense of consumers’

welfare. This happens in equilibria where the seller shirks occasionally and consumers trust the seller as

long as the seller did not shirk too many times in the last K periods. By contrast, whenK is small, the seller

receives his commitment payoff and consumers receive their first best payoff in all equilibria.

More on Player 1’s Behavior: The next corollary focuses on the case where the discounted frequency

of (a∗, b∗) is arbitrarily close to 1 in all equilibria and examines the implication of Theorem 2 on player

must occur with frequency close to 0. If he returns to Sj,k after reaching Sk+1, he needs to play a∗ in Sk+1 which is the most
costly action, after which the state reaches Sj,k and he receives a low payoff. This contradicts his incentive to play a∗ at Sk+1.
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1’s behavior in each period. It shows that in every equilibrium, the strategic-type patient player will have

a positive reputation with probability close to 1 after the initial few periods, after which he will take the

highest action a∗ with probability close to 1 in every period until t is large enough such that δt is close to 0.

Corollary 2. Suppose (u1, u2) satisfies Assumptions 1, 2, and 3, and b∗ does not best reply to mixed

action K−1
K a∗ + 1

K a
′ for every a′ ̸= a∗. For every ε > 0, there exist Cε ∈ R+ and δ ∈ (0, 1) such that for

every δ > δ, every equilibrium under δ, and every t ∈ N that satisfies δt ∈ (ε, 1− ε):

1. The probability that ht ∈ H∗
1 is at least 1− (1− δ)Cε.

2. The strategic-type player 1 plays a∗ with probability at least 1− (1− δ)Cε in period t.

The proof of Corollary 2 is in Online Appendix D, which uses Theorem 2 and the no-back-loop lemma.

Comparison with the Behavioral Predictions in Fudenberg and Levine (1989): I compare the frequen-

cy with which player 1 plays his commitment action in any equilibrium under any finiteK to the equilibrium

frequencies with which player 1 plays his commitment action in Fudenberg and Levine (1989).

In Fudenberg and Levine (1989), every short-run player observes the entire sequence of the long-run

player’s past actions. When players’ payoffs satisfy Assumptions 1, 2, and 3, Li and Pei (2021) show that

the frequency with which player 1 plays a∗ in equilibrium can be anything between G∗(u1, u2) and 1 where

G∗(u1, u2) ≡ min
(α1,α2,b1,b2,q)∈∆(A)×∆(A)×B×B×[0,1]

{
qα1(a

∗) + (1− q)α2(a
∗)
}
, (3.14)

subject to b1 ∈ argmaxb∈B u2(α1, b), b2 ∈ argmaxb∈B u2(α2, b), and

qu1(α1, b1) + (1− q)u1(α2, b2) ≥ u1(a
∗, b∗). (3.15)

For an interpretation of the linear program that defines G∗(u1, u2), consider an optimization problem faced

by a planner who chooses a distribution over action profiles in order to minimize the expected probability

of a∗ subject to the constraints that (i) each action profile in the support of this distribution satisfies player

2’s myopic incentive constraint, and (ii) player 1’s expected payoff from this distribution is no less than his

commitment payoff u1(a∗, b∗). In the product choice game, G∗(u1, u2) = x
1+(1−x)cT

. Corollary 3 shows

that in my model, the discounted frequency of a∗ is strictly bounded above G∗(u1, u2) for every finite K.

Corollary 3. Suppose (u1, u2) satisfies Assumptions 1, 2, and 3. There exists ψ > 0 such that for every
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K ∈ N, there exists δ ∈ (0, 1) such that for every δ > δ, and in every equilibrium σ under δ, we have:

∑
b∈B

F σ(a∗, b)︸ ︷︷ ︸
the discounted frequency of a∗ under σ

> G∗(u1, u2) + ψ. (3.16)

The proof is in Online Appendix E. Compared to Fudenberg and Levine (1989)’s model, the short-run

players in my model receive coarser information about the patient player’s history. Corollary 3 implies that

the patient player plays his commitment action with strictly higher frequency in every equilibrium of my

model compared to the worst equilibrium in terms of the frequency with which the patient player plays a∗

in Fudenberg and Levine (1989)’s model. This suggests that for every finite K, my model delivers a sharper

prediction on the patient player’s equilibrium behavior relative to Fudenberg and Levine (1989)’s.16

This is because in Fudenberg and Levine (1989)’s model, in order to sustain an equilibrium where the

patient player plays his commitment action with frequency bounded away from 1, the short-run players need

to fine-tune their punishments based on the details of the patient player’s history. For example, in the product

choice game, an equilibrium where the discounted frequency of H is approximately G∗(u1, u2) is given by:

• In period 0, the strategic-type player 1 plays L and player 2 plays N .

• Starting from period 1, (i) if player 1 played H in period 0, then player 1 plays H and player 2 plays

T , and player 2 plays N in all subsequent periods after observing player 1 played L; (ii) if player 1

played L in period 0, then player 1 plays H with probability x and player 2 plays T until period t̃,

where t̃ is the smallest t ∈ N that satisfies
∑t

s=1(1 − δ)δs−1u1(as, bs) + (δt − δt+1)(1 + cT ) > 1,

after which the continuation play is either (H,T ) or (L,N). The discounted frequencies of (H,T )

and (L,N) are such that player 1’s continuation value in period 1 is 1. After period t̃, if player 1 plays

L in any period where he is supposed to play H , then player 2 plays N in all subsequent periods.

A notable feature of the above equilibrium is that player 1 faces different punishments for shirking at

different histories. If player 1 played H in period 0, then he will face a grim-trigger punishment when he

plays L in any subsequent period, in which case he strictly prefers H to L starting from period 1. If player

1 played L in period 0, then he will be indifferent between H and L starting from period 1 until period t̃

since he only faces a mild punishment for shirking in each of these periods. Moreover, the calendar time

t̃ starting from which shirking faces a grim-trigger punishment depends on the discounted frequency with
16Nevertheless, it is not the case that every equilibrium of my model remains an equilibrium in Fudenberg and Levine (1989)’s

model. This is because the short-run players’ incentive constraints can be violated once they receive more information, for example,
after they observe the long-run player’s actions in the distant past and/or the order of the long-run player’s actions.
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which player 1 has played H from period 1 to t̃. That is to say, player 2 needs to know the order of player

1’s past actions in order to compute this discounted frequency. Therefore, such a strategy is infeasible when

player 2 can only observe the summary statistics of player 1’s recent play.

By contrast, the short-run players in my model can only observe the summary statistics of the long-

run player’s recent actions. Their lack of information limits their abilities to use different punishments at

different histories. Suppose there exists an equilibrium where player 1 plays a∗ with frequency less than 1.

The strategic type must have an incentive to separate from the commitment type at some histories, so his

continuation value after separation at each of these histories must be at least u1(a∗, b∗). In order to attain a

continuation value of at least u1(a∗, b∗), the punishments for shirking at some subsequent histories need to

be harsh enough so that player 1 strictly prefers to play H at those histories. Since player 2 receives coarse

information about player 1’s history, she must use the same harsh punishment for shirking at all histories

that are indistinguishable from the ones at which she needs to punish player 1. Therefore, player 1 will face

a harsh punishment for shirking at a larger set of histories when player 2 receives coarser information, so

he has a strict incentive to play his commitment action a∗ at a larger set of histories. This increases the

frequency with which he plays his commitment action compared to that in Fudenberg and Levine (1989).

3.5 Learning from Coarse Summary Statistics

In this section, I focus on games that satisfy Assumptions 1, 2, and 3, and analyze the equilibrium outcomes

when consumers can only observe coarse summary statistics about the seller’s recent behaviors.

