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Abstract

The rapid decline in global cost of solar panels from the early 2000s coincided with
China’s growing dominance in solar photovoltaics (PV) and its adoption of green in-
dustrial policies. We evaluate the effectiveness of local, city-level policies to encourage
growth and innovation in the Chinese solar industry. Using new data on solar subsidy
policies, patenting, production and trade and a synthetic-difference-in-differences ap-
proach, we show that production subsidies caused large increases in solar PV output,
innovation and the productivity. Cities combining production subsidies with R&D sup-
port had an even larger impact. We can reject negative spillovers to other cities, finding
that business stealing effects are outweighed by knowledge spillovers. Although demand
subsidies targeted at solar generation reduced pollution, they had little impact on local
solar output and innovation, as additional demand was largely obtained from other Chi-
nese cities. We interpret these results through the lens of a quantified general equilibrium
model with heterogeneous manufacturers, intra-national and international trade costs
and endogenous choices of R&D, entry/exit and trade. Our results suggest substantial
benefits to China from its solar policy, even abstracting from the climate change exter-
nality. We draw implications for green industrial policies in other countries, suggesting
such interventions can foster growth in clean energy.

JEL classification: L5, L52, 031, H25, L25, N5
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1 Introduction

Of all the changes required to halt climate change, none is more important than the energy
transition. This is because energy (electricity, heat and transport) accounts for 73.2% of global

! Recent improvements in renewable energy technologies have

greenhouse gas emissions.
made solar and wind cost-competitive with fossil fuel technologies in many parts of the world.
Between 1990 and 2019, the average annual growth rate of solar energy supply exceeded that
of any other energy source.” The rise of solar offers a “ray of hope” that we may be able to

curb emissions without large-scale reductions in energy usage.

But what underpins the dramatic cost reductions in solar energy that are driving global diffu-
sion? Understanding this is central to ensuring that the transition to clean energy continues
and may also yield insights into how to encourage other clean sources of energy (such as

wind, tidal and hydrogen).

It is striking that the fastest reductions in solar photovoltaic (PV) costs since the mid-1970s
have occurred in the last decade and a half, coinciding with the take-off of the solar industry
in China (Figure 1). We observe that between 2004 and 2013, Chinese solar firms increased
their annual production by 76% per year, and by 2016, China’s dominance of global solar
manufacturing had become all-encompassing. The country produced 52% of polysilicon, 81%
of silicon wafer, 59% of silicon cell, and had 70% of crystalline module capacity worldwide

(Ball et al., 2017).

Chinese firms were not just becoming dominant in production. They were also innovating
extensively in solar technologies and processes. For example, there has been a 23% increase
per year in patenting by solar firms between 2004 and 2019. This impressive performance also
emerges when citation weighting for quality, looking at productivity and success in frontier

solar technology competitions.

These marked increase in solar innovation and production were accompanied by the imple-
mentation of a series of major pro-solar policies by local governments in China, including
production, innovation, and installation/demand subsidies. In this paper, we assess empiri-

cally the contribution of such place-based industrial policies to the development of the solar

IClimate Watch, The World Resources Institute (2020)

2TEA (2021), Renewables Information: Overview. Solar PV grew at an average of 36% annually, followed by
Wind (22.6%), Biogases (11.31%), Solar Thermal (10.52%), and Liquid biofuels (9.58%). The rest of renewables
(Municipal waste, Geothermal, Hydro, Tide, wave & ocean, and Solid biofuels) grew at a rate lower than 5%.



industry in China. To do so, we exploit variation in the implementation of solar policies across
city-regions. Subsidies to solar manufacturing and generation were managed and allocated by
local governments. As a result, the timing, size, and targeting of policy support varied signif-
icantly depending on the city-region. To account for potential non-random implementation

of policies, we use a synthetic difference-in-differences approach (Arkhangelsky et al., 2021).

We find that Chinese cities that introduced local solar policies enjoyed positive and long-
lasting benefits (up to at least 13 years after initial treatment). Notably, we estimate that the
number of patents filed by solar manufacturers in treated cities increases by over 50% per year
in the long run. We find similarly sizeable impacts on the number of solar manufacturers in
treated cities, their total revenue, and total solar panel production. The magnitudes are small
and insignificant for demand subsidies, but large for production subsidies, especially when

combined with innovation subsidies.

To perform this analysis, we construct a novel longitudinal database covering city-level so-
lar policies and city-level solar industry innovation, production and exporting outcomes. To
measure policy support, we use a comprehensive data set of China’s legal information (the
PKULaw database), which includes all laws, regulations, and any related legal information
implemented by the central and local governments since 1949. We build on recent attempts to
use this or similar data sets to generate micro-level quantitative measures of industrial policy
in China (e.g. J. Chen & Xie 2019, Wang & Yang 2021) by using text analysis to identify all
regulations that pertain to solar photovoltaics and classify these by type (e.g., subsidies) and

target (installation, production, innovation).

To estimate the effectiveness of local solar subsidies, we gather a variety of city-level solar in-
dustry outcome data from a wide range of sources. We identify solar manufacturers in China
using an industry directory (ENF) which covers the near-universe of solar-related companies
worldwide from 2004-2021 and contains detailed company location information. From 2004-
2013 we capture production and capacity information for solar manufacturers using market
research reports undertaken by ENF, which include measures of solar module (and cell) pro-

duction and capacity in Mega Watts per hour (MWh).

To complement the production data, we are able to obtain revenue (and other financial in-
formation such as capital assets, employees and cost of goods sold) of solar firms over the
2004-2020 period using company accounts data drawn from a variety of sources such as BVD
Orbis, ASIE, and the National Firm Registry (a Census). To study innovation, we obtain patent-

ing activity for our sample of solar manufacturers from the State Intellectual Property Office



(SIPO) and PATSTAT. We classity these patents in several ways (IPC codes, SIPO classifica-
tion, and text analysis) to identify solar patents and their innovative nature. We then aggregate
this firm-level information to the city level using the location of each firm’s headquarters as

recorded in the ENF database. Most firms in the ENF data set operate exclusively in one city.

The structure of the paper is as follows. Section 2 provides background information on the
evolution of China’s solar industrial policy and our approach towards measuring it. Section
3 details the rest of the data, Section 4 gives the basics of our model and Section 5 our empir-
ical strategy. The main results are in Section 5, some extensions in Section 6, and Section 7
concludes. Online Appendices give more details of the Institutional Background (A), the Data
(B), details of the Theory (the full model in C, Simulation Results in D and a simplified model
in E) and Further Results (F).

Figure 1: GLOBAL AVERAGE PRICE OF SOLAR PV MODULES (IN 2019 US$) PER WATT
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1.1 Related Literature

Our paper speaks to several literatures. Most directly, there is a long literature that attempts to
theoretically explain the channels through which industrial policies could facilitate economic
development (Murphy et al. 1989, Bartelme et al. in press, Buera et al. 2021, Buera et al. 2013,
Itskhoki & Moll 2019, Harrison & Rodriguez-Clare 2010 and Rodrik 2004).

Although there are many case studies, there is a more recent econometric literature that

attempts to overcome challenging measurement and endogeneity problems to establish the



causal effect of industrial policies (Criscuolo et al., 2019; Aghion et al., 2015; Lane, in press;
Kalouptsidi, 2018; Choi & Levchenko, 2021; J. Chen & Xie, 2019). For a review on the empirical

evidence on industrial policy, see Lane (2020).

In this context, our primary contribution is to show that subsidies to production lead to in-
creases in innovation as measured by patenting activity. Previous work has documented the
link between production subsidies and sustained firm growth (Manelici & Pantea, 2021), or
between technology adoption subsidies, technological upgrading, and long-term outcomes
(Choi & Shim, 2023). Our main result showcases a link between production subsidies and
sustained innovative activity. This is consistent with theories of learning by doing, whereby
current production, enabled by policy support, affects future productivity and hence innova-
tive activity. We show evidence of a mechanism through learning by doing through textual
analysis of patent data, a machine learning algorithm trained on manual inspection of a large

number patent documents.’

We are able to draw this link as a result of our novel approach to the measurement of industrial
policy. Recent work by Juhasz et al. (2022) has used text analysis to identify policies which
likely constitute industrial policy. We extend this approach to detect specific subsidies and
their targets (demand, production, innovation). As a result, we are able to study how different
forms of industrial policy have varying effects on a range of industrial outcomes and, in doing

so provide suggestive evidence of the underlying mechanisms that generate these effects.

Second, there is a growing literature on directed technical change (e.g. Acemoglu et al. 2012,
2016, 2019), with a particular emphasis on environmental innovation (e.g. Aghion et al. 2016;
Way et al. 2022). Most of the literature has focused on the role of tax-adjusted energy prices
(Popp, 2002, 2019; Newell et al., 1999), but there are a few papers looking at other policies
(see the survey by Dechezlepretre & Hemous 2023) such as regulation and R&D subsidies
(e.g. Howell 2017). We are one of the very few papers (alongside Arkolakis & Walsh 2023) to

examine a range of direct subsidy policies in a particular green industry.

A third group of papers focuses on the policy reasons for the incredible growth rates of China
since 1980, and especially 2000. Song et al. (2011) focus on finance; Konig et al. (2022) and
Wei et al. (2023) focus on innovation policy; Barwick et al. (2021) look at industrial policy
in Chinese shipbuilding and Wang & Yang (2021) look more generally at multiple policies.

3We also detail a model where subsidies can stimulate innovation through enabling firms to cover the fixed cost
of innovation.



These papers focus on national policies, Bai et al. (2020) like us focus on local policies, they

emphasise the ‘special deals’ that local bureaucrats make with their local leading firms.*

Finally, there is a literature on the solar industry itself. Nemet (2019) has an excellent dis-
cursive history of the global industry and the role of policy. Econometric papers include
Gillingham & Bollinger (2021); Bollinger & Gillingham (2019); Gonzales et al. (2022); Gilling-
ham & Tsvetanov (2019) and De Groote & Verboven (2019). The focus of these papers is more

on household incentives and none are specifically on China.

2 Institutional Background: China’s Industrial Policy To-
wards Solar PV

We now give a brief history of the intervention of the Chinese state in the solar industry
back to the early 2000s, borrowing extensively from the excellent account in Ball et al. (2017)
(more details are in Appendix A). First, we describe the increasing prominence of solar in
the Chinese government’s Five-Year Plans, which outline national economic priorities and
sectoral industrial policies. Second, we describe the decentralised policy-making which led
to considerable local heterogeneity in policy support towards the solar industry. Finally, we

discuss the challenges with measuring industrial policy and our novel measurement approach.

2.1 Solar PV in the Government’s Five-Year Plans

The Chinese government outlines its vision for sectoral industrial policies in its Five-Year
Plans. These plans reflect the priorities of the central government, and provide guidance for
policy-makers at all levels of government. The solar industry has occupied an increasingly
prominent position in the Five-Year Plans, beginning with the Tenth Five-Year Plan (2001-
2005), where it received only a brief mention’. By contrast, the Eleventh Five-Year Plan (2006-
2010) featured an increased emphasis on R&D and mentioned funding for solar manufacturing
and innovation for the first time. This was further built on in the Twelfth (2011-2015) and
Thirteenth (2016-2020) Five-Year Plans — the later of which was accompanied by a specific

Solar Energy Development Plan issued by China’s National Energy Administration.

Figure 2 traces the evolution of the Chinese solar industry over this time period, using our

“This relates to place-based policies more generally - see, for example, Gruber & Johnson (2019); Greenstone et
al. (2010); Kline & Moretti (2014).

>“Actively developing new and renewable energy sources such as wind power, solar power, and geothermal
energy. Promoting energy conservation and comprehensive utilization technologies.”



data on the universe of solar manufacturers in China (see Section 3). Panel A shows that solar
patents went through a revolution, rising from a few hundred in 2004 to over 10,000 in 2020.
Panel D shows that there was near zero panel production capacity in 2004, but this rose to
about 70,000 MWh by 2013. Similarly, Panel C shows that revenues of solar firms rose from

close to zero to over 100 billion Yuan by 2019 spread across over 1,500 firms (Panel B).°

Figure 2: CHINESE SOLAR MANUFACTURERS ACTIVITY OVER TIME
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Notes: Time series for total number of patents filed by solar firms at the SIPO; firm count obtained from the
Chinese firm registration platform; revenue obtained from Orbis and panel capacity, obtained from ENF Market
Research reports. The sample is our near-universe of solar panel manufacturers in China, obtained from ENF’s
register. The revenue numbers are adjusted to account for multi-product firms following the mechanism de-
scribed in Section B.8

°It might seem surprising that the number and revenues of solar firms can be non-zero in 2004 when production
capacity is zero. This is mainly because some solar firms are multi-product (there are also some firms who
produce non-solar PV such as cells, but this is a small number). Hence, they may earn revenues on non-Solar
products and services. We address this issue by utilizing additional firm-level data on exports to adjust revenue
numbers of multi-product firms. The results are essentially unchanged compared to using the raw revenue
figures. See Appendix B.8 for a discussion of the adjustment mechanism. We further validate the approach by
utilizing a separate adjustment in which we set to zero firm counts and revenues if solar production capacity
was zero. The results were essentially unaltered. Since we can only do this exercise pre-2014 due to the ENF
data constraint, we prefer to use a consistent approach in our baseline and not impose this additional restriction.