Following Acemoglu, Makhdoum, Malekian and Ozdaglar (2020), every coarse summary statistics is

characterized by a partition ofA, denoted by {A1, ..., An}, so that for every t ∈ N, consumer t only observes

the number of times the seller’s action belongs to each Ai in the last min{t,K} periods.

This extension fits when consumers cannot communicate precise information about the seller’s action to

future consumers. Instead, they can only describe which of the several broad categories the seller’s action

belongs to. For example, she can only tell whether she had a good experience or a bad experience with the

seller, but she finds it too time-consuming to precisely describe exactly how good or how bad.

The summary statistics in my baseline model correspond to the finest partition of A. Under the coarsest

partition of A, consumers receive no information about the seller’s past actions.

Since there exists a complete order ≻A on A and u1(a, b) is strictly decreasing in a, for every partition

element Ai, the strategic-type player 1 will never choose action a ∈ Ai if there exists a′ ∈ Ai that satisfies

a ≻A a′. Hence, analyzing the game under an n-partition {A1, ..., An} of A is equivalent to analyzing a

game where player 1’s action set only contains the following n actions: {minA1, ...,minAn}.
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When players’ stage-game payoffs satisfy Assumptions 1, 2, and 3, player 2 has no incentive to play b∗

unless player 1 plays a∗ with positive probability. When the prior probability of commitment type π0 is small

enough such that player 2 has no incentive to play b∗ when player 1 plays a∗ with probability no more than

π0, the strategic-type player 1 has no incentive to play a∗ and player 2 has no incentive to play b∗ unless the

partition element that contains a∗ is a singleton. If we partition A according to A = {a∗}
⋃(

A\{a∗}
)

, i.e.,

consumers only observe the number of times the seller chose a∗ in the last K periods but cannot distinguish

other actions, then consumers may receive a higher welfare under some intermediate K. Intuitively, such a

partition helps the seller to credibly commit not to take any action other than his commitment action a∗ and

his lowest-cost action a ≡ minA. This provides consumers a stronger incentive to punish the seller after

the seller loses his reputation, since consumers know that the seller will take the lowest action as long as he

does not take the highest action. Such an effect motivates the seller to play a∗ in every period.

Corollary 4. Suppose (u1, u2) satisfies Assumptions 1, 2, and 3.

1. Suppose the partition element that contains a∗ is not a singleton, then the strategic-type player 1 never

plays a∗ at any on-path history of any equilibrium.

2. Suppose the partition element that contains a∗ is a singleton (without loss, let A1 ≡ {a∗}), then when

δ > δ(π0), the strategic-type player 1’s payoff is at least (3.2) in every equilibrium. Furthermore,

(i) Suppose b∗ does not best reply to mixed action K−1
K a∗+ 1

K minj∈{2,...,n}{minAj}. There exists

C ∈ R+ such that F σ(a∗, b∗) ≥ 1 − (1 − δ)C and Hσ ≥ 1 − (1 − δ)C for every equilibrium

strategy profile σ under δ.

(ii) Suppose b∗ is a strict best reply to mixed action K−1
K a∗+ 1

K minj∈{2,...,n}{minAj}. There exist

δ ∈ (0, 1) and η > 0 such that for every δ > δ, there exists a PBE strategy profile σ such that∑
b∈B F

σ(a∗, b) < 1−η andHσ = 0, i.e., πt = 0 with probability 1 for every t ≥ 1 conditional

on player 1 being the strategic type.

Corollary 4 directly follows from Theorems 1 and 2. I omit the proof in order to avoid repetition. This

corollary implies that fixing any (u1, u2) and K ∈ N, if there exists a partition of A under which player

1 plays a∗ with frequency arbitrarily close to one in all equilibria, then player 1 plays a∗ with frequency

arbitrarily close to one in all equilibria under partition A = {a∗}
⋃(

A\{a∗}
)

, i.e., each consumer only

knows the number of times with which the seller chose the highest action in the lastK periods but she cannot

distinguish other actions. It also implies that coarsening the summary statistics cannot improve consumers’
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welfare when the seller’s action choice is binary, but can improve consumers’ welfare when the seller has at

least three actions and the memory length K satisfies:

1. b∗ does not best reply to K−1
K a∗ + 1

K a,

2. b∗ is a strict best reply to K−1
K a∗ + 1

K a
′ for some a′ /∈ {a∗, a}.

That is, coarsening the summary statistics observed improves consumers’ welfare when K is intermediate.

4 Discussions

4.1 Observing the Order of Player 1’s Actions & Submodular Stage-Game Payoffs

My analysis relies on the no-back-loop property, which hinges on players’ stage-game payoffs being super-

modular and the short-run players cannot observe the order of the patient player’s past actions. I explain

why these conditions are not redundant for my results using the product choice game example.

Observing the Order of Player 1’s Past Actions: Suppose every consumer can observe the seller’s lastK

actions including the order of these actions. I maintain the supermodularity assumption that cN > cT > 0.

When K = 1, whether consumers can observe the order of the seller’s last K actions is irrelevant.

Theorems 1 and 2 imply that in all equilibria, the patient seller can secure his commitment payoff and will

play H with frequency arbitrarily close to one. Proposition 1 shows that there exists some cutoff K ≥ 2

such that when K ≥ K, there exist equilibria that violate the no-back-loop property. In those equilibria,

the patient seller plays his commitment action with frequency bounded away from one and his discounted

average payoff is bounded below his commitment payoff.

Proposition 1. Suppose consumer in period t observes (amax{0,t−K}, ..., at−1) for every t ∈ N. For

every x ∈ (0, 1) and cN > cT > 0, there exist K ≥ 2, π ∈ (0, 1), and η > 0 such that when π0 ∈ (0, π)

and K ≥ K, for every δ close enough to 1, there exists an equilibrium σ that violates the no-back-loop

property. In this equilibrium, F σ(H,T ) < 1− η and the seller’s payoff is no more than 1− η.

The proof is in Online Appendix F. I illustrate the ideas behind my proof using an example where

K = 2. I construct an equilibrium in which the seller plays H when (at−2, at−1) = (L,H), plays L

when (at−2, at−1) = (H,L), and mixes between H and L when (at−2, at−1) is either (L,L) or (H,H).

Consumers play T when (at−2, at−1) = (L,H), play N when (at−2, at−1) = (H,L), and mix between T

and N when (at−2, at−1) ∈ {(L,L), (H,H)}. Consumers’ strategy in such an equilibrium is not feasible
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when they cannot observe the order of the seller’s actions. The existence of such an equilibrium also implies

that there is no guarantee that consumers play T with higher probability when the seller exerted high effort

more frequently in the last K periods. In the above equilibrium, consumers play T with higher probability

when (at−2, at−1) = (L,H) compared to (at−2, at−1) = (H,H), and they play T with higher probability

when (at−2, at−1) = (L,L) compared to (at−2, at−1) = (H,L).

The comparison between Proposition 1 and Theorem 1 suggests that allowing the uninformed players

to observe the order of the informed player’s actions changes the set of equilibrium payoffs. This stands

in contrast to repeated Bayesian games where the uninformed player is long-lived, e.g., Renault, Solan and

Vieille (2013), in which it is sufficient for the uninformed player to check the frequency with which the

informed player played each of his actions. This is because in my model, the uninformed players are short-

lived, so their incentives are sensitive to their beliefs about the informed player’s current-period action. By

contrast, the equilibrium constructed in Renault, Solan, and Vieille (2013) requires the uninformed player

to have intertemporal incentives, since she does not play her myopic best reply at some on-path histories.