2.2 Policy Support toward Solar Manufacturing

Whilst the Five-Year Plans provide national policy guidance, the power to implement indus-
trial policy is dispersed across different levels of government in China, resulting in consider-

able uncertainty about the extent and nature of policy support for the industry.

Qualitative research by Ball et al. (2017) based on interviews with government officials, busi-
ness leaders, managers and academics, provides some clarity. Their work suggests that subsi-
dies to solar manufacturing were managed and allocated by local governments, following the
national guidance embedded in the Five-Year Plans. Since at least 2006, many city bureaucrats
have competed to build up solar manufacturing, offering tax incentives, discounts for land ac-
quisitions, and cash investments. Bai et al. (2020) give a rich description of the local policy
landscape in China. City bureaucrats have strong administrative competence and compete

aggressively on offering special deals to private firms.

Ball et al. (2017) estimate a lower bound of around $300 million spending in solar R&D subsi-
dies by national and local governments between 2001 and 2015, compared to $1.44 billion of
private R&D solar spending. They also find evidence of considerable regional heterogeneity

in solar R&D funding.

2.3 Measuring Solar Industrial Policy

This still leaves open the question of how we can identify and measure the dispersed imple-
mentation of industrial policies - particularly when there may be no one organisation who
has oversight of the full range of implemented policies. Given these, and other challenges,
some researchers have relied on model-based approaches to detect industrial policy subsidies

(Kalouptsidi, 2018).

In this paper, we follow an approach based on text analysis of policy documents, similar to that
of Juhasz et al. (2022)". We extract data on industrial policy towards solar manufacturing, inno-
vation, and installation from PKULaw’s Laws & Regulations dataset (https://www.pkulaw.com/law/).
The Laws & Regulations database is a comprehensive and reliable source of China’s legal in-
formation, including all laws, regulations, and any related legal information implemented by
the central and local governments since 1949. We obtain data disaggregated by industry and

gather all regulations pertaining to solar photovoltaics. The first sub-national solar policy we

"We manually inspect and classify all solar policies, while Juhasz et al. (2022) use an automated classification
algorithm



identified was in 2006.

The dataset contains information on the title, validity, administrative level, department, re-
lease date, and implementation date of each policy. We additionally scrape the original policy
documents, which contain the text of each regulation or announcement. We manually in-
spect the full text of each policy and classify them into types. We focus on subsidy policies
where there is direct financial support. We further disaggregate subsidy policies according to

whether they target demand (solar installation), production and/or innovation.

Table 1 illustrates the criteria we follow to classify policy documents and provides examples
of key text extracts that guided the classification. The table shows that there have been 78
subsidy policies in total (sometimes a policy is a bundle of demand and supply subsidy policies
which is why the sum of the disaggregated policy numbers exceeds 78). City-level demand
subsidies are the most common - there have been 61 of these between 2006 and 2021. There are
27 production subsidy policies, 12 of which also contain innovation subsidies. We did not find
any cities that introduced solar innovation policies without production subsidies. So when
we compare across policies we are implicitly comparing standalone demand or production
policies to a bundle of a production and innovation policy. We return to this when interpreting

the empirical results.

Table 1: CITY-LEVEL SOLAR POLICIES

Type of policy Number key feature Example

Policy text contains precise
Subsidy 78 information on the size
of the subsidy

“A new solar production
1. Production subsidy 27 Subsidises solar production line built in Hefei will
be subsidized by 12% (2018)”

“Firms will be awarded
10,000 RMB if they earn

2. Innovation subsidy 12 Subsidises solar innovation provincial level R&D center
certification (Guilin, 2011)”
“1 RMB per watt for
3. Demand subsidy 61 Subsidises the installation  the electricify ge'nerated by
of solar panels solar projects installed
in Beijing (2010)”

Note: All policies are at the city (admin2 region) level over the 2006-2022 period. There are 358 cities. 43 cities
are treated by some subsidy by the end of our sample.



Figure 3 presents the time series of city subsidy policies. As we are unable to accurately
measure the end date of policies, this captures the cumulative number of cities which have at
some point implemented a solar industrial policy. The total policy line (hollow circles) shows
that there was a steady increase in the number of cities using solar policies since 2006. In
2010 only 10 cities had solar policies, but this had reached 18 by 2013. There was then almost
a doubling to 32 in 2014, driven by an increase in demand policies (hollow diamonds). The
number of cities with policies levels off after 2017, finishing at 43 (out of 358 cities across

China) by 2022.

Figure 3: NUMBER OF CITIES TREATED WITH SOLAR SUPPLY & DEMAND SUBSIDY POLICIES
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Note: All policies are at the admin2 region level. There are in total 358 admin2 regions in China (we remove
Taiwan, Hongkong and Macao from the analysis). The time series for ‘Subsidy’ includes any of demand, pro-
duction, or innovation subsidies.

Interestingly, the solid dots show that early policies were production subsidies (usually bun-
dled with innovation policies) - the first demand policy only began in 2010. By the end of
our sample period 19 cities had production subsidies and 10 also had innovation subsidies. By

contrast, a full 30 cities had demand subsidies.

Note that in our PKULaw dataset we cannot accurately identify the end date of policies. There-
fore, we exploit the staggered timing of the date of first adoption of any policy in the city.
Despite this caveat, almost all cities report that their policies were still in place at the end of
our sample period. Moreover, cities often implement multiple policies, so it is unlikely a city

completely abandons policy support towards solar. Hence, our treatment of policy support as



an absorbing state.®

Our approach complements recent attempts to provide micro-level quantitative measures of
industrial policy in China. J. Chen & Xie (2019) use the Chinese Law and Regulation Database,
which is a subset of our PKULaw dataset, to provide a micro-level measure of the number of
industrial policies at the Chinese prefectural-city level. We extend these recent approaches by
using the universe of laws and regulations targeting the solar industry and by analyzing policy
documents to identify targeting (production, innovation, or installation) as well as spatial
heterogeneity. In addition, our manual text classification allows us to carefully distinguish
financial support in the form of subsidies from solar industry announcements, records, or

other type of policies that do not include explicit support to manufacturers. °’

3 Data

This section provides an overview of our data set on the Chinese solar industry. More details

are in Appendix B.

We gather a variety of firm-level outcome data that we aggregate at the city-level and com-
bine with our policy support indicators. First, we construct a sample of solar manufacturers
over time using the historical directories of solar panel producers from ENF Solar Industry
Directory, available from 2010 until 2021 (henceforth, ENF register). The ENF Solar Industry
Directory is a register of 50,800 worldwide photovoltaic companies. Because it is the leading
solar website, most companies self-register on ENF’s platform. ENF additionally reviews daily
news regarding the solar industry, as well as available lists of key solar exhibitions, to incor-
porate the remaining new solar companies. It also relies on government organisations and
a variety of web-searching techniques to complete the full list of firms. To detect firm exit,
ENF uses automatic scanning of company updates, which triggers careful checks from ENF
database experts to update manufacturers’ information, or to report firms as ceasing their ac-
tivities. Hence, ENF is able to reasonably capture a snapshot of all solar panel manufacturers

each year.

We obtain our first measure of panel and cell production from the last edition of ENF’s Chi-

nese Cell & Panel Manufacturers Report. This dataset (henceforth, ENF production) allows

81deally, we would look at the persistence of effects after the policy was removed to test for permanent effects
as in Kline & Moretti (2014).

9We analyzed these type of ‘exhortation’ policies, but generally found them to have no effects on our outcome
variables.

10



us to measure, for each firm, their production and capacity figures (in MWh) for both solar
panels and solar cells across the 2004-2013 period. We match ENF production and ENF register
for their overlapping period based on firm name and extensive contact details information
(address, phone, website, fax, and email). Together, we are left with a sample of 1,718 Chinese
solar panel manufacturers, operating at some point between 2004 and 2021, which includes
production and capacity data for each manufacturer during the 2004-2013 period. Both ENF
datasets contain detailed address information, which allows us to geo-locate all firms through

the Google and Baidu APIs, and assign them their corresponding city.

In order to expand the time horizon of our analysis and estimate long-run effects on produc-
tion beyond 2013, we use Bureau Van Dijk’s Orbis dataset, which gives us rich financial data,
including total assets, revenue, employees, and cost of goods sold, throughout the 2004-2020
period. We use the comprehensive firm contact information included in both the Orbis and
ENF register datasets to merge the two datasets, and obtain Orbis variables for our sample
of solar manufacturers. We aggregate all production, capacity, and revenue figures from ENF

cell and panel manufacturers at the city-level.

We validate the entry and exit information on ENF register using the Chinese firm registra-
tion information, which we access through the Qichacha platform (https://www.qcc.com/).
The Qichacha platform gathers detailed firm-level information, spanning from registration to
exit, and is updated periodically following government requirements. It collects this infor-
mation from multiple data sources, but mostly relies on government’s official sources, which
include the National Enterprise Credit Information Publicity System, the China Court Judg-
ment Documents Network, and the China Enforcement Information Disclosure Network. This

allows us to obtain the number of operating solar manufacturers in each city and year.

The Qichacha platform also contains detailed intellectual property information from the for-
mer State Intellectual Property Office (SIPO). We extract, for each ENF manufacturer, the
name, patent ID, type, application date, publication date, and assignee, of the patents it has
filed. We then use the SIPO patent ID to extract IPC codes and patent abstracts from the PAT-
STAT database. We aggregate the patents filed by our sample of ENF manufacturers to the

city-level.

To understand the nature of the underlying innovation, we classify the patents filed by our

sample of manufacturers into several categories. First, we rely on the SIPO classification of

11



patents into Invention, Utility Model and Design patents'’. Invention patents have longer
protection periods, require paying higher filing costs, and involve a more cumbersome ad-
ministrative process. They are therefore generally of higher quality and a more innovative
nature.'’ Second, using IPC codes, we further classify invention and utility model patents into
solar and non-solar patents.'* Third, since it is well known that the threshold for obtaining
a patent in China is lower than in the US and Europe, we weight patents by their future ci-
tations as a measure of quality. We also examine the impact of policies on productivity as
an alternative measure to patents. Note that having a lower threshold for a patent in China
enables us to obtain a much larger sample of activity (we have over 10,000 new patents in
2020 alone) than we would be able to examine in the US or Europe. This captures many of the
more incremental valued learning by doing patents which would be missed in more developed

nations - an advantage of our setting.

The maps in Figure 4 illustrate the spatial variation in solar patents and subsidies across Chi-
nese cities, which we exploit in our empirical analysis. What is striking is that we capture
the whole of the development of the solar industry in China from beginning to the present.
In 2004 (map on the left), the starting year of our analysis, there was very little innovation
in solar and no policy support. On the other hand, by 2019 (map on the right), we observe a
total of 43 cities whose solar industry has been subsidised, and crucially, innovative activity
skyrocketed across the country. 82 of the 358 city-regions in China had some patenting by
solar firms in 2019, compared to only 25 in 2004.

Finally, in order to explore if policy support encouraged learning by doing, we also use text
mining techniques to classify invention and utility model patents based on the text in patent
abstracts. We classify patents into learning-by-doing patents (those that include a productivity-
increasing process innovation) and non-learning-by-doing patents (which often reflect either

the invention of new products or basic science research around the chemistry and material

19 An invention patent refers to a new technical solution or improvement for a product or method. Unlike utility
model patents, which are restricted to products, invention patents can apply to both products and methods.
The protection period for invention patents is the longest in the domestic patent classification, up to 20 years.
A utility model patent involves a new technical and practical solution regarding the shape, structure or combi-
nation of a product or products. The protection period for utility model patents is of 10 years. Design Patents
cover product improvements of an aesthetic nature, which are suitable for industrial application. Broadly,
all original designs around a product’s appearance could apply for a design patent. The protection period of
design patents is of 15 years.

The firms in our solar manufacturers dataset file mostly invention and utility model patents. Only 10% are
design patents.

12We follow the categorisation into solar developed in Shubbak (2019).

12



Figure 4: NUMBER OF SOLAR PATENTS IN EACH CITY AND SUBSIDY POLICY
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Note: Each white-bordered region represents an admn2 level city region. Black circled cities are treated by any
subsidy policy. We use a heat map scale, where cities colored in a stronger red are filing more solar patents

science that informs the production of wafers and cells). To do so, we build on the work of Liu
(2023), who classified a sample of Chinese solar patents into process and product related in-
novations by hand-reading the full patent text. Leveraging his work as a training dataset, we

classify the remaining patents in our much larger sample using machine-learning techniques.

Figure 5 shows an example of a learning-by-doing patent. The patent abstract alludes to reduc-
ing production costs, minimizing production errors, and being suitable for mass production
compared to prior art. In the data Appendix B, we provide additional learning-by-doing and

non-learning-by-doing patent examples and their abstracts.

13



Figure 5: LEARNING BY DOING PATENT EXAMPLE

silver paste

1

conductive silver paste

2

3 metal wires

Patent Abstract: “The present invention discloses a grid line structure for a solar cell, which comprises metal
wires, conductive silver paste and silver paste. The grid line is woven from metal wires, with a layer of silver
paste applied to the metal wires and then a layer of silver paste, which ensures excellent adhesion between
the silver paste and the metal wires and ensures good ohmic contact between the sub-grid line and the silicon
wafer. The silver paste used for the main grid line does not contain glass material, which ensures good adhesion
between the main grid line and the silicon wafer and reduces the recombination of minority carriers under the
main grid line. Compared with the prior art, the present invention greatly reduces the amount of silver paste used,
thus saving more expensive silver paste, effectively reducing production costs, and ensuring excellent aspect ratios
of the grid lines, eliminating the possibility of broken lines and false prints, thereby improving the photovoltaic
conversion efficiency of the solar cell, and being suitable for large-scale industrial production”

4 Model

To provide an intuition for the impact of place-based industrial policies on the evolution of the
solar industry, we develop a model of electricity demand, production of power-plant compo-
nents (such as solar panels), exporting, and innovation in China. The model builds on Bustos
(2011) and Shapiro & Walker (2018). More details and derivations can be found in Appendices
Cand D.

The model features multiple city-regions which we index by d (for "destination") when re-
ferring to the region that is generating or consuming electricity and o when referring to the
region that is producing the components of power plants. Each region d has a representative
consumer who demands electricity services e?. To satisfy this demand, a grid-planner in each
region builds and runs power plants of different types s, combining their output to supply
final electricity services. To simplify, we assume that there is no trade in electricity across

regions.” To build power plants, the grid planner purchases (differentiated) sector-specific

BFuture work will incorporate some of the limited cross-regional transmission links for electricity in China.
This will enable origin producers outside of the subsidized destination region to respond to demand subsidies
without shipping their panels across China. It will reinforce our results on the differences between demand and
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power plant manufactured components (e.g. solar panels) from producers in all origin regions
0. Manufacturers of power plant components such as solar PV producers have heterogeneous
productivity and make decisions about entry, exit, production, and international exporting.
They also have the opportunity to innovate or ‘upgrade their technology’ —increase their pro-

ductivity for a fixed cost.

By using a heterogeneous firm framework, we are able to get predictions for the impact of
subsidies on a range of industry outcomes, including firm numbers, output, and exports and
innovation. By incorporating internal economic geography (a key feature that distinguishes
our model from approaches such as Bustos 2011) we can generate separate predictions for
the impact of subsidies targeting demand (installation of solar panels or use of solar panels to
generate electricity) as opposed to the supply side (production or innovation). For example,
increased use of solar due to demand subsidies in one city can be met by increased supply
from other cities (subject to transport costs). Since there are no ‘local content’ requirements,

this mutes the effect of demand subsidies on the growth of solar production in the same city.

We make several key simplifications in the model. First, electricity services are only used for
final consumption, not as an input to production. Second, we abstract from the production,
trade and consumption of goods and services other than electricity. Third, we take as exoge-
nous the demand function for electricity in each city. We therefore abstract from the response
of population or industrial production to changes in energy prices across space. Fourth, power
plants are not durable. Fifth, we assume the electricity sector is a small fraction of the city’s
labor market so we can take city wages are exogenous. We make these simplification to focus
on the problem of a solar panel producer, since this is the center of our empirical analysis and

where we have the richest data.

4.1 The Grid Planner Problem

In each region d, there is a representative consumer that obtains utility from electricity ser-
vices e. We abstract from consumption of other goods and services for simplicity, as our focus

is on the production of varieties of power plant components.

Uz = u(eq) (1)

supply policies, being similar to a reduction in iceberg trade costs across city-pairs linked by the transmission
grid.
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This representative consumer provides L, effective units of labour for the purpose of produc-
ing electricity. L, reflects both the population of region d and the human capital of the local
population. As noted we consider L; to be, for now, exogenous to the model - implying that

we abstract from the migratory response of labour to changes in electricity prices.

Electricity services in region d are the combined electrical output of many power plants of
different energy sectors which are built and operated by a regional ‘grid-planner’. Given that
we focus on subsidies to the solar industry which do not apply to other electricity sectors, we
assume these sectors to be solar s and non-solar s’. The electrical output of solar (e, ;) and non-
solar (e;y) plants are combined using a CES technology (where the elasticity of substitution
is denoted o = 1/(1 — p)):

1/p
_ p p
ey = (Kd,s/ed,s, + Kd,sed,s) (2)

This assumption captures in a reduced-form-way the differential timing and flexibility of gen-
eration from different electricity sources. For example, solar is not a perfect substitute for coal
because it only provides electricity whilst the sun is up. Coal on the other hand, can produce
electricity all day and therefore meet nighttime demand. & gector allows for the overall pro-
ductivity of different electricity sources to differ across regions, capturing differences in solar
potential or mineral resources across regions. Note that the grid-planner can only use power

plants located within their own region d and cannot trade electricity across regions.

To generate electricity in each sector e;;, the ‘grid planner’ in region d combines sector-
specific intermediate manufactured inputs using a CES aggregator.

Os

€ds = (Z AGQ QOd,s(w)Gf”Idw> (3)

Here, ¢,q4s(w) denotes the quantity of the variety w of goods in sector s from region o used by

the grid-planner in region d. Note that each variety w is produced in a single region only and
by a single firm. The elasticity of substitution across varieties is represented by the sector-
specific parameter o, whereas o represents the elasticity of substitution across different en-

ergy sectors.

We conceive this CES aggregate of intermediate inputs as a ‘power plant’. For example, in
order to install a solar power system providing solar electricity services, the planner com-
bines different varieties of solar cells or panels, a racking system, and the necessary associ-
ated power inverters, charge controllers, batteries, and wiring as needed. These intermediate

inputs can be sourced from all regions of the country.
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The grid-planner chooses the overall quantity of electricity services to produce, the mix of
solar and non-solar electricity, and the mix of intermediate inputs for each energy sector in
order to maximise their profits taking as given the price of final electricity in their region
(pa) and the price of all intermediate inputs. In practice, since utility depends only on elec-
tricity services (and is strictly increasing in e;), and as production of final electricity services
is constant returns to scale, we can equivalently solve this as a problem in which the grid-
planner supplies as much electricity as possible in the minimal cost way given the income of

the representative household ;.

With this framing, the grid-planner problem can be solved in two stages. First, the grid-
planner chooses the mix of intermediates (e.g. varieties of solar panel) in order to minimise

the cost of generating a given level of electricity in sector s.

min Z / \ God,s(©0) Pod,s(@)

Qod ((1))

as
os—1

os—1
s.t. Z Gods(w) = dw = ey
0 COEQod,s

This yields the price (and the optimal intermediate inputs mix) of generating one unit of

electricity using solar and non-solar electricity in region d: P, and P, .

Given these price indices, the grid-planner chooses a mix of solar and non-solar electricity

generation to maximise electricity output.

1/p
max (Kd’sless, + Kd,se§s>
€d,s:€ ¢/ ’ ’

s.t. Pysegs + Pyyeqy = Iy

Solving this nested CES problem yields the following demand for each intermediate input

variety:

wds(@)\ " (Kas\’ Iy
God.s (w) = P ¢ pl-o o pl-o (4)
Pd,s Pd,s Kd,s’Pd,s’ + Kd,sPd,s

4.1.1 Demand-Side Industrial Policy

We model demand subsidies targeting sector s as a policy which subsidizes the final price P,

the local grid planner pays - that is, a factor y;; which multiplies P;e;; in the grid-planner
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problem where y;; < 1. This captures in a reduced form way policies such as feed-in tar-
iffs which guarantee a higher per-unit electricity price for solar power plant operators when

selling their electricity to the grid. Demand for each variety becomes:

od,s(w) e Kds 7 Id
) = (22} () ] ©)
ds Xdstds Kd,s’Pd,s’ + Kas (Xd,sPd,s)

A solar demand subsidy in location d will lead to a shift in the composition of electricity

production towards solar. This, in turn, will result in an increase in the demand for solar
intermediate inputs in location d. Assuming that all prices are fixed (i.e. considering just
the partial equilibrium response) this will lead to the same proportionate increase in region
d demand for all solar intermediate varieties. Demand subsidies implemented in region d
therefore influence demand for varieties produced in all regions of China, indirectly impacting

firm decisions.

4.2 The Manufacturer Problem

Intermediate inputs for each sector are produced by firms in different regions of China. Each
“origin” city-region o has a continuum of potential manufacturing firms i in each sector s,

which operate under monopolistic competition.

4.2.1 Manufacturing Technology

Firm i, who produces intermediate goods for electricity sector s (e.g. solar panels for the solar
electricity sector), uses effective units of labor L,;, with unit cost w,;. Firm subscripts i are
dropped from now onward for notational simplicity. To operate, a firm must pay a sunk cost
W, f¥;» which we express in terms of effective units of labour."* Upon paying the entry cost, the
firm draws an initial level of productivity ¢, from a Pareto productivity distribution, whose

cumulative distribution function is:

0,
G <(p;bo,s> =1- <b£>

Each firm in operation produces a differentiated variety of sector-specific intermediate good.
We therefore equivalently index firms by either their productivity ¢ or the variety they pro-

duce w. To produce g, s(¢) units of a variety, a firm requires an amount of effective labor

Qos
lo,s = fo,s + —
®Q

This sunk cost could be understood as the cost incurred in initial product definition and development.
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where f, is the fixed cost of production, expressed in terms of effective units of labour, and

é is the marginal cost of production.

4.2.2 Innovation

After observing its initial productivity ¢, a firm can choose to upgrade its technology (inno-
vate), which increases the fixed cost of production by an extra f;, but reduces its marginal
1

cost, now: £ with &, > 1

4.2.3 Internal Trade and Exporting

In addition to innovating, a firm can also choose whether to sell to a foreign region, which
we index by d. We assume there are no fixed costs of trade within China. Due to the CES
preferences this means that firms sell to every Chinese city. On the other hand, a firm must pay
an international exporting fixed cost fo’,‘g’s if it wants to sell to the foreign market. Thus, firms

face an additional discrete choice of whether to export or serve only the domestic market.

Trade (intra-China and international) is subject to iceberg trade costs such that in order for
Goas(¢) to arrive to destination d, a firm in o needs to produce 7,4 Goss(¢) units of the variety,

with 7,5 > 1. Trade costs are normalised, such that they are equal to 1 if and only if d = o.

4.2.4 Supply-Side Industrial Policy (Production and Innovation subsidies)

Firms are directly or indirectly subject to three different types of subsidies which are set by

local governments: production, innovation and demand subsidies

We model production subsidies targeting sector s as a reduction in input costs for targeted

QAo.s

&ostp
tion subsidy given as an example in Table 1, where the cost of the entire production run is

firms, whose marginal cost becomes where a,; < 1. This captures the sort of produc-

proportionately reduced.

We model the innovation subsidy targeting sector s as a reduction in the fixed cost involved
in technological upgrading. The innovation fixed costs for an innovator facing a subsidy are
Posfos» With ¢ < 1. This corresponds to the example innovation subsidy in Table 1, where

firms are given a fixed payment for incurring a fixed cost (establishing an R&D centre).