Proposition 1, Theorem 1, the results in Fudenberg and Levine (1989) and Pei (2022) together im-

ply that the patient player’s lowest equilibrium payoff is non-monotone with respect to the quality of the

short-run players’ information, measured in the sense of Blackwell. My discussion focuses on situations

where players’ stage-game payoffs satisfy Assumptions 1 and 2. My Theorem 1 and Fudenberg and Levine

(1989)’s result imply that the patient player can secure his Stackelberg payoff in all equilibria either when

the short-run players can observe the entire history of his actions, or when the short-run players can observe

the summary statistics of the long-run player’s actions (my baseline model with K = +∞),17 or when the

short-run players can only observe the summary statistics of the long-run player’s last K actions where K

is a strictly positive and finite integer. The patient player’s lowest equilibrium payoff is bounded below his

Stackelberg payoff either when the short-run players can observe his actions in the last K(≥ K) periods

including the order of these actions, or when every short-run player can observe the patient player’s actions

in the last K(≥ 1) periods and at least one previous short-run player’s action. One can also show that when

the short-run players can observe the patient player’s last K actions including the order of these actions, the

patient player’s lowest equilibrium payoff is weakly decreasing in K when K is strictly positive and finite.

Submodular Stage-Game Payoff: SupposeK = 1 and players’ payoffs are submodular, i.e., cT > cN >

0. I show that there exists an equilibrium that violates the no-back-loop property, the patient seller receives

his minmax payoff, and his frequency of exerting high effort is bounded away from 1.
17Although this is not a direct implication of Fudenberg and Levine (1989)’s result, one can establish this conclusion using the

argument in Fudenberg and Levine (1989)’s proof. The details are available upon request.
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Proposition 2. SupposeK = 1, cT > cN > 0, and π0 is small enough such that π0
δ(1−π0)−π0

≤ 1
2 . There

exists δ ∈ (0, 1) such that for every δ > δ, there is an equilibrium where the seller’s payoff is 0.

The proof is in Online Appendix G. I provide intuition for why submodular stage-game payoffs differ

from supermodular stage-game payoffs. When payoffs are submodular, i.e., cT > cN > 0, it is still true

that consumer t plays T with strictly higher probability when at−1 = H . However, the seller has a stronger

incentive to exert high effort when at−1 = L. Unlike the case with supermodular payoffs, the seller can

have incentives both to milk his reputation when at−1 = H and to rebuild his reputation when at−1 = L.

This can provide consumers a rationale for not trusting the seller even after they observe high effort in the

period before. My proof constructs an equilibrium where the seller exerts low effort when at−1 = H and

mixes between high and low effort when at−1 = L. Consumer t plays N when at−1 = L and plays T with

probability between 0 and 1 when at−1 = H .

4.2 Disentangle Player 1’s Discount Factor & Player 2’s Prior Belief about Calendar Time

The parameter δ plays a dual role in my baseline model: It is both the long-run player’s discount factor and

the probability with which the game continues after each period. The latter affects the short-run players’

incentives through their prior beliefs about calendar time.

My theorems can be extended to situations where the long-run player’s discount factor does not coincide

with the game’s continuation probability. For example, suppose the short-run players’ prior belief assigns

probability (1 − δ)δ
t

to calendar time being t ∈ N, and the long-run player’s discount factor is δ, which

I assume is no more than δ. This model describes situations where the long-run player discounts future

payoffs for two reasons. First, he is indifferent between receiving one unit of utility in period t and receiving

δ/δ unit of utility in period t− 1. Second, the game ends with probability 1− δ after each period.

My no-back-loop lemma generalizes to this setting, since the conclusion is independent of player 1’s

discount rate and the game’s continuation probability. The statement of Theorem 1 is modified as follows:

Suppose (u1, u2) satisfies Assumptions 1 and 2, and the continuation probability δ is large enough such that

all of player 2’s best replies to the mixed action

{
1− (1− δ)(1− π0)

π0

}
a∗ +

(1− δ)(1− π0)

π0
a

are no less than b∗, then the strategic-type player 1’s discounted average payoff at every on-path history of

every equilibrium is at least

(1− δK)min
b∈B

u1(a
∗, b) + δKu1(a

∗, b∗).
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Hence, my payoff lower bound applies to any discount factor of the long-run player, as long as the probability

with which the game continues after each period is above some cutoff, and that cutoff depends only on the

prior probability of commitment type π0 and player 2’s stage-game payoff function u2. Intuitively, since the

long-run player’s equilibrium strategy satisfies the no-back-loop property, there is at most one period over

the infinite horizon in which he has a positive reputation yet he plays an action other than a∗. Therefore,

every short-run player has a strict incentive to play b∗ after observing a∗ in the lastK periods when her prior

belief assigns a low enough probability to each calendar time. The latter is the case when δ is large.

For Theorem 2, let us redefine F σ(a, b) and Hσ(a, b) based on the game’s continuation probability δ:

F σ(a, b) ≡ Eσ
[ +∞∑
t=0

(1− δ)δ
t
1{at = a, bt = b}

]
,

and

Hσ ≡ Eσ
[ +∞∑
t=1

(1− δ)δ
t−1

1{πt > 0}
]
.

The motivation is that a social planner who wants to maximize the expected sum of the short-run players’

welfare only cares about F σ(·, ·). The statement of Theorem 2 should be modified as follows. Suppose

(u1, u2) satisfies Assumptions 1, 2, and 3, and the discount factor δ is larger than some cutoff δ ∈ (0, 1),

1. Suppose b∗ does not best reply to mixed action K−1
K a∗ + 1

K a
′ for every a′ ̸= a∗. Then there exists

a constant C ∈ R+ that is independent of δ and δ such that F σ(a∗, b∗) ≥ 1 − (1 − δ)C and Hσ ≥

1− (1− δ)C for every equilibrium strategy profile σ under discount factor δ.

2. Suppose b∗ is a strict best reply to K−1
K a∗ + 1

K a
′ for some a′ ̸= a∗. There exist δ ∈ (0, 1) and η > 0

such that for every δ > δ, there is a PBE strategy profile σ such that
∑

b∈B F
σ(a∗, b) < 1 − η and

Hσ = 0, i.e., πt = 0 with probability 1 for every t ≥ 1 when player 1 is the strategic type.

Hence, the occupation measure of (a∗, b∗) is arbitrarily close to 1 in all equilibria even when player 1’s

discount factor δ is bounded away from 1. The important parameter is δ, the game’s continuation probability,

which affects player 2’s belief about calendar time. WhenK is small, the total occupation measure of action

profiles other than (a∗, b∗) is bounded above by some linear function of 1 − δ, i.e., it vanishes to zero as

long as the game continues after each period with probability arbitrarily close to 1. Intuitively, δ being close

to 1 implies that the short-run players’ prior belief assigns similar probabilities to adjacent calendar times.

This is also reflected in the proof, where one needs to replace δ with δ in the first four steps in the proof

of Theorem 2 (see Section 3.3). The fifth step only requires player 1’s discount factor δ to be above some

cutoff, in which case histories where his stage-game payoffs are bounded below u1(a
∗, b∗) are transitory.
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5 Conclusion & Related Literature

I study a reputation game in which the short-run players face a novel lack-of-identification problem: Each

of them can only observe the summary statistics of the long-run player’s recent actions. I show that when

players’ stage-game payoffs are monotone-supermodular, each of the long-run player’s best reply in the

repeated game must satisfy a no-back-loop property. This property implies that either the long-run player

has no incentive to abandon his reputation when it is strictly positive, or he has no incentive to restore his

reputation to a positive level after abandoning his reputation.

When the short-run players know that the long-run player’s strategy satisfies the no-back-loop property,

they prefer to play their myopic best reply to the long-run player’s commitment action as long as the long-

run player has a positive reputation and the game has lasted for at least K periods. This implies that the

long-run player can secure his commitment payoff by playing his commitment action in every period.