4.2.5 Firm profits

We now derive an expression for firm profits after paying the entry cost and drawing the pro-

ductivity. This comes from combining the firm technology and industrial policy as described
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above. Since profits depend on the exporting and innovation decision of the firm, their profits
here are a maximum over three alternative profits - if they neither innovate or export, if they
export but don’t innovate, and if they both export and innovate. We ignore the case in which
the firm innovates but does not export as this appears not to be an empirically relevant case

in our data.

d+d

Tod,s@o,s90 ,s( )
”o,s((p) = max{ Z {pod,s((p)qod,s((p) - Woqud(p} - Woﬁ),sa

Tod,sao,SQOd,s(QD) _

{pod,s((p)qod,s((P) — Wy Wof;f(;,s} - Woﬁ),s:

Tod,sao,sqod,s(§0) _

>
d
Z Eos¢

{pod,s((p)qod,s(q)) — W, WOf:(j’s} - WOﬁJ,S - WO(]SO,Sf;)i,s}

d

In each case, profits are given by revenues in each destination minus the costs of production,
which consist of marginal costs, the fixed cost of exporting and the fixed cost of production.
Marginal costs depend on productivity, the production subsidy, trade costs, productivity and
innovation decisions. The fixed cost of production depends on the innovation subsidy and the

innovation decision.

4.2.6 Firm optimal choices

Firms maximise profits by making decisions about price, which regions to export to, whether
to innovate, whether to exit and whether to enter in the first place. To solve, we can break

this problem down into stages.

Given the firm’s choice over innovation and exporting, we can solve for the firms optimal
price by taking the FOC of firm profits with respect to p,qss(¢), and replacing the optimal
Goas(w) above, we obtain the usual result that manufacturer’s price as a constant markup over

marginal costs. For example, if the firm is exporting and innovating, price would be given by:

O WoTod,sao,s
05 — 1 go,s(p

Replacing the optimal pricing and demand functions in the expression for firm profits, we can

pod,s((p) = (6)

obtain the potential value functions for each technology and exporting choice (full details in

Appendix C). Optimal profits are therefore:
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Note that the demand subsidies show up in this expression through E;;, which depends on
the demand subsidy in region d. Given that they price optimally, firms make exporting and
innovation decisions to maximise this expression. This results in a set of productivity cut-offs
which determine whether a firm will i) stay in the market after drawing a productivity ¢, ii)

export to the international market c?, and iii) innovate.

DOMESTIC MARKET EXIT THRESHOLD: We define ¢}, as the domestic market exit productiv-
ity threshold. This is the productivity that generates zero profits from serving the domestic

market only.

1
-1 1—0; 1-0s
x (O-s - 1)03 Ed,s WoTod,sao,s
(poo,s - O_gs

4 w, P
ded oﬁ),s Xd,s d,s

EXPORTING THRESHOLD: Let ¢, describe the productivity level which makes a firm earn zero
profits from exporting to foreign country d, and therefore indifferent between serving d or
limiting its supply to the domestic market. We also assume that the marginal exporting firm

is not innovating.

1

- ~ os—1 1-0s
(p* _ Tod,saO’S Ed,s (O—s - 1) :
od,s - N X Os _Os
P;, fo G Wo'Os

INNOVATION THRESHOLD: Let ¢}, be the productivity level which makes a firm indifferent

between upgrading its technology or not. This is given by:

1

_ ¢l-o o.—1 1-0; 1-os
i _ 1 0,8 : (O-s - 1) ¢ Ed,s WoTod,sao,s
(poo,s - 1-0;

> -
d 0,8 os’ Wo¢o,sﬁ)l’s Xd,sPd,s

Finally, with knowledge of their optimal profits and the distribution of productivity, firms

choose whether to pay the sunk entry cost needed to draw a productivity and enter the market.
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4.3 Industry Equilibrium

An equilibrium in this model is characterised by the following: First, Households maximise
utility. Second, the grid-planner minimises cost, Third, firms maximise profits. This implies
that they will price according to the pricing formula above; make exit, export and innovation
decisions according to the productivity thresholds above, and enter if the expected profits are
weakly greater than the sunk cost of entry. Fourth, there is free entry, or zero expected profits.

This means that the sunk cost of entry equals the expected profits from entry".
Wofy, = (1=G 03] E [7 | ¢ > 05, ] (7)

Fifth, final electricity service market clears, and finally, the market for power plant compo-

nents also clears.

These conditions determine the equilibrium price indices, number of firms, aggregate produc-
tion and revenue, and mass of exporters and innovators in each region. The price indices in

all regions and for the solar and non-solar sector satisfy the following system of equations:

G Kg,sla 10,
Z : - <WoTod,s> =
o Pd,so
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The above system of equations features only fundamentals, wages, and income towards elec-
tricity in each region. While wages and therefore total income are potentially still endoge-

nous, we assume that wages are fixed in response to policy. This assumption is justified by

Bfor the production to be bounded, it is required that 6, + 1 — g5 > 0
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conceptualising the solar industry as a small part of the rest of the economy, which remains
‘unmodelled’. Because the solar industry is relatively small, we assume that changes in so-
lar industrial policy will not affect the total economy enough to change wages. Therefore,
changes in policy, even if they lead to labour moving into the solar sector, will not affect to-
tal income in the economy since total labour times wages remains unchanged. Further, we
assume that income towards electricity services represents a fixed share of total income and

therefore also remains invariant to policy.

Full derivations and the expressions for the rest of key aggregate objects (derived from the

price indices) can be found in the Theoretical Appendix.

In the next section we impose additional simplifications to derive analytical solutions and

evaluate how our key aggregates of interest change with respect to each type of solar subsidy.

4.4 Comparative Statics: Closed Form Solutions in a Simplified Model

We are interested in how the solar industry will respond to changes in local industrial policy.
We consider a number of comparative static predictions of the model with respect to policy
parameters. We consider three types of subsidies: production, demand, and innovation and

several outcomes: innovation, revenue, production, the number of firms, exports and prices.'®

given the complexity of the model, the endogenous equilibrium outcomes are generally not
closed form solutions. Consequently, in the next section, we quantify the model and de-
rive these predictions numerically. In this section, we derive comparative statics analytically
where we can obtain closed form solutions. We use a simplified version of the model in which
there is only a single sector (solar electricity), two symmetric regions with the same trade
costs and underlying productivity, and no international trade. Hence, we drop the sector sub-
script s from all equations in this section. Where relevant we index the treated city by “17,
and the non-treated city by “2”. The qualitative results from this simple model are essentially

the same as the simulations in the full model.

PROPOSITION 1 (PRODUCTIVITY THRESHOLDS): Demand and production subsidies
leave the exit and innovation thresholds unchanged. Innovation subsidies make the market more
competitive and increase the exit threshold. In addition, innovation subsidies reduce the innova-

tion threshold.

16We observe empirical proxies for all of these outcomes except price. Because price is so important for the
welfare implications we keep track of this as well.
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In the simplified model, we can derive expressions for the exit, ¢}, and innovation, ¢!, thresh-

olds in the treated city-region, which depend only on exogenous parameters and policy vari-

ables.
f ) f 0+1-0 . 0
9 1 o — 1-0 —0 1-o
N =pfll — 2 L +1
((pl) f‘lee+1_o.<< 1f1> <1_ 11—0') )
i % 1- 11_0 fl >11(r
qol ng ( 11—0— ¢1f'1i
PROOF See Appendix D

The demand subsidy, y;, the and production subsidy, a;, do not enter these expressions. Intu-
itively, these subsidies scale up profits proportionately at all levels of productivity. Therefore
the relative benefits of each choice (exit, produce without innovating, innovate) remain un-
changed and hence the thresholds do not shift. A consequence is that production and demand

subsidies will not change the average productivity of operating firms.

An innovation subsidy is modeled here as a decrease in ¢, i.e. a reduction in the fixed cost of

innovating. This will lead to an increase in the exit threshold (¢7), meaning the least produc-

0+1-c

1-o

tive firms will exit. This can be seen by noting that when ¢, decreases (qﬁlf?) increases
because eﬁ—;" < 0. Intuitively, only firms who are already innovating or on the margin of
innovating will benefit from the innovation subsidy. They will lower their prices with lower
costs and, since these are already the most productive firms, they make the market more

competitive, pushing the least productive firms out of the market.

As we show in Appendix D, the innovation threshold can be written in the following form

(01)" = 4 (Bgs+ (97

Where A and B are positive constants that do not depend on the innovation subsidy. In this

291
a1
decrease the innovation threshold. Overall, the average productivity of operational firms will

form, it is straightforward to see that > 0. That is, an innovation subsidy (lower ¢,) will

increase, and a greater share will be innovators.

PROPOSITION 2 (MASS OF FIRMS): Demand subsidies and production subsidies will increase
the number of operating firms. Production subsidies will have a larger effect than demand subsi-
dies when the untreated region is large enough. Under stronger regulatory conditions, innovation

subsidies will also increase the number of operating firms.
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The equilibrium level mass of firms can be represented as (see details in Appendix D)
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PROOF See Appendix D

The mass of firms in city-region 1 depends on demand from both the treated region 1 and the
untreated region 2. These two regions correspond to the two terms in this expression. The
demand subsidy y; enters only in the numerator of the first term. An increase in the subsidy,
which is a reduction in y;, increases household expenditure in the treated region and therefore
increase the overall mass of firms in the treated region, M;."” The mass of firms in region 2

will also increase.

The production subsidy will impact units produced to sell both in the home region and in
the untreated region. Therefore, the production subsidy enters both terms of this expression.
The mass of firms will increase both due to increased profits which can be earned selling

domestically and increased profits from selling in the untreated region.

Since the demand and production subsidies enter differently into the first term of this expres-
sion, it is not immediately obvious whether a production or demand subsidy will have a larger
impact on the mass of firms in region 1. However, as long as expenditure in the untreated re-
gion E, is large enough, then production subsidy will be more effective because treated firms
can sell outside the treated region. A “large enough” untreated city-region is isomorphic to
there being a large number of untreated locations, which is the case in our data (of the 358

city-regions, only 42 ever had any subsidy policies - see Figure 3).

If we consider the relative impact of production and demand subsidies on treated as opposed
to the untreated region, a production subsidy will unambiguously increase the mass of firms

in region 1 relative to region 2, whereas a demand subsidy will increase the mass of firms in

both.

The innovation subsidy only influences the mass of firms through the changes to the threshold

7For the demand subsidy to have an positive effect, we need the denominator to be positive. This is almost
always guaranteed. In the purely symmetric and no subsidy case, a; = 1, ¢ = ¢; = ¢*. The denominator can
be written as (T"’l - 1) (¢*)? and it will be strictly positive since 7 > 1 by definition. Then if we introduce
some small subsidy, the denominator will remain to be positive since the function is continuous.
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¢ - From Proposition 1, we know that an innovation subsidy will increase the exit threshold
¢1,- However, there is no linear relationship between ¢}, and M,,. It can be shown that
(see Appendix D) an innovation subsidy will increase the mass of firms under a regulatory

condition which is likely to hold if the trade cost is not too large.

PROPOSITION 3 (INNOVATION): Demand subsidies, production subsidies, and innovation
subsidies all increase the number of innovators by increasing the number of operating firms.
Consistent with Proposition 2, production subsidies have a larger marginal effect compared to

demand subsidies.
PROOF See Appendix D

More detailed proofs are in the Appendix, but this follows directly from Propositions 1 and
2. From Proposition 1, we know that demand and production subsidies do not affect the exit
and innovation thresholds, so the share of innovators does not change. From Proposition 2,
we know the but the total mass of firms increases following these subsidies, so the number of
innovators must rise. The relative size of this effect for the two subsidy types will be driven
entirely by their impact on the mass of firms. If the same condition above holds such that
production subsidies have a larger impact on the mass of firms, then they will also have a

larger impact on innovation.

Since innovation subsidies increase the exit threshold and reduce the innovation threshold
they will increase the share of operating firms that are innovators. As long as the same condi-
tion above holds such that innovation subsidies increase the mass of firms, the total number

of innovators will also increase.

PROPOSITION 4 (REVENUES AND PRODUCTION): All subsidies increase city-level total
revenue through the increase of the mass of operating firms. Similarly to Proposition 2, production
subsidies have a larger impact than demand subsidies. Innovation subsidies will further increase

total revenue by increasing average firm revenue

9 ; fs+1-05 1-0 1975
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PROOF See Appendix D

City-level total revenue equals the mass of operating firms multiplied by the average revenue
per firm. All subsidies increase the mass of operating firms, thus raising total revenue. Inno-

vation subsidies encourage more firms to become innovators, and reduce the number of less
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productive firms leading to higher average revenues per firm.

Finally, since prices are non-decreasing in subsidies, the impact on production will be in the

same direction as revenues and generally larger as prices will tend to fall.

4.5 Comparative Statics in the Full Version of the Model: Quantifica-
tion and Simulation

In this section, we look at the full model which has multiple energy sectors (solar and non-
solar) as well as an international export market. We keep to initially symmetric regions, and
consider the introduction of different subsidies. This allows us to examine the effect of each
type of subsidy on treated and untreated regions. Although we present numerically simu-
lated solutions, it is worth noting that the propositions derived analytically in the previous

subsection continue to hold.

In setting values for the model parameters, we are guided by a set of regulatory conditions:
Production needs to be bounded; the innovation threshold is larger that the exporting thresh-
old, and the exporting threshold is larger than the exit threshold; the elasticity of substitution
across energy sectors (solar vs non-solar) is smaller than the one within each energy sector
(across varieties). Finally we normalise income towards electricity services and set it equal to
one. Recall, that we assume that this is policy invariant and we therefore treat it as exogenous

in our model. The values we select for the numerical simulation are given in Table 2.

Figure 6 presents the results of our numerical simulation, where we gradually increase sub-
sidies up to 1%. In other words, a;, yis and ¢, gradually decrease from 1 (no-subsidy econ-
omy) to 0.99. The solid blue line represents the change in outcomes as the production subsidy
changes. The dashed red and dotted yellow line represent analogously changes in outcomes
when demand and the combination of innovation and production subsidies respectively are
increased. Note that in the data, we never observe innovation subsidies alone - they are always
in cities that also have some sort of production subsidy. Thus, the dotted yellow line repre-
sents the evolution of outcomes as the combination of production and innovation subsidies

changes.

The outcomes on the y-axis of each panel in Figure 6 are the mass of innovators (a), the mass
of solar firms (b), revenue (C), panel production (D), and price (E), all for the solar energy

sector.

There are several clear findings. First, as a result of an increase in subsidy support, the mass

of innovating forms, the total mass of firms, the mass of exporters, revenue, and production
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Table 2: PARAMETER VALUES USED IN SIMULATION OF THE FULL MODEL

Parameter Value
Preference Parameters

o Elasticity of substitution across energy sectors (solar vs non-solar) 4
oo Elasticity of substitution across power 5
oo plant input varieties (e.g. solar panel models)
Production Technology Parameters
Shape parameter of Pareto distribution
93, 93’ . . .. . . 6
(dispersion of productivity draws within energy )
boss bos Location parameter of Pareto distribution (city’s productivity) 1
151 Sunk entry cost 1
fo fy Production fixed cost 1
1 Innovation fixed cost 1
o Eos Productivity gain from innovating 1.1
Trade Parameters
T Iceberg trade costs (Intra-China) 1.1
Ty Iceberg trade costs (foreign) 1.2
o Exporting fixed cost 1

all increase, while prices decline. Second, and consistent with the intuition from our ana-
lytical results in the simplified model, there are stark differences the effectiveness of solar
subsidies. Although all types of subsidies are effective, supply-side subsidies (production and
innovation) have stronger effects than demand subsidies across all outcomes. As there are
more untreated than treated cities in our simulation (as is the case empirically in China) firms
treated with supply-side subsidies are able to benefit from selling to multiple markets. They
benefit from a business stealing effect from solar firms in other cities. In contrast, demand sub-
sidies increase output for firms in other cities who can supply the treated city, which means

the local production effects are smaller in the origin city.

A third result, from Figure 6 is that combining production and innovation subsidies (dotted
yellow line) is more effective than implementing production subsidies alone (solid blue), par-
ticularly in increasing the number of innovators (consistent with Proposition 3). The extra
impact from innovation subsidies is also noticeable on revenue and Production (panels (c)

and (d) respectively), albeit more modestly.

In Figure E.1 we conduct similar exercises looking at the aggregate effects of the local sub-

sidies. The qualitative conclusions are quite similar, although as expected, the magnitude of
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the effects are smaller (especially for the production subsidies due to the negative business

stealing effect in other cities).

4.6 Summary on the Model

We have detailed a model with heterogeneous manufacturers supplying the (differentiated)
components of clean (solar) and dirty electricity to a local grid planner under imperfect com-
petition. These manufacturers make endogenous choices over innovation, exporting, entry,
exit and supplying the city-region they are located in as well as other cities in China and
overseas (subject to transport costs). We then introduce three types of subsidy (demand, pro-

duction and innovation) and examine the change in equilibrium of this multi-region model.

Both the analytical results and the numerical simulations generate clear predictions. Across
our outcomes of interest, which capture solar industrial activity, we predict that all subsidies
will generate positive effects. City-level innovation, revenues, production, firm numbers and
exports all increase. However, the strength of the impact varies according to the type of sub-
sidy. Noticeably, the local demand subsidy effect is weakest due to the possibility of meeting

the increased derived demand for solar panels from outside the subsidized city-region.

In the next section we will show evidence in support of all these empirical predictions.
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Figure 6: EFFECT OF DIFFERENT SUBSIDIES ON CITY-LEVEL OUTCOMES

(a) Innovation

(b) Number of firms
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Note: These are numerically simulated effects of the full model of different city-level subsidies on solar outcomes.
Each of the panels looks at a different outcome, with the level on the y-axis. The x-axis changes the level of the
subsidy from the no-subsidy economy normalized at 1 up to a 1% subsidy (0.99). The different lines represent
different types of subsidy: production (a), demand (y) and innovation (¢). Details in text and Appendix C.
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5 Empirical Strategy

Our objective is to study whether solar industrial policy was effective in increasing innovation
and production in the Chinese solar industry. Our treatment is the first time a city implements
a solar-related industrial policy. Once a city implements such a policy, it becomes an absorbing
state. This choice follows from our argument in Section 2, which suggests that no Chinese

city has completely removed all solar subsidies once it has started a subsidy program.

There are several challenges in evaluating causal effects of solar industrial policies. First,
implementation of policies is not random. For example, cities with nascent solar industries
may have been more likely to implement subsidies than those specialising in other areas.
Alternatively, areas in which the solar industry was lagging behind may have used subsidies
to try and catch up. We are helped here by the fact that the Chinese solar industry started
prior to the first policy interventions in 2006. Having pre-2006 outcome data will help us in

constructing control cities for the treatment cities.

Second, the impact of policies may vary over time. For example, R&D expenditure may take
time to lead to new innovations. We would like to capture these potential dynamic effects
because a key aim of industrial policy is often to “kick-start” an industry (Juhasz 2018, Choi &
Levchenko 2021), and also because concerns have been raised that subsidies may have boosted
local solar manufacturing and domestic jobs in the near term but that these benefits were not
sustained (Ball et al., 2017). Our approach should also be robust to these potential dynamic
effects of policy intervention, in light of the recent work on two-way fixed effects with differ-

ential treatment timing (Callaway & Sant’Anna 2021, Sun & Abraham 2021).

To help address these concerns we employ the Synthetic Difference-In-Differences (SDID)
methodology proposed by Arkhangelsky et al. (2021). The approach combines a familiar dif-
ference in differences approach, with a synthetic control approach to construct a counterfac-
tual group for each treated unit by taking a weighted average of all possible control units. The
weights are chosen such that the pre-trends of the treatment and control group are approxi-

mately parallel.

In our setting, cities are treated by solar policies in different years. We therefore first estimate
cohort-specific ATTs by applying the SDID for a given treatment year. We select synthetic
controls which are specific to a given cohort (a set of cities that implement a solar industrial
policy in year t) and a given outcome of interest (e.g., revenues). Given the likelihood that

treatment effects will be evolving over time, we construct the synthetic control using only
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the never-treated cities (i.e., cities that never implement a solar industrial policy in our study

period).

Formally, we estimate the treatment effect 7 by solving the minimization problem in equation
8, where Y; is the outcome of interest, p is the intercept, ; and f; are city fixed effects and
time fixed effects, respectively, and Wj; is a treatment dummy variable that takes the value of
one for every time period post-policy (absorbing state). The weights :*! are chosen to make
the pre-treatment trends in the outcome variable for treatment and control cities as parallel

as possible. The weights )Atfdid allow us to estimate our treatment effects by placing more

importance on those pre-treatment periods that better predict post-treatment outcomes.'®
A N T A
(87 i a f) = argmin{ 373 (i = p =i = B = Wier)’ GPPA (8)

After estimating cohort-specific ATTs, we then aggregate all the cohort effects using the
weighted average proposed in Arkhangelsky et al. (2021), which pools effects across all cohorts
and time periods and provides us with the ATTs reported in Tables 3, 4, 5, and 6. Standard

errors are estimated by the bootstrap clustered at the city level.

Finally, we study the dynamic effects of the policy by aggregating cohort-specific ATTs into
event study estimates following a methodology discussed in Callaway & Sant’Anna (2021).

Specifically, for some event study window, e, we calculate the ATT as:
ATT(e) = Y 1{g +e < TIP(G = g|G + e < T)ATT(g, g +e)

where g € G stands for some cohort from the set of all treated cohorts, G, ATT(g, g + e)
captures the ATT estimate for cohort g e years after treatment - i.e. at time g + e - and P(.)
captures the probability of a treated unit belonging to cohort g from all cohorts having at least
e post-treatment periods before the end of our study period, T. ' These event study estimates

are in Figures 7, 8, 9, and 10.%

Since our approach requires matching on pre-trends, it is worth briefly discussing the time

period for which we have data available and during which solar industrial activity was taking

BFor estimating , we use constrained least squares on the pre-treatment data with a tuning parameter to avoid
over-fitting. Using potential control units, we estimate A using least squares.

YWe estimate P(G = g|G + e < T) for cohort g by dividing the number of treated units in the cohort by the
number of all treated units that have at least e post-treatment periods.

2 As discussed in Section 6.8, these event studies may be affected by compositional effects beyond dynamic
effects. In this section, we explore the importance of these effects in more detail.
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place in China. The first solar policies began in 2007 when specific financial support was
allocated across provinces, cities, and municipalities. Our production, revenues, patents, and
capacity measures all commence in 2004. Morever, whilst the 2006-2010 period saw the fastest
growth in the industry and decline in the price of solar modules, initial growth occured during
the period of the Tenth Five-Year Plan (2001-2005). We therefore are able to compare outcome

trends across cities where the solar industry existed even if it was at a nascent stage.

Each subsection focuses on different groups of outcomes (innovation, firm numbers, output
and exports). We visualize the results in event studies and then show average results across all
cohorts of policies in all years. Some more detailed cohort-specific event studies are relegated

to the Appendix and referred to when necessary in the text.

5.1 Innovation

We begin with what we regard as the most novel findings, focusing on the impact of subsidies
on innovation using the number of patents filed by solar firms in the same city. Figure 7 de-
picts our estimates of for the four treatment types. As introduced in the previous section and
discussed in more detail in Section 6.8, these graphs combine all available cohorts into one es-
timate relative to treatment year.”! The dots (point estimates) capture the difference between
treatment and control and we show the 95% confidence intervals (bootstrapped standard er-
rors allowing for clustering by city). The top left Panel A shows the effects on the patents filed
by solar firms in cities that were treated with any subsidy policy. After the implementation of
the policy, there is a gradual increase in the patenting activity in treated compared to control
cities. Importantly, there are no signs of pre-trends in the years preceding the introduction
of the policies, suggesting our SDID method is doing a good job of matching treatments with

controls.

Panel B of Figure 7 examines demand subsidies. In contrast to the overall picture, we see no
significant effects in any of the post-treatment years as a result of the demand policies. Panels
C and D have the results for production and innovation subsidy respectively. These are obvi-
ously driving the overall results in Panel A, with slightly larger effects for innovation policies
in line with the model of the previous section. The impacts gradually increase in the years af-

ter the treatment. Importantly, the number of patents does not revert to baseline even 13 years

?IThese pooled estimates use all the available post-treatment information. As a result, the estimates mask com-
positional changes that are further discussed in Section 6.8.
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after the policy was introduced, which implies that firms were not simply bringing forward
activity that would have occurred even in the absence of the policy. Even though the errors
bands become wider, the impact remains significant even ten years after the implementation

for all categories but the demand subsidy.