I also show that the long-run player plays his commitment action and has a positive reputation with

frequency close to one in all equilibria if and only if the short-run players’ memory length K is below

some cutoff. This is because when the short-run players have long memories, they have an incentive to

trust the long-run player even after the long-run player has lost his reputation. This encourages the long-run

player to shirk occasionally instead of sustaining his reputation for exerting high effort. When the short-run

players have short memories, the long-run player has a strong incentive to sustain his reputation since he is

guaranteed to be punished after he loses his reputation. The welfare implication of my result is that longer

memories may increase the seller’s equilibrium payoff at the expense of consumers’ welfare.

Reputation with Limited Memories: The short-run players in my model can only observe the summary

statistics of the long-run player’s actions in the last K periods. Similar to existing models with limited

memories, such as Liu (2011), Liu and Skrzypacz (2014), and Pei (2022), the long-run player needs to

sustain his reputation since the short-run players forget what happened in the distant past.18 In contrast to

my model, those models assume that the uninformed players can observe the order of the informed player’s

actions and the patient player’s best reply may not satisfy the no-back-loop property.

Kaya and Roy (2022) study a model with limited memories in which a seller has persistent private

information about his quality and decides whether to sell in each period. Consumers’ willingness to pay

depends only on the seller’s type, and each of them observes whether the seller sold his product in each

of the last K periods. Longer memories have an ambiguous effect on welfare, since on the one hand, they
18The long-run player also needs to sustain his reputation when he is replaced with positive probability after each period, in

which case his opponents put a low weight on his past behaviors. See for example, Mailath and Samuelson (2001).
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encourage low-quality sellers to imitate high-quality sellers, which makes screening harder; and on the other

hand, they increase the number of consumers who can benefit from the information obtained from screening.

By contrast, I show that longer memories undermine the strategic seller’s incentive to imitate the com-

mitment type, instead of encouraging him to imitate the high-quality type. My model differs from Kaya and

Roy (2022)’s model since the short-run player’s best reply depends only on the long-run player’s action.

Pei (2022) constructs an equilibrium in which the patient seller receives his minmax payoff when every

consumer observes at least one previous consumer’s action as well as a bounded number of the seller’s past

actions. By contrast, the current paper assumes that consumers cannot observe previous consumers’ actions

and cannot observe the order with which the seller took his actions. I show that the patient seller can secure

his commitment payoff in all equilibria irrespective of consumers’ memory length. I also provide conditions

under which the patient seller plays his commitment action with frequency close to one in all equilibria.

Sustaining Cooperation under Limited Information: My paper contributes to the discussions on the

sustainability of cooperation when players have limited information about their opponents’ past behaviors.

This question has been asked in the literature on repeated games with anonymous random matching such as

Kandori (1992), Ellison (1994), Takahashi (2010), Deb (2020), Clark, Fudenberg and Wolitzky (2021), and

Sugaya and Wolitzky (2020, 2021). These papers study repeated games where all players are long-lived and

provide conditions on the monitoring technology under which players can cooperate in some equilibria.

More closely related is the work of Bhaskar and Thomas (2019), which I have already discussed in the

introduction, as well as the works of Ekmekci (2011) and Heller and Mohlin (2018). Ekmekci (2011) studies

a repeated product choice game where the seller’s cost of effort is independent of the consumer’s action. He

constructs a rating system under which there exist equilibria where the patient seller obtains his optimal

commitment payoff, and another rating system where the consumers receive a high payoff. By contrast, I

focus on stage games where payoffs are strictly supermodular. I examine the effects of memory length on

the patient player’s incentives to take his commitment action. I provide conditions under which the patient

player takes his commitment action with frequency close to one in all equilibria.

Heller and Mohlin (2018) study repeated prisoner’s dilemma game with anonymous random matching

where every player is committed with positive probability and can sample a finite number of his opponent’s

past actions. They show that players can cooperate in some equilibria when their actions are strategic

complements but cannot cooperate in any equilibrium when their actions are strategic substitutes.

By contrast, I study a reputation game between an informed long-run player and a sequence of unin-

formed short-run players. I focus on the effects of the short-run players’ memory length on the long-run
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player’s returns from building reputations as well as his incentives to sustain his reputation. My results ex-

amine whether the long-run player will sustain his reputation in all equilibria, instead of examining whether

cooperation is feasible in some equilibria. Focusing on games where players’ actions are strategic comple-

ments, I show that the longer memories undermine the long-run player’s incentive to sustain his reputation

since they undermine the short-run players’ incentives to punish the strategic-type long-run player.

Reputation Sustainability: My paper contributes to the discussions on the sustainability of reputations.

In contrast to Cripps, Mailath and Samuelson (2004)’s results that focus on the patient player’s reputation

and behavior as t→ +∞ and examine whether reputations can be sustained in some equilibria, my analysis

focuses on the discounted frequency of players’ actions and my result provides conditions under which the

patient player plays his commitment action with frequency close to one in all equilibria. Compared to the

existing results that focus on the patient player’s reputation and behavior in the t→ +∞ limit, my result on

the discounted action frequency has a comparative advantage in evaluating consumers’ welfare.

Pei (2020) and Ekmekci and Maestri (2022) study reputation models with unbounded memories and

interdependent values, that is, the patient player’s type directly affects his opponents’ payoffs. They provide

sufficient conditions under which the patient player sustains his reputation in all equilibria. Similar to my

model, the patient player is guaranteed to receive a low payoff after he abandons his reputation.

The mechanisms behind their results are different from mine. The patient player is guaranteed to be

punished in their interdependent value settings since deviating from the commitment action signals negative

information about the payoff-relevant state. By contrast, the current paper studies a private-value reputation

model in which the uninformed players receive coarse information about the patient player’s past records.

The patient player is guaranteed to be punished after he milks his reputation since the uninformed players

cannot fine-tune their punishments based on the game’s history. As a result, the punishments needed to

sustain cooperation inevitably punishes the patient player at other histories, and harsh punishments at a

larger set of histories encourage the patient player to sustain his reputation.

Behavioral Reputation Models: Jehiel and Samuelson (2012) study a reputation model where the short-

run players have infinite memories, but they mistakenly believe that all types of the patient player use sta-

tionary strategies. Under such a misspecified belief, each short-run player’s belief about the patient player’s

current-period action depends only on the frequencies with which the patient player took his actions. This

feature resembles my model where the short-run players can only observe the summary statistics of the pa-

tient player’s recent play, in which case their behaviors must be measurable with respect to this information.
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In contrast to Jehiel and Samuelson (2012)’s model, the short-run players in my model understand that

the patient player’s behavior may depend on the game’s history, e.g., his behavior when he has a positive

reputation may differ from his behavior after he has lost his reputation. This assumption on the short-run

players’ sophistication yields different predictions in terms of the long-run player’s behaviors. For example,

in the monotone-supermodular product choice game, the patient player exerts high effort with frequency

arbitrarily close to one in all equilibria when K is small. By contrast, in Jehiel and Samuelson (2012)’s

model, the seller exerts high effort with frequency close to x ∈ (0, 1) in order to exploit the short-run

players’ misspecified beliefs. Therefore, my results imply that the short-run players’ understanding of the

game’s non-stationarity can provide strong incentives for the long-run player to sustain reputations.

One potential concern of my model is that consumers need to make Bayesian inferences about the

seller’s current-period action based on the summary statistics, which can be quite complicated in some

equilibria. However, my proofs suggest that my main results apply even when we focus on equilibria

where consumers’ inference problems are simple and intuitive on the equilibrium path. For example, in the

equilibria I constructed in the proof of Theorem 2, consumers believe that the distribution of the seller’s

current-period action is close to his action frequencies in the last K periods.

A Proof of the No-Back-Loop Lemma

For every t ≥ K, player 2t’s incentive depends only on the number of times that player 1 takes each action

in the last K periods. Therefore, player 1’s continuation value and incentive in period t depend only on

(at−K , ..., at−1). Although the order of actions in the vector (at−K , ..., at−1) does not affect player 2’s

action, it can affect player 1’s incentives. Moreover, player 1’s action in period t may depend on variables

other than (at−K , ..., at−1), such as his actions more than K periods ago and previous player 2’s actions.