Figure 7: ALL PATENTS BY SOLAR FIRMS

Panel A: Any subsidy Panel B: Demand subsidy
4 L 4 L
| |
3 i 3 i
2 ! 1 2 !
| ik |
1 | o - - 1 |
0 L et e——y .. . h 0,___41_‘_-_..._.‘.._._7_..._._.’4_'_2__.__.._;_4_2__'_,_____
4 | 1 |
| |
2 I 2 I
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
PO IR I A L A I N PG I N L I ISR
Panel C: Production subsidy Panel D: Innovation subsidy
I |
4 4
| |
3 f 3 f o
2 | 3 2 |
| Lot | . .
1 I o< 1 7 oot
0 D R AT e & 0 - e
4 | “ ¢« . |
| |
2 I 2 I
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
PSS IR I 2 A R ISR PCIECEN ST I I 2 I B\ 2
* Point Estimate 95% ClI

Note: Cohort- and year-specific ATTs are estimated by synthetic DID methods and are aggregated into event
studies as described in Section 5. The outcome variable in all panels is total patents of solar firms (with arcsinh
transformation). The treatment variable varies by panel: panel A uses any subsidy, panel B demand subsidy,
panel C production subsidy and panel D uses innovation subsidy. 95% confidence intervals are plotted around
point estimates.

Table 3 shows the aggregate ATT, which combines the treatment effects for all cohorts of
policies. Column (1) reports the “any subsidy” treatment shown in 7, but for all policies in
all years. Since the dependent variable is transformed through the Inverse Hyperbolic Sine
(IHS), the ATT effect implies an increase of approximately 64%** in the number of patents in

a city that introduces a solar subsidy. To put this in context, the average number of annual

22To calculate the percentage increase, we use e’ — 1. However, this is only an approximate estimator to give us
an intuitive sense of magnitude. This estimator is accurate only if the outcome value is relatively large. It is
also important to notice that the inverse hyperbolic sine transformation is not scale invariant, which is why
we have checked against other transformations such as using levels.
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patents by solar firms in a city is 13.1, so this would imply an increase to 21.5, or about 8.4

extra solar patents per year.

There has been much recent discussion over the interpretation of models with the IHS trans-
formation that we are using here (e.g. Aihounton & Henningsen 2021, J. Chen & Roth 2023
and Mullahy & Norton 2022). We also find that nontrivial magnitudes arise from alternative
transformations of the patent count such as using Poisson count data models, simple levels

or the log(1+Patents) transformation.

Columns (2)-(4) of Table 3 disaggregate the any solar policies in column (1) into the three
alternative types of subsidy. In column (2), we observe that although the ATT of demand
subsidies is positive, it is less than half the size of the first column (0.236) and is not statistically
significantly different from zero. By contrast, the production subsidy in column (3) is highly
significant with an ATT of 0.871, which is larger than column (1). And in the final column,
the ATT for Innovation subsidies is 1.060, the largest in the Table and over twice the size of

the any subsidy effect in column (1).

Table 3: ALL PATENTS

(1) (2) ©) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
All patents 0.496™ 0.236 0.871"* 1.060*"*
(0.200) (0.275) (0.227) (0.367)
Observations 6,086 6,086 6,086 6,086

Notes: *0.1 ** 0.05 *** 0.01. Each observation is a city (admin2 level region) and there are 358 cities in
China. 43 cities are treated by any subsidy. The time period is 2004-2020. Each column contains one Syn-
thetic Difference In Differences (SDID) estimate of the Average Treatment of the Treated (ATT), which
averages the staggered treatment effects across all cohorts (years in which there were solar policies). Col-
umn (1) has any solar policy, column (2) the demand (installation) subsidies, column (3) production subsi-
dies and column (4) innovation subsidies. Bootstrapped standard errors below the ATT clustered by city.
All regressions without controls.

Taking Table 3 as a whole, we see a very striking pattern. Subsidies seem to work in in-
creasing innovation, and the magnitude of the effects are consistent with the simple theory
we have laid out. The effects are largest for innovation subsidies and negligible for demand
subsidies. But production subsidies also generate positive, significant and non-negligible ef-
fects on innovation over the longer-run, which is consistent with the aim of green industrial

policies.

The influence of production subsidies on firm innovation occurs through two channels. First,

production subsidies lower the marginal cost of production, allowing firms to incur the fixed
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cost associated with innovating. Second, through expanding their production, firms may en-
gage in learning by doing. Some of these efficiency improvements are captured in patenting
(which is easier to do in the Chinese patent office than in those of richer countries like the
USPTO or EPO). In our extensions in Section 6, we use text-mining techniques to classify
patents and replicate our results using as an outcome variable the number of patents whose
abstracts reflect process efficiency improvements (which we denote as ‘learning-by-doing
patents’). The fact that we find positive effects for these patents is suggestive of subsidies
enabling learning-by-doing and the subsequent filing of the resulting productivity improve-

ments.

In our Section 6 extensions, we also explore whether some of the city-level estimates we
document may include business stealing effects across cities, which could mute the aggregate

impact of solar industrial policies. We find no evidence of negative cross-city spillovers.

5.2 Number of Solar Firms

Our model posits that the mechanism through which production subsidies positively impact
innovation is through first increasing the scale of activity of firms. We now proceed to eval-
uate the impact of solar subsidies on production activity at both the extensive and intensive

margins.

We begin with the simplest measure, that of the number of solar firms in a city. Figure 8
replicates the analysis of Figure 7, but using the number of solar firms as the outcome. Note
that the “doppleganger” cities used as controls can be different to those in Figure 7 as the
SDID routine picks the best controls for each outcome variable separately. Similarly to the
previous analysis we see parallel trends between treatment and control and a large positive
and significant impact on the number if firms after a city introduces pro-solar policies. Again

the effects persist for at least 13 years, and are highly significant even in the long-run.

Table 4, which parallels Table 3, presents the ATT for firm numbers. The overall effect in
column (1) is significant, but smaller in magnitude than for patents (0.186 compared to 0.496).
We see a similar qualitative pattern when looking across the policies. The demand subsidy
effects are positive, but small and statistically insignificant. The production and innovation

subsidies are, by contrast large and significant.
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Figure 8: FIrmM COUNT
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Note: Cohort- and year-specific ATTs are estimated by synthetic DID methods and are aggregated into event
studies as described in Section 5. The outcome variable in all panels is the number of solar firms (with arcsinh
transformation). The treatment variable varies by panel: panel A uses any subsidy, panel B demand subsidy,
panel C production subsidy and panel D uses innovation subsidy. 95% confidence intervals are plotted around
point estimates.

Table 4: Firm CoUNT

(1) () ©) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy

Firm count 0.186™* 0.060 0.288™** 0.381"**
(0.064) (0.043) (0.090) (0.135)
Observations 6,086 6,086 6,086 6,086

Notes: * 0.1 ™ 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions
in China. 43 regions are treated by any subsidy. Time: 2004-2020. Each column is one SDID regression.
The coefficient is the ATT which averages the staggered treatment effect. All regressions without controls
and variable is transformed using IHS.

5.3 Output: Revenues and Production

To assess the intensive margin effects on production we use two different sources of data.

From 2004 to 2013, we can accurately measure solar panel capacity and production in MWh
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using the ENF’s market research reports (ENF production dataset)”’. These reports are con-
structed based on detailed surveys of factory conditions. They therefore represent highly

accurate measures of solar activity.

As noted in Section 3, ENF stopped collecting such detailed information after 2013. Conse-
quently, we also examine the sales of solar firms using company accounts data. We use the
ENF register which contains a list of all solar firms (used in the previous subsection) and match
in accounts data from a variety of sources, in particular BVD Orbis, which is reasonably com-
prehensive for our companies. This gives us revenue data for solar firms during the 2004-2020

period, which we aggregate to the city-by-year level.

Figure 9 displays the pooled impact solar policies on solar manufacturers’ revenue. The results
show that solar manufacturers’ total revenue (measured in RMB millions and transformed us-
ing the IHS) increases more in treated than in control cities after the subsidies. There are
again statistically significant effects at the 95 % level for the any, production and innovation
subsidy groups that persist throughout a decade after implementation. The demand subsidy
is associated with zero or slightly negative effects although they are never statistically signif-

icant.

Table 5 presents the pooled ATT across all city-cohorts. As before, there is a strong, positive
and significant effect on revenue of 1.0 in column (1). Note that this is about five times larger
than the effect on the number of firms in Table 4, which suggests that revenue per firm has
increased as a result of the policy. In other words, there are not only more solar firms, they

have substantially grown in size.

The difference in treatment effects with respect to the type of subsidy in Table 5 goes in
the same direction as our previous results. Demand policy coefficients remain the smallest,

innovation subsidies the largest and production subsidies are in between.

Although most of our solar firms are “pure plays”, some are multi-product and produce more
than just solar panels and solar cells. Hence underlying Figure 9 and Table 5 there is an ad-

justment which should bring the revenue numbers more in line with just the solar activity*.

2Capacity is defined as the maximum 12-month output that could be achieved based on the company’s end of
the year factory conditions. Production is defined as the likely output that will be achieved in the year based
on expected orders

24The adjustment leverages yearly firm level data on exports to calculate the revenue share that is likely driven
by solar PV sales. Our results are robust to using the non-adjusted revenue measure and to a number of differ-
ent possible specifications of the adjustment algorithm. See Appendix B.8 for a discussion of the adjustment
mechanism and Figure ?? and Table F.7 for the raw revenue numbers.
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Figure 9: REVENUE
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Note: Cohort- and year-specific ATTs are estimated by synthetic DID methods and are aggregated into event
studies as described in Section 5. The outcome variable in all panels is the total revenue of solar firms (with
arcsinh transformation and adjustment leveraging export data). The treatment variable varies by panel: panel
A uses any subsidy, panel B demand subsidy, panel C production subsidy and panel D uses innovation subsidy.
95% confidence intervals are plotted around point estimates.

Table 5: REVENUE

(1) () ©) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy

Revenue 1.015** 0.069 1.802*** 2.563***
(0.455) (0.277) (0.629) (0.844)
Observations 6,086 6,086 6,086 6,086

Notes: * 0.1 ™ 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions
in China. 42 regions are treated by any subsidy. Time: 2004-2020. Each column is one SDID regression.
The coefficient is the ATT which averages the staggered treatment effect. All regressions with the revenue
adjustment procedure summarized in Section B.8 and without controls

In addition, revenue contains a mark-up, which means we are not just measuring the quan-
tity of solar output, but any increase in post-policy prices. We turn next, to a more precise
volume measure of output in Figure 10 and Table 6 using ENF production data, in which we

can measure directly the MWh that could be generated with the solar panel output of each

39



manufacturer.

The data reveals that treated cities experienced a faster increase in panel capacity after policy
shocks than the selected control cities did. The event-study analysis indicates that treatment
effects become statistically significantly different from zero two years after policy implemen-
tation. Table 6 again shows statistically significant and positive effects of production and

innovation subsidies on production capacity.

Figure 10: PANEL PRODUCTION CAPACITY
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Note: Cohort- and year-specific ATTs are estimated by synthetic DID methods and are aggregated into event
studies as described in Section 5. The outcome variable in all panels is the total panel capacity MWh of solar
firms (with arcsinh transformation). The treatment variable varies by panel: panel A uses any subsidy, panel B
demand subsidy, panel C production subsidy and panel D uses innovation subsidy. 95% confidence intervals are
plotted around point estimates

According to Table 6, the ATT of any subsidy on production capacity is roughly twice as
large as its effect on revenue. However, when we examine the revenue results in Table F.14
in the Appendix, limiting the revenue outcomes to end in 2013 as per the ENF production
dataset, the ATT for revenue is much closer to that for panel capacity. This suggests that our
revenue data is a reasonably accurate measure of production activities. The smaller overall

ATT for revenue implies that some multi-product firms may be shifting output from non-solar
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Table 6: PANEL PRoDUCTION CAPACITY

(1) (2) (3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Panel capacity 2.098™ 0.587 2.496™ 2.930™
(0.532) (0.467) (0.575) (0.773)
Observations 3,580 3,580 3,580 3,580

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions
in China. 18 regions are treated by any subsidy. Time: 2004-2013. Each column is one SDID regression. The
coeflicient is the ATT which averages the staggered treatment effect. All regressions without controls

activities to solar ones to capitalize on subsidies, or that solar companies may be using some

of the solar subsidies to increase their price-cost margins.