Fix σ2 : H2 → B∗. Let V (at−K , ..., at−1) be player 1’s continuation value in period t. Let β∗ ∈ ∆(B)

be player 2’s action at histories that belong to H∗
1 under σ2. For every a ̸= a∗, let β(a) be player 2’s action

under σ2 when exactly one of player 1’s last K actions was a and the other K − 1 actions were a∗. A pure

strategy σ̂1 is canonical if it depends only on the last K actions of player 1’s. For every strategy profile

(σ1, σ2) and ht ∈ H1, let H1(σ1, σ2|ht) be the set of histories hs satisfying hs ≻ ht and hs occurring

with positive probability when the game starts from history ht and players use strategies (σ1, σ2). If σ̂1 is

canonical, then H1(σ̂1, σ2|ht) = H1(σ̂1, σ
′
2|ht) for every σ2, σ′2, and ht.

Since player 2’s action depends only on player 1’s actions in the lastK periods, for every σ2, there exists

a canonical pure strategy σ̂1 that best replies to σ2. Therefore, as long as there exists a pure strategy that
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best replies to σ2 and violates the no-back-loop property with respect to σ2, there also exists a canonical

pure strategy the best replies to σ2 and violates the no-back-loop property with respect to σ2. Hence, the

no-back-loop lemma is implied by the following no-back-loop lemma*, which I show next.

No-Back-Loop Lemma*. For any σ2 : H2 → B∗ and any canonical pure strategy σ̂1 that best replies

to σ2. If there exists ht ∈ H∗
1

⋂
H1(σ̂1, σ2) such that σ̂1(ht) ̸= a∗, then H1(σ̂1, σ2|ht)

⋂
H∗

1 = ∅.

Suppose by way of contradiction that there exists a canonical pure strategy σ̂1 that best replies to σ2 such

that there exist two histories ht, hs ∈ H∗
1

⋂
H1(σ̂1, σ2) that satisfy hs ∈ H1(σ̂1, σ2|ht), and σ̂1(ht) = a′

for some a′ ̸= a∗. Without loss of generality, let hs be the first history in H∗
1 that succeeds ht when player 1

behaves according to σ̂1. Let hs−1 ≡ (a0, ..., as−2) ∈ H1(σ̂1, σ2|ht). Since hs is the first history in H∗
1 that

succeeds ht, it must be the case that hs−1 /∈ H∗
1, so (as−K−1, ..., as−2) = (a′′, a∗, ..., a∗) for some a′′ ̸= a∗.

Since hs ∈ H∗
1, player 1 plays a∗ at hs−1 when he uses strategy σ̂1. This implies that

(1− δ)u1(a
∗, β(a′′)) + δV (a∗, a∗, ..., a∗, a∗) ≥ (1− δ)u1(a

′, β(a′′)) + δV (a∗, a∗, ..., a∗, a′). (A.1)

Since σ̂1(ht) = a′, player 1 weakly prefers a′ to a∗ at histories in H∗
1, we have:

(1− δ)u1(a
∗, β∗) + δV (a∗, a∗, ..., a∗, a∗) ≤ (1− δ)u1(a

′, β∗) + δV (a∗, a∗, ..., a∗, a′). (A.2)

Since the seller’s stage-game payoff function is strictly supermodular, and β∗ and β(a′′) can be ranked

according to FOSD under Assumption 2, inequalities (A.1) and (A.2) imply that β∗ ⪯FOSD β(a′′). Let

U ≡
∑s−2

τ=t+1 δ
τ−tu1(σ̂1(h

τ ), σ2(h
τ ))∑s−2

τ=t+1 δ
τ−t

. (A.3)

be player 1’s discounted average payoff from period t+1 to period s− 2 when his period t history is ht and

players play according to (σ̂1, σ2). Since the strategic-type player 1’s incentive depends only on his actions

in the last K periods, when (as−K−1, ..., as−2) = (a′′, a∗, ..., a∗), the following strategy is optimal for him:

• Strategy ∗: Play a∗ in period s − 1, play a′ in period s, play σ̂1(hτ ) in period τ + (s − t) for every

τ ∈ {t+ 1, ..., s − 2}, and play the same action that he has played s− t periods ago in every period

after period 2s− t− 1.

Since Strategy ∗ is optimal for player 1, it must yield a weakly greater payoff compared to any of the

following two deviations starting from a period s− 1 history where (as−K−1, ..., as−2) = (a′′, a∗, ..., a∗):

34



• Deviation A: Play a′ in period s−1, σ̂1(hτ ) in period τ +(s− t−1) for every τ ∈ {t+1, ..., s−2},

and play the same action that he has played s− t− 1 periods ago in every period after 2s− t− 2.

• Deviation B: Play a′′ in period s − 1, play a∗ from period s to s +K − 2, and play the same action

that he has played K periods ago in every period after s+K − 1.

Player 1 prefers Strategy ∗ to Deviation A, which implies that:

(1− δ)u1(a
′, β(a′′)) + (δ − δs−t−2)U

1− δs−t−2
≤ (1− δ)u1(a

∗, β(a′′)) + (1− δ)δu1(a
′, β∗) + (δ2 − δs−t−1)U

1− δs−t−1

This leads to the following upper bound on U , defined in (A.3):

(δ−δs−t−2)U ≤ (1−δs−t−2)u1(a
∗, β(a′′))+δ(1−δs−t−2)u1(a

′, β∗)−(1−δs−t−1)u1(a
′, β(a′′)). (A.4)

Player 1 prefers Strategy ∗ to Deviation B, which implies that:

(1− δ)u1(a
′′, β(a′′)) + (δ − δK)u1(a

∗, β(a′′))

1− δK
≤ (1− δ)u1(a

∗, β(a′′)) + (1− δ)δu1(a
′, β∗) + (δ2 − δs−t−1)U

1− δs−t−1
.

(A.5)

This leads to a lower bound on U . The left-hand-side of (A.5) equals

u1(a
∗, β(a′′)) +

1− δ

1− δK

{
u1(a

′′, β(a′′))− u1(a
∗, β(a′′))

}
︸ ︷︷ ︸
>0, since a′′≺a∗ and u1 is decreasing in a

,

and inequality (A.4) implies that the right-hand-side of (A.5) is no more than:

u1(a
∗, β(a′′)) + δ

{
u1(a

′, β∗)− u1(a
′, β(a′′))

}
︸ ︷︷ ︸

≤0, since β(a′′)⪰β∗ and u1 is increasing in b

.

Since u1(a, b) is strictly increasing in b and is strictly decreasing in a, a∗ ≻ a′′, and β(a′′) ⪰ β∗, inequality

(A.5) cannot be true. This leads to a contradiction and implies the no-back-loop lemma.

B Proof of Theorem 2: Part 1

Player 1’s continuation value and incentive after period K depend only on his actions in the last K periods,

including the order of these actions. We call S ≡ AK the state space, with s ∈ S a typical state.

Fix any strategy profile σ. For every s ∈ S, let µ(s) be the probability that the current-period state is
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s conditional on the event that player 1 is the strategic type and calendar time is at least K. For every pair

of states s, s′ ∈ S, let Q(s → s′) be the probability that the state in the next period is s′ conditional on the

state in the current period is s, player 1 is the strategic type, and the calendar time is at least K. Let p(s) be

the probability that the state is s conditional on calendar time being K and player 1 is the strategic type.

Lemma B.1. For any δ ∈ (0, 1) and any equilibrium under δ, we have

∑
s∈S

µ(s)Q(s→ s∗) =
1

δ

{
µ(s∗)− (1− δ)p(s∗)

}
for every s∗ ∈ S. (B.1)

Proof. For every t ∈ N, let pt(s) be the probability that the state is s in period K + t conditional on

player 1 being the strategic type, and let qt(s → s′) be the probability that the state in period t + K + 1

is s′ conditional on the state being s in period t + K and player 1 being the strategic type. By definition,

p0(s) = p(s) and pt+1(s) =
∑

s′∈S pt(s
′)Q(s′ → s). According to Bayes rule, we have

µ(s) =

+∞∑
t=0

(1− δ)δtpt(s) and Q(s→ s∗) =

∑+∞
t=0 (1− δ)δtpt(s)qt(s→ s∗)∑+∞

t=0 (1− δ)δtpt(s)
.

This implies that

∑
s∈S

µ(s)Q(s→ s∗) =
∑
s∈S

+∞∑
t=0

(1−δ)δtpt(s)qt(s→ s∗) =

+∞∑
t=0

(1−δ)δt
∑
s∈S

pt(s)qt(s→ s∗) =

+∞∑
t=0

(1−δ)δtpt+1(s
∗)

and

1

δ

{
µ(s∗)− (1− δ)p(s∗)

}
=

1

δ

{ +∞∑
t=0

(1− δ)δtpt(s
∗)− (1− δ)p(s∗)

}
=

+∞∑
t=0

(1− δ)δtpt+1(s
∗).

These two equations together imply (B.1).

For any non-empty S′ ⊂ S, let

I(S′) ≡
∑
s′∈S′

∑
s/∈S′

µ(s)Q(s→ s′) (B.2)

be the inflow to S′ from states that do not belong to S′, and let

O(S′) ≡
∑
s′∈S′

∑
s/∈S′

µ(s′)Q(s′ → s) (B.3)
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be the outflow from S′ to states that do not belong to S′. Notice that I(S′) and O(S′) depend on the

equilibrium strategy profile, which I omit in order to avoid cumbersome notation. By definition,

∑
s′∈S′

µ(s′) =
∑
s′∈S′

µ(s′)
( ∑

s∈S′

Q(s′ → s) +
∑
s/∈S′

Q(s′ → s)
)

︸ ︷︷ ︸
=1

=
∑
s′∈S′

∑
s∈S′

µ(s′)Q(s′ → s) +
∑
s′∈S′

∑
s/∈S′

µ(s′)Q(s′ → s)︸ ︷︷ ︸
≡O(S′)

.

Applying equation (B.1) to any non-empty subset of states S′ ⊂ S, we have

∑
s′∈S′

∑
s∈S′

µ(s′)Q(s′ → s) +
∑
s′∈S′

∑
s/∈S′

µ(s)Q(s→ s′)︸ ︷︷ ︸
≡I(S′)

=
∑
s′∈S′

µ(s′) +
∑
s′∈S′

1− δ

δ

{
µ(s′)− p(s′)

}
.

Lemma B.2. For every non-empty subset S′ ⊂ S, we have:

|I(S′)−O(S′)| =
∣∣∣ ∑
s′∈S′

1− δ

δ

(
µ(s′)− p(s′)

)∣∣∣ ≤ 1− δ

δ
. (B.4)

Let s∗ ∈ S be the state where all of the last K actions were a∗, i.e., the only state where player 1 has a

positive reputation. Lemma B.2 and the no-back-loop lemma imply the following lemma:

Lemma B.3. For every δ and in every equilibrium under δ, O({s∗}) ≤ 2(1−δ)
δ and I({s∗}) ≤ 1−δ

δ .

Proof. Let S′ be a subset of states such that s ∈ S′ if and only if (i) s ̸= s∗, and (ii) there exists a pure-

strategy best reply σ̂1 such that s∗ is reached within a finite number of periods when the initial state is s and

player 1 uses strategy σ̂1. The no-back-loop lemma implies that at least one of the two statements is true:

1. Player 1 has no incentive to play actions other than a∗ at s∗.

2. Player 1 has an incentive to play actions other than a∗ at s∗, and as long as player 1 plays any such

best reply, the state never reaches S′ when the initial state is s∗.

In the first case, O({s∗}) = 0, and Lemma B.2 implies that I({s∗}) ≤ 1−δ
δ . In the second case, the

definition of S′ implies that I(S′) = 0. According to Lemma B.2, O(S′) ≤ 1−δ
δ . The definition of S′

implies that I({s∗}) ≤ O(S′), so I({s∗}) ≤ 1−δ
δ . According to Lemma B.2, O({s∗}) ≤ 2(1−δ)

δ .
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For every k ∈ {0, 1, ...,K}, let Sk ⊂ S be the subset of states such that k of the last K actions were

not a∗. By definition, S =
⋃K

k=0 Sk and S0 = {s∗}. I partition every Sk into Sk = S1,k ∪ ... ∪ Sj(k,|A|),k

such that s, s′ belong to the same partition element if and only if player 2 cannot distinguish between s and

s′. The number of elements in the partition of Sk depends on k and the cardinality of player 1’s action set

A. I use Sj,k to denote a typical partition element. For every state that belongs to Sk, exactly one of the

following two statements is true, depending on whether player 1’s action K periods before was a∗:

1. The state in the next period belongs to Sk−1 or Sk, depending on player 1’s current-period action.

2. The state in the next period belongs to Sk or Sk+1, depending on player 1’s current-period action.

Therefore, I partition Sj,k into S∗
j,k and S′

j,k, such that for every s ∈ Sj,k, s ∈ S∗
j,k if and only if player 1’s

action K periods before was a∗, and s ∈ S′
j,k otherwise. For any S′, S′′ ⊂ S that satisfy S′ ∩ S′′ = ∅, let

Q(S′ → S′′) ≡
∑
s′∈S′

∑
s′′∈S′′

µ(s′)Q(s′ → s′′) (B.5)

be the expected flow from S′ to S′′. By definition, Q(S∗
j,k → Si) = 0 for every i ≤ k − 1 and every

i ≥ k + 2, and Q(S′
j,k → Si) = 0 for every i ≥ k + 1 and i ≤ k − 2. The operator Q is additive in the

sense that for any S1, S2, S3 ⊂ S such that S1 ∩ S2, S1 ∩ S3, S2 ∩ S3 = ∅, we have

Q(S1 → S3) +Q(S2 → S3) = Q(S1 ∪ S2 → S3) (B.6)

Q(S1 → S2) +Q(S1 → S3) = Q(S1 → S2 ∪ S3). (B.7)

Upon observing a state that belongs to Sj,k, player 2 believes that player 1’s action is a∗ with probability:

Q(Sj,k → Sk−1) +
∑

s∈S∗
j,k

∑
s′∈Sj,k

µ(s)Q(s→ s′), (B.8)

and player 1’s action is not a∗ with probability:

Q(Sj,k → Sk+1) +
∑

s∈S′
j,k

∑
s′∈Sk

µ(s)Q(s→ s′). (B.9)

I show that when Q(Sk−1 → Sj,k) and Q(Sj,k → Sk−1) are bounded above by a linear function of 1 − δ,

either
∑

s∈Sj,k
µ(s) is also bounded above by some linear function of 1− δ, or the probability that player 1

plays a∗ at Sk,j is no more than K−1
K . In the second case, player 2 has no incentive to play b∗ at Sj,k.
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Lemma B.4. For every z ∈ R+, there exist y ∈ R+ and δ ∈ (0, 1) such that for every equilibrium under

δ > δ and every Sj,k with k ≥ 1. If max{Q(Sj,k → Sk−1),Q(Sk−1 → Sj,k)} ≤ z(1− δ), then either

∑
s∈Sj,k

µ(s) ≤ y(1− δ) (B.10)

or
Q(Sj,k → Sk−1) +

∑
s∈S∗

j,k

∑
s′∈Sj,k

µ(s)Q(s→ s′)