The richness of the ENF data allows us to look at many other measures of solar output. In the
Appendix Figure F.6 we show results for solar PV module production (an adjusted measure of
capacity based on expected orders) as well as solar cell production and capacity. The results

are qualitatively similar to what we have documented in the main text.

5.4 Exports

The final set of results we consider are related to international trade. We use Chinese official
customs data from 2004 to 2016 (the last year available). We match all export records with the
names of ENF firms, and aggregate the data at the city level according to the location of each

firm.

As noted above, some of our solar firms are multi-product, so they will be exporting non-
solar products. Since we would expect the effects of the subsidy to be larger for solar exports,
we differentiate between solar and non-solar exports using HS code "854140", which includes

solar panels and cells.”

Figure 11 illustrates the difference in solar export value of solar manufacturers in treated and
control cities. As with the other outcomes, we observe an increase in solar exports if a city

introduces a pro-solar policy.

The aggregate results of our export analysis are presented in Table 7. The two rows represent

estimates for solar exports and all exports from solar firms, respectively, and show a famil-

25Tn addition to solar products, the "854140" HS6 include some non-solar-related semi-conductor devices as well,
such as LED. Our results are highly similar if we use the more detailed "85414020" HS8 code, but we prefer the
HS6 code as the HS8 was introduced only in 2009.
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Note: Cohort- and year-specific ATTs are estimated by synthetic DID methods and are aggregated into event
studies as described in Section 5. The outcome variable in all panels is the total value of solar exports from
solar firms (with arcsinh transformation, million dollars). The treatment variable varies by panel: panel A uses
any subsidy, panel B demand subsidy, panel C production subsidy and panel D uses innovation subsidy. 95%
confidence intervals are plotted around point estimates.

iar pattern, with positive effects in column (1) which are small and insignificant for demand
subsidies in column (2) but larger and positive for production and innovation policies (last
two columns). Comparing the two rows, we see that, although the qualitative patterns are
identical, the ATT effects are about 1.5 times as large when focusing on solar exports instead
of all exports. This is consistent with our expectations. Table F.8 in the appendix also shows
non-solar exports. The magnitude for the non-solar exports is much smaller than the solar
exports in Table 7, which is consistent with our argument.” Lastly, we observe a significant,

albeit small, increase in the number of exporting firms in treated vs control cities.

%There can be effects of solar subsidies on non-solar exports for a number of reasons. First, if the firm faces
financial constraints, the solar subsidy can help relieve this and enable greater production and exporting of all
goods. Second, if there is a fixed cost to exporting, the greater size of the subsidised firm will help spread this
cost over a large number of units.

42



Table 7: EXPORTS

(1) (2) 3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Solar export value 3.192" 1.153 4.298"* 6.092**
(1.231) (1.145) (1.498) (2.366)
Export value 2.451™ 0.658 3.217* 4.160™
(1.178) (1.130) (1.443) (2.143)

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions in
China. Time period for estimation: 2004-2016. Each column is one SDID regression. The coefficient is the ATT,
which averages the staggered treatment effect for all cohorts. All regressions are without controls.

5.5 Impact of Solar Subsidies: Summary

We have documented a set of results that appear consistent with our theoretical model. City-
level solar industrial policies do appear to have important effects on the development of the
solar industry. First, we find positive effects on all the solar outcomes we have examined:

innovation, firm numbers, revenue, production, and exports.

Second, we find that the impact of different types of subsidies also lines up with our model
predictions. Demand subsidies have positive although small and statistically insignificant
effects. We interpret this as other city-regions in China being able to supply any city with
solar panels in response to a policy-driven demand increase. Hence, demand policies have a

muted effect on the local industry.

In contrast, production subsidies have larger and significant effects on output (higher capacity,
exports, revenues and firm numbers), because they are only given to firms located in the city.
Their effect on innovation is consistent with larger firms being able to cover the fixed costs

of R&D and also learning-by-doing.

The largest effects come from innovation subsidies. This is unsurprising for innovation out-
comes, but it may appear less obvious for variables like production, revenues, or exports. The
reason, as noted above, is that in our data the cities who introduce innovation subsidies also
introduce production subsidies. Hence, the innovation policy is actually a bundled production
and innovation policy. The larger effects imply that this bundle is more effective than a single

production subsidy, indicating an additional effect driven by the innovation subsidy.
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6 Extensions and Further Robustness Tests

Our data allows us to extend the previous analysis in a number of ways. In this section, we

briefly summarise some of these.

6.1 Business Stealing? Cross-city spillovers

To what extent do the positive treatment effects we identify arise from cross-city business
stealing? A plausible concern is that the introduction of a solar policy in one city may simply
re-allocate activity from non-targeted to the targeted city. These still represent positive effects
from the perspective of the local city. However, from the national perspective, if all subsidies
do is alter the distribution of solar activity within China achieving no increase in aggregate

solar activity, then these are simply beggar-thy-neighbor policies.

On the other hand, there may be positive spillovers. For example, if firms can learn from their
neighbors in other cities, then policy-induced innovation or expanded production in one city

may increase solar activity in a neighbor.

To investigate these potential effects we have, as usual, to identify who are the cities most
“at risk” of business stealing effects. The most obvious group of cities are those who are
contiguous to the cities who introduce solar policies. We set up a new set of SDID estimates
which use contiguous cities as the treatment group and search for the best synthetic controls

amongst the rest of the never-treated cities.

We summarize the results in Appendix Table F.9. Contrary to the business stealing concern,
all the ATT effects are positive, rather than negative, rejecting business stealing. As would
expect, these indirect effects are all much smaller in magnitude than the direct effects. For
example, the ATT for revenue is only a bit more than half (0.62), compared to our main result
(an ATT of 1.0). Moreover, the effects are weaker than the direct effect for many outcomes.
For example, not only is the production capacity impact only 0.385 compared to 2.098, it is

statistically insignificant.

Rather than business stealing, positive spillover effects will magnify the city-level policy im-

pact from a national perspective.

6.2 Pollution

One important outcome is the degree to which industrial policy has helped tackle climate

change. Ultimately, the major effect on reducing emissions comes from the aggregate effect
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on reducing solar prices which helps electricity grids around the world decarbonize. We can
look more narrowly, however, at whether industrial subsidies have reduced local pollution
in China. Our model suggests that there should be some local impact, as the grid planner

switches away from dirty sources of electricity such as coal and into solar power.

To look at this empirically we implement our SDID approach using the amount of particulate
matter (PM2.5) in the city’s atmosphere as an outcome (see Appendix Table F.10). The results
show that there is a negative effect in each column, but this is larger and only statistically
significant for demand subsidies. This is the opposite from the other outcomes where produc-
tion and innovation subsidies dominated but it makes sense, as the demand subsidies work
directly to switch the grid planner away from using fossil fuels (like coal) for energy and so

reduce local pollution.

6.3 Patent Quality

A concern with patents in the Chinese patent office (SIPO) is that they may be of very low
value. We have argued that this is in some ways a strength as it enables us to pick up many
of the more minor process innovations that would be missed in say, the US or EU patent
offices. Nonetheless, to examine whether our results are driven solely by low value patents

we implement several tests.

First, we construct measures of cite-weighted patents, i.e. we weight each patent by the num-
ber of patents it receives in the future from all other patents in every patent office in the
world. To do this we use the concept of patent families, so we do not double count an inven-
tion that is taken out in multiple patent offices (although we weight the single patent family
by all citations to every member of that family as is standard in the literature). The results in
Table F.17 show that using citation-weighted patents as an outcome gives very similar results
to using patent counts as an outcome. The coefficients are very similar in magnitude to the
main results exhibit the same qualitative pattern, being uniformly positive, but insignificant

for demand policies.

As a second approach to tackling the quality issue, note that SIPO classifies patents into three
types: design, utility model and invention. Design patents are considered low value and would
not receive protection in the USPTO or EPO. Hence, we would want to see that solar policies
stimulated valuable innovations of the invention or utility type. Table 8 implements this test.
We first reproduce the results from Table 3 in the first row. Then in the next row, we confine

the results to the Design patents. As expected, the policy effects in all columns are small and
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statistically insignificant for these low value patents. The next row looks at the complement
- invention/utility patents. Here we find the usual pattern of results with much larger and

significant effects (except for demand, which remains small and insignificant).

The last two rows split the invention/utility patents into solar vs. non-solar patents using
technology class codes. We find larger effects on solar patents than on non-solar patents. For
example, in column (1) the ATT effect for solar is twice as large as non-solar, and the solar

ATT is statistically significant, whereas the effect on the non-solar patent outcome is not.

Table 8: RESULTS BY PATENT TYPES

(1) ) ®) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy

All patents 0.496™* 0.236 0.871*** 1.060*™*
(0.200) (0.275) (0.227) (0.367)

o Design patents 0.186 0.277 0.237 0.151
(0.138) (0.216) (0.173) (0.253)
o Invention/utility model patents 0.529" 0.201 0.937 1.097**
(0.201) (0.274) (0.232) (0.373)
» Solar patents 0.515"** 0.189 0.857*** 1.090*
(0.168) (0.210) (0.216) (0.358)
«» Non-solar patents 0.247 —0.034 0.732*** 0.809*"
(0.168) (0.196) (0.203) (0.320)

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions in China. 43 regions are
treated by any subsidy. Time period for the estimation: 2004-2020. Each coefficient represents one sdid regression. The coefficient
is the ATT which averages the staggered treatment effect for all cohorts. Chinese patents can be classified as design patents, utility
model patents and invention patents. Utility model and invention patents contain IPC codes and can therefore be further classified
into solar patents and non-solar patents. All regressions are without controls.

These results are not only reassuring as an econometric check. They also help to rule out
alternative mechanisms. Subsidies create enhanced cash flows for firms, so one concern is
that the innovation effects are driven simply from relieving such financial frictions, which are
believed to be large for innovation (Arrow, 1972), and a major issue in China (e.g. Song et al.
2011). The fact that we only observe effects for non-trivial, solar innovation and not for more
trivial, non-solar innovation suggests financial constrains are not what primarily drives our

findings.

6.4 Learning-by-doing Patents

As a further investigation of innovation mechanisms, we used the text of patent abstracts
to identify those that were more closely related to learning-by-doing, as opposed to those
representing new products or basic science research. We leverage the pioneering work of
Liu (2023) who manually read the text of 3,299 Chinese solar patents and classified them

into different types. We follow standard text cleaning procedures and train a random forest
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algorithm on 85% of his data. We use our model to classify the universe of patents filed by ENF
solar manufacturers during the full time period of our analysis into patents associated with
learning-by-doing and patents that correspond to new products or basic science research. The

15% hold-out sample had a high rate of validation (over 90%).

As illustrated above, our hypothesis is that solar manufacturers will patent certain efficiency
improvements that result from learning-by-doing. Thus, we can shed light on the importance
of learning-by-doing in driving our results by examining treatment effects for those patents

that reflect process improvements.

In Appendix Table F.13, we replicate our results using patents that have learning by doing
characteristics. The results follow the same pattern observed for all patents in Table 3. Again,
we find no effects for demand subsidies and a clear hierarchy of positive effects where innova-
tion subsidies achieve the greater impact followed by production subsidies. This suggests that
learning by doing may have some role in the pattern of results we observe which is something

we will investigate further.

6.5 Productivity Analysis

As a further cross-check on using patents as an innovation measure, we turn to an entirely
different source of information. Our accounting data from Orbis enables us to construct the
inputs to production such as labor and capital. These have many of the concerns that are
well discussed in the production function literature (see De Loecker & Syverson 2021, for a
survey). We are fortunate, however, to have a direct quantity based measure of output from
ENF which means that we can, in principle separate TFPQ from TFPR. Panel A of Table F.14
focuses on the Orbis derived measures which are available through 2020 and Panel B repeats
these for the data through 2013 where we also have ENF production. Panel A shows that the
treatment effects are smaller for labor and capital than they are for revenues. For example, the

ATT for production subsidies is 1.78 for revenues and only 1.45 for labor and 1.25 for capital.

Since the larger impact on revenues could in principle be due to increasing prices as well
as increasing quantity of output, Panel B of Table F.14 shows the analogous results over the
shorter period. We see that the coefficient on Solar production is actually slightly larger than
for revenues (e.g. 2.5 vs. 2.17 in column (3)), suggesting if anything, a small fall in solar prices.
Consistent with the longer period results of Panel A, policy effects on inputs are smaller than

for outputs, suggesting positive productivity effects.

Overall, Table F.14 suggests that solar subsidies appear to increase not only total activity in
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a city, but also productivity. This is independent evidence over and above the earlier results

from patenting, that the policies stimulated innovation.

6.6 Placebo Tests: Using Non-Solar Patents and GDP per capita as
Outcomes

A concern is that there may be other policies (or events) that are introduced at the same time
as the solar policies we focus on. For example, maybe a dynamic city government has a raft of
policies that raise performance, so are treatment effects are biased upwards. For example, Wei
et al. (2023) and Z. Chen et al. (2021) focus on the InnoCom policy that subsidizes all high-tech
firms and was expanded after 2008. Although there did not seem to be a bunching of Icoal
policies concurrent with solar from the PKULaw data, we can test for these concerns more
formally by running a series of placebo tests. In particular, we can examine whether or not
the solar policies were associated with an increase in GDP, population, non-solar patenting,

etc. If they were, this might reflect other ‘hidden policies’, driving our results.

Fortunately, when we apply the same synthetic DID method using city-level total patents and
GDP per capita, it seems that this is not the case. In theory, solar-specific industrial policies
should have minimal impact on the total number of patents, as non-solar patents make up the
vast majority. Additionally, these policies are unlikely to significantly affect GDP per capita
since the solar industry represents a relatively small portion of the city-level total GDP. Indeed,
Tables F.16 and F.18 reveal that there is no significant effect on either total patents or GDP per

capita.

6.7 Adding Controls

Our baseline SDID analysis does not control for additional variables, since the city fixed effects
should effectively absorb most of the relevant confounders. As a complementary strategy to
the previous subsection, we considered specifications controlling for a number of observables,
such as GDP, population, income, local tax revenue, etc. These are potentially “bad controls”
if the policies affect the growth of the city. However, since solar is a relatively small part of
the economic activity of a city they may be useful in picking up cities which are subject to
unobservable shocks correlated with the introduction of solar policies that our SDID approach

is not fully capturing.

Although GDP per capita tended to be positively correlated with the outcomes, its inclusion

made almost no difference to the magnitude or significance of our treatment effects. Table
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F.15 shows the results of including such controls on all our main specifications. Although the
sample is slightly smaller due to missing values on a few of the smaller cities, there is almost
no discernible impact. These findings are robust to splitting up GDP from population and
including other observables. All this suggests our econometric procedure is doing a good job

at dealing with unobservable shocks.

6.8 Compositional Changes and Dynamic Effects

In Section 5, we used aggregate event studies to discuss our policies’ dynamic effects. While
these event studies summarise the overall movement of all treated cities succinctly, they may
be also affected by compositional effects - stemming from changes in the composition of co-
horts contributing to different years” ATTs - beyond dynamic effects (Callaway & Sant’Anna
2021).

In Appendix Section F.11, we use two additional strategies which help us isolate solar policies’
dynamic effects from cohort composition. First, following a strategy recommended by Call-
away & Sant’Anna (2021), we select a set of cohorts and study dynamic effects only within a
study window where these cohorts have estimates.”” As the composition of cohorts is stable
within this window, this strategy yields unbiased estimates for these cohorts’ average dy-
namic effects, but has the downside that it requires dropping a lot of data to select the subset
of cohorts. The logic that we follow in making this selection is that we would like to use as
many cohorts as possible while also having at least one treated period for all of our outcome
variables.”” Based on this, aggregate event studies using cohorts treated between 2007 and
2013 are reported in Appendix Figures F.1, F.2, F.3, F.4, and F.5. They should be interpreted as
the event studies presented in Section 5, except for the addition of a red vertical line, which
indicates the end of the study window until which there are no compositional changes. The
patterns we observe on these figures are broadly consistent with what we have seen previ-

ously.”

A second approach is to examine an event studies for each individual cohort. These cohort-

?In other words, the beginning of the study window is the minimum number of pre-periods that cohort members
have and the end of the study window is the minimum of the members’ post-periods.

28Note that patenting, revenue and firm count outcome variables are available until 2020, while exporting data
ends in 2016 and ENF production data in 2013. Therefore, the study window will have four years shorter
post-treatment periods for exports and seven fewer years for ENF variables than for the other outcomes.

#The one difference is that the long-term effects of the policy start to stabilise rather than increase continually.
This may indicate that the apparent increasing effect in our earlier graphs was due to due to early policy
cohorts having larger effects than later cohorts.
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specific estimates are unaffected by compositional changes and so, they should represent pure
dynamic effects too. First, we focus on the 2007 cohort, which was the first time production
subsidies were introduced at the beginning of The Eleventh Five-Year Plan. These figures
are shown in Appendix Section F.11.2. The broad conclusions of our discussion remain, with
these graphs showing again more of a stabilised effect than a continued increase. For outcome
variables that have coverage until 2020, at the end of Appendix Section F.11.2, we also inspect
cohort-specific dynamic effects using the 2013 cohort, which was at the end of our previously
selected study window. The results, here, are consistent with what we have seen for the 2007

cohort.

Overall, these results suggest that composition is not driving our results.

6.9 Solar Patents Taken out by Non-solar Firms

As noted in Section 3, our city-level measures of the Chinese solar industry’s activity are
derived by aggregating the outcomes of solar producer firms listed in the ENF register. For
some variables, however - specifically, patents and exports - we could also identify city-level
activity directly using ’solar’-related classification codes or patent and product descriptions.
This strategy has the advantage that it relies less on the ENF data set, but it comes with the

cost that these alternative measures may be coarse measures of the relevant industrial activity.

There are a substantial number of solar patents that are taken out by entities outside our
dataset such as by universities, government labs, individuals and ‘non-solar firms’. The last
category would include firms who are not producing solar panels, but may be operating in

technologically related industries.

Table F.12 provides a robustness check utilising this alternative strategy by applying the SDID
method to city-level total solar patents.”® The results show the familiar pattern, with inno-
vation subsidies having the strongest effect, production subsidies the second strongest effect,
and demand subsidies showing no significant effect. The magnitude of these estimates appear
to be smaller than the estimated effect on ENF firms’ (solar) patents in Table 8. A possible
explanation for this is that the keyword-based identification strategy may capture a host of
technologies which support solar technology but are not among the core technologies affected

by solar subsidies.

30City-level solar patents here are captured through the keyword-based search of patent abstracts rather than
IPC codes, which we use for our main results. The reason for this is only that the keyword-based search is
easier to carry out on the Qichacha platform.
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6.10 Magnitudes

We can use the structure of our model to do a more rigorous quantification, but we first present
some simple exercises to get an idea of the order of magnitude of benefits compared to the
costs of the policies. The ASIE data has information on the total amount of subsidy received
by our solar firms. We do not know whether these are all solar related local subsidies, but
we can use the amount of subsidies as an outcome variable using the same SDID strategy

employed in the rest of the paper.

Table F.19 shows the results. Although they are imprecise, column (1) suggests a significant
positive treatment effect of local policies on subsidies received by solar firms, as we would
expect. On face value, it implies that that the average subsidy per city per year was around
RMB 13.6 million (about US $2 million). This is almost the same as the average difference in
subsidy between all treated and all non-treated cities at the end of the sample period, which
is reassuring. If we include an estimate of administrative costs and conservatively apply a
heavy 100 % additional deadweight cost for the distortions induced by the policy, this comes
to about US$4.3 million. We estimate that revenue increases on average by RMB 135 million

(about US $19 million). So the benefits seem about 4.4 times the costs.

Of course, this calculations may be missing out on other ‘hidden subsidies’ that are not cap-
tured by the ASIE data which would reduce this benefit-cost ratio. Still, it would take quite a

large increase in costs for the policy to have been deemed a failure.

7 Conclusions

In this paper, we have shown how city-level solar supply subsidies (both of production and
innovation) increased innovation (as measured by patenting) and production (as measured by
number of firms, revenue, panel production capacity and exporting) in treated cities relative
to those who do not implement such policies. By contrast, the local effect of demand side

subsidies were small and statistically insignificant.

We interpret these effects through the lens of a model whereby production subsidies increase
firm size which incentivises them to cover the fixed cost of exporting and R&D. Innovation
subsidies which in Chinese cities are always layered on top of production subsidies add to this

impact by directly subsidising R&D.

Demand subsidies targeted at encouraging generation of solar electricity do not have a sizeable

effect on solar production or innovation. We argue this is because the demand stimulus can be
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met with production supplied from anywhere in China (solar parks and other solar generators

were not required to use locally produced solar panels).

We are therefore able to document a link between government support at the early stages
of an industry and persistent growth and innovation. This is the central tenet of industrial
policy. The fact that we observe this in an industry that is displacing dirty energy generation

worldwide magnifies the importance of our finding.

Our results indicate that city-level solar policies helped to drive up not just entry and pro-
duction but also innovation and exporting. This helped to drive down solar generation costs
not just in China but across the world which, in turn, may have helped to encourage global

diffusion of solar energy.

What Chinese cities have achieved in the last 20 years using these policies is staggering. Our
results represent a “ray of hope” for countries worldwide who are trying to balance the need
for more energy to drive economic growth with the the need to drop emissions in order to
avoid catastrophic climate change. There is hope not only because citizens everywhere will
benefit via diffusion from cheaper solar energy built on the back of Chinese solar policies but

also because what China has done can serve as a guide to what might be achieved elsewhere.

The industrial policies pursued in China, in effect, offer a route to renewable energy that is
cheap enough to displace dirty sources of energy. This is a route that the US and EU (and
many other countries) are also pursuing offering additional hope that we will reach net zero

whilst continuing to raise living standards around the world.
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A Institutional Background on China’s Industrial Policy

towards Solar

In this Appendix we expand on the summary in the main text regarding China’s policy sup-
port towards solar manufacturing and R&D. This borrows from Ball et al. (2017)’s rich account
of China’s photovoltaic industry as well as other sources such as T. J. Chen (2016) and Nemet
(2019). We outline several features of solar policy support in China. The 5-Year Plans provided
national guideline and sectoral industrial policy focus. However, the funding and implementa-
tion of these guidelines was mostly carried out at the local level, which generates considerable
heterogeneity in policy support towards the solar industry across cities. Measuring industrial
policy support is challenging and the Chinese solar industry is no exception. We close this
background section by illustrating our novel approach to obtain micro-level measures of pol-
icy support towards both solar manufacturing and solar innovation. Our approach is based
on the analysis and classification of the policy text of the universe of laws and regulations

covering the solar industry during the 2004-2022 period using the PKULaw database.

A.1 Solar PV in the Government’s Five-Year Plans

The Chinese government outlines its vision for sectoral industrial policies in its five-year
plans. These documents provide national guidance for stakeholders and local implementation
what ultimately determines the intensity of policy support. Although there was some policy
interest as early as the 1995 State Planning Commission, solar only became a targeted sector
in the 2001-2005 Tenth Five-Year Plan, together with other renewable energy sources. In
2005, a comprehensive legal base for the promotion of renewable energy was provided in
the Renewable Energy Law (zaisheng nengyuan fa). The law established feed-in-tariffs and
legalized the provision of interest subsidies and tax incentives for renewables. Subsequently,
the Chinese government has promoted solar energy in its Eleventh, Twelfth, and Thirteenth
Five Year Plans. These Plans first emphasised export-based manufacturing and subsequently
guided the industry towards more sophisticated R&D spanning the whole solar value chain

in later periods.

In 2001, at the start of the Tenth Five-Year Plan for New-and Renewable-Energy-Industry De-
velopment, China had no domestic solar photovoltaic industry. This plan was China’s first
serious attempt to launch renewable energy industries. With the aim of developing a solar
supply chain, the State Economic and Trade Commission, encouraged the production of solar
cells and modules, with specific targets to be met by the end of the Plan. While innovation

appeared as a long-term objective to increase the competitiveness of the national solar indus-
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try, the Plan did not specify policy support towards R&D. The Tenth Five-Year Plan period

brought considerable growth to the solar industry, exceeding government’s expectations.

The Eleventh Five-Year Plan (2006-2010), for the first time, saw the solar industry as an oppor-
tunity to attain technological leadership. It emphasised the expansion of factory production
and outlined strategies to increase R&D on polysilicon material and cell efficiency. It also
encouraged the adoption of panels across the country. This was with the broad objective of
strengthening the PV manufacturing supply chain. The Plan included funding for R&D and
manufacturing development for the first time, to be generated by renewable energy from local
manufacturing by 2010 and technological self-reliance by 2020. The solar