Q(Sj,k → Sk+1) +
∑

s∈S′
j,k

∑
s′∈Sk

µ(s)Q(s→ s′)
< K − 1. (B.11)

Proof. Since Q(Sj,k → Sk−1) = Q(S′
j,k → Sk−1), Q(Sj,k → Sk+1) = Q(S∗

j,k → Sk+1), and under the

hypothesis that Q(Sj,k → Sk−1) ≤ z(1− δ) and Q(Sk−1 → Sj,k) ≤ z(1− δ), we have:

∑
s∈S∗

j,k

∑
s′∈Sj,k

µ(s)Q(s→ s′)

︸ ︷︷ ︸
=
∑

s∈S∗
j,k

µ(s)−Q(S∗
j,k→Sk+1)

+Q(Sj,k → Sk−1)︸ ︷︷ ︸
≤z(1−δ)

≤
∑

s∈S∗
j,k

µ(s)−Q(S∗
j,k → Sk+1) + z(1− δ),

∑
s∈S′

j,k

∑
s′∈Sk

µ(s)Q(s→ s′)

︸ ︷︷ ︸
=
∑

s∈S′
j,k

µ(s)−Q(S′
j,k→Sk−1)

+Q(Sj,k → Sk+1)︸ ︷︷ ︸
=Q(S∗

j,k→Sk+1)

≥
∑

s∈S′
j,k

µ(s) +Q(S∗
j,k → Sk+1)− z(1− δ).

Suppose there exists no such y ∈ R+, i.e.,
∑

s∈Sj,k
µ(s)

z(1−δ) can be arbitrarily large as δ → 1. Since the sum

of
∑

s∈S∗
j,k
µ(s) − Q(S∗

j,k → Sk+1) + z(1 − δ) and
∑

s∈S′
j,k
µ(s) + Q(S∗

j,k → Sk+1) − z(1 − δ) equals∑
s∈Sj,k

µ(s), we know that when δ is close to 1, (B.11) is implied by:

∑
s∈S∗

j,k
µ(s)−Q(S∗

j,k → Sk+1)∑
s∈S′

j,k
µ(s) +Q(S∗

j,k → Sk+1)
< K − 1,

or equivalently, ∑
s∈S∗

j,k

µ(s) < (K − 1)
∑

s∈S′
j,k

µ(s) +KQ(S∗
j,k → Sk+1). (B.12)

I derive a lower bound for Q(S∗
j,k → Sk+1). Since O(Sj,k) = Q(S∗

j,k → Sk+1) + Q(S′
j,k → Sk−1) +

Q(Sj,k → Sk\Sj,k), under the hypothesis that max{Q(Sj,k → Sk−1),Q(Sk−1 → Sj,k)} ≤ z(1− δ),

Q(S∗
j,k → Sk+1) = O(Sj,k)−Q(S′

j,k → Sk−1)−Q(Sj,k → Sk\Sj,k) ≥ O(Sj,k)−Q(Sj,k → Sk\Sj,k)−z(1−δ).
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According to Lemma B.2, we have Q(S∗
j,k → Sk+1) ≥ I(Sj,k)−Q(Sj,k → Sk\Sj,k)− (1−δ)(1+zδ)

δ . Since

at every s ∈ S∗
j,k, the state in the next period belongs to Sk+1 if player 1 does not play a∗ at s, and belongs

to Sj,k if player 1 plays a∗ at s, we have Q(S∗
j,k → Sk\Sj,k) = 0. This implies that Q(Sj,k → Sk\Sj,k) =

Q(S′
j,k → Sk\Sj,k). Since I(Sj,k) = I(S∗

j,k) + I(S′
j,k)−Q(S∗

j,k → S′
j,k)−Q(S′

j,k → S∗
j,k),

Q(S∗
j,k → Sk+1) ≥ I(Sj,k)−Q(Sj,k → Sk\Sj,k)−

(1− δ)(1 + zδ)

δ

= I(S∗
j,k) + I(S′

j,k)−Q(S∗
j,k → S′

j,k)−Q(S′
j,k → S∗

j,k)−Q(S′
j,k → Sk\Sj,k)−

(1− δ)(1 + zδ)

δ

≥ I(S∗
j,k)−Q(S∗

j,k → S′
j,k) +O(S′

j,k)−Q(S′
j,k → Sk\Sj,k)−Q(S′

j,k → S∗
j,k)︸ ︷︷ ︸

≥0

−(1− δ)(2 + zδ)

δ

≥ I(S∗
j,k)−Q(S∗

j,k → S′
j,k)−

(1− δ)(2 + zδ)

δ

Since Q(S∗
j,k → S′

j,k) ≤ O(S∗
j,k) and Q(S∗

j,k → S′
j,k) ≤ I(S′

j,k),

Q(S∗
j,k → S′

j,k) ≤
1

K
O(S∗

j,k) +
K − 1

K
I(S′

j,k) ≤
1

K
I(S∗

j,k) +
K − 1

K
O(S′

j,k) +
1− δ

δ
.

This together with the lower bound on Q(S∗
j,k → Sk+1) that we derived earlier implies that:

Q(S∗
j,k → Sk+1) ≥

K − 1

K

(
I(S∗

j,k)−O(S′
j,k)

)
− (1− δ)(3 + zδ)

δ
.

Since O(S′
j,k) = Q(S′

j,k → Sk\Sj,k) + Q(S′
j,k → S∗

j,k) + Q(S′
j,k → Sk−1), and Q(S′

j,k → Sk−1) is

assumed to be less than z(1− δ), we know that

Q(S∗
j,k → Sk+1) ≥

K − 1

K

(
I(S∗

j,k)−Q(S′
j,k → Sk\Sj,k)−Q(S′

j,k → S∗
j,k)

)
− (1− δ)(3 + 2zδ)

δ
.

Hence, when δ is close to 1, inequality (B.12) is implied by

∑
s∈S∗

j,k

µ(s) < (K − 1)
{ ∑

s∈S′
j,k

µ(s)−Q(S′
j,k → Sk\Sj,k)

}
+ (K − 1)

{
I(S∗

j,k)−Q(S′
j,k → S∗

j,k)
}
. (B.13)

I say that a sequence of states {s1, ..., sj} ⊂ Sj,k form a connected sequence if for every i ∈ {1, 2, ..., i−

1}, there exists ai ∈ A such that the state in the next period is si+1 when the state in the current period is si

and player 1 takes action ai. A useful observation is that for every s ∈ Sj,k, there exists a unique state s′ in
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Sj,k such that playing some a ∈ A in state s′ leads to state s. Using this observation, we construct for any

s1 ∈ S′
j,k, a finite sequence of states {s1, ..., sm} ⊂ Sj,k with length m at least one such that (i) for every

i ∈ {1, 2, ...,m− 1}, there exists an action ai ∈ A such that playing ai in state si leads to state si+1 in the

next period, (ii) if m ≥ 2, then {s2, ..., sm} ⊂ S∗
j,k, and (iii) no matter which action player 1 takes in state

sm, the state in the next period does not belong to S∗
j,k, or equivalently, there exists an action a ∈ A such

that taking action a at state sm leads to a state that belongs to S′
j,k. Lemma B.1 implies that

µ(s2) ≤ µ(s1)Q(s1 → s2) +Q(S\Sj,k → {s2}) +
1− δ

δ

= µ(s1)−Q({s1} → Sk\Sj,k) +Q(S\Sj,k → {s2}) +
1− δ

δ
, (B.14)

and for every i ≥ 2, we have:

µ(si+1) ≤ µ(si)Q(si → si+1) +Q(S\Sj,k → {si+1}) +
1− δ

δ

= µ(si) +Q(S\Sj,k → {si+1}) +
1− δ

δ
. (B.15)

Iteratively apply (B.15) and (B.14) for every i ≥ 2, we obtain:

µ(si) ≤ µ(s1) +Q(S\Sj,k → {s2, ..., si})−Q({s1} → Sk\Sj,k) +
(1− δ)(i− 1)

δ
. (B.16)

Summing up inequality (B.16) for i ∈ {2, ...,m}, we obtain:

m∑
i=2

µ(si) ≤ (m− 1)
{
µ(s1) +Q(Sc

j,k → {s2, ..., sm})−Q({s1} → Sk\Sj,k)
}
+
m(m− 1)(1− δ)

2δ

= (m− 1)
{
µ(s1)−Q({s1} → Sk\Sj,k)︸ ︷︷ ︸

≥− 1−δ
δ

}

+(m− 1)
{
Q(S\S∗

j,k → {s2, ..., sm})−Q(S′
j,k → {s2, ..., sm})︸ ︷︷ ︸

≥0

}
+
m(m− 1)(1− δ)

2δ

≤ (K − 1)
{
µ(s1)−Q({s1} → Sk\Sj,k)

}
+(K − 1)

{
Q(S\S∗

j,k → {s2, ..., sm})−Q(S′
j,k → {s2, ..., sm})

}
+
{m(m− 1)(1− δ)

2δ
+
K(1− δ)

δ

}
.

One can obtain (B.13) by summing up the above equation for every s1 ∈ S′
j,k and taking δ → 1. This is

because the left-hand-side of this sum equals
∑

s∈S∗
j,k
µ(s), and after ignoring the last term that vanishes to
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0 as δ → 1, and uses the additive property of the operator Q in (B.6) and (B.7), the right-hand-side equals

(K − 1)
{ ∑

s∈S′
j,k

µ(s)−Q(S′
j,k → Sk\Sj,k)

}
+ (K − 1)

{
I(S∗

j,k)−Q(S′
j,k → S∗

j,k)
}
.

Since b∗ does not best reply to K−1
K a∗ + 1

K a
′ for every a′ ̸= a∗, Lemma B.4 implies that when

Q(Sk−1 → Sj,k) and Q(Sj,k → Sk−1) are both bounded above by a linear function of 1 − δ, then ei-

ther
∑

s∈Sj,k
µ(s) is also bounded above by a linear function of 1− δ or b∗ is strictly suboptimal for player

2 when she observes that the state belongs to Sj,k.

Lemma B.5. Suppose b∗ does not best reply to K−1
K a∗ + 1

K a
′ for every a′ ̸= a∗. For every y > 0, there

exists z > 0 and δ ∈ (0, 1) such that for every δ > δ, every equilibrium under δ, and every k ∈ {1, 2, ...,K}.

If max{Q(Sk−1 → Sk),Q(Sk → Sk−1)} < y(1− δ), then
∑

s∈Sk
µ(s) ≤ z(1− δ).

Proof. Suppose by way of contradiction that for every y > 0 and δ ∈ (0, 1), there exist δ > δ, an equilibrium

under δ, and k ≥ 1, such that in this equilibrium, max{Q(Sk−1 → Sk),Q(Sk → Sk−1)} < y(1 − δ) but∑
s∈Sk

µ(s) > z(1 − δ). Pick a large enough z, Lemma B.4 implies that for every partition element

Sj,k ⊂ Sk, either
∑

s∈Sj,k
µ(s) < z

2K
(1 − δ), or player 2 has a strict incentive not to play a∗ at Sj,k. The

hypothesis that
∑

s∈Sk
µ(s) > z(1− δ) implies that there exists at least one partition element Sj,k such that

player 2 has a strict incentive not to play a∗ at Sj,k. Let S′
k be the union of such partition elements.

I start from deriving an upper bound on the ratio between
∑

s∈S′
k
µ(s) and Q(S′

k → Sk−1). Let V (s)

be player 1’s continuation value in state s and let V ≡ maxs∈S V (s). Let v be player 1’s lowest stage-game

payoff. Let v′ ≡ maxa∈A,b≺b∗ u1(a, b) and v∗ ≡ u1(a
∗, b∗). Assumptions 1 and 3 imply that v∗ > v′ > v.

Since player 1 can reach any state within K periods, we have V (s) ≥ (1 − δK)v + δKV for every s ∈ S.

Theorem 1 suggests that player 1’s continuation value at s∗ is at least u1(a∗, b∗). Therefore, V ≥ v∗. Let

M be the largest integer m such that

(1− δm)v′ + δmV ≥ (1− δK)v + δKV . (B.17)

Applying the L’Hospital Rule, (B.17) implies that when δ is close to 1, we have M ≤ K V−v

V−v′
. Therefore,

for any t ∈ N and s ∈ S′
k, and under any pure-strategy best reply of player 1, if the state is s in period t,

then there exists τ ∈ {t+ 1, ..., t+M} such that when player 1 uses this pure-strategy best reply, the state

in period τ does not belong to S′
k. Therefore,

∑
s∈S′

k
µ(s)

O(S′
k)

≤ 1−δM

δM (1−δ)
. When δ → 1, the RHS of the above
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inequality converges to M , which implies that

∑
s∈S′

k

µ(s) ≤ K · V − v

V − v′
· O(S′

k). (B.18)

Since
∑

s∈Sk\S′
k
µ(s) is bounded above by some linear function of 1−δ, it must be the case that Q(Sk−1 →

S′
k) ≥

∑
s∈S′

k
µ(s)

2M . This implies that there exists s ∈ Sk+1 and a canonical pure best reply σ̂1 such that:

1. the state in the next period, denoted by s′, belongs to S′
k, and the state belongs to S′

k for m periods,

2. the state returns to Sk+1 after these m periods, returns to s after a finite number of periods, and the

state never reaches ∪k−1
n=0Sn when play starts from s.

By definition, player 1 plays a∗ in state s under σ̂1 and σ̂1 induces a cycle of states. Moreover, it is without

loss of generality to focus on best replies that induce a cycle where each state occurs at most once.

I show that m ≤ K − 1. Suppose by way of contradiction that m ≥ K, namely, after reaching state

s′, the state belongs to S′
k for at least K periods under player 1’s pure-strategy best reply σ̂1. Recall the

definition of a minimal connected sequence. Every minimal connected sequence contains either one state

(if k = K) or K states in category k. Therefore, the category k state after K periods is also s′. As a

result, there exists a best-reply of player 1 such that under this best reply and starting from state s′, the state

remains in category k forever. Due to the hypothesis that player 2 has no incentive to play b∗ when the state

belongs to S′
k, player 1’s continuation value under such a best reply is at most v′, which is strictly less than

his guaranteed continuation value (1− δK)v + δKv∗. This contradicts the conclusion of Theorem 1.

Given that m ≤ K− 1, let us consider an alternative strategy of player 1 under which he plays an action

other than a∗ in state s, then follows strategy σ̂1. Starting from state s, this strategy and σ̂1 lead to the same

state after m+ 1 periods. This strategy leads to a strictly higher payoff since the stage-game payoff at state

s is strictly greater, and the payoffs after the first period are weakly greater. This contradicts the hypothesis

that σ̂1 is player 1’s best reply to player 2’s equilibrium strategy.

In summary, Lemma B.3 implies that max{Q(S0 → S1),Q(S1 → S0)} ≤ 2(1−δ)
δ . Lemma B.4 and

Lemma B.5 together imply that
∑

s∈S1
µ(s) is bounded from above by a linear function of 1 − δ given

that max{I(S0),O(S0)} ≤ 2(1−δ)
δ , which then implies that Q(S1 → S2) and Q(S2 → S1) are also

bounded from above by a linear function of 1− δ. Iteratively apply this argument, we obtain that for every

k ∈ {1, 2, ...,K},
∑

s∈Sk
µ(s) is bounded from above by a linear function of 1− δ.
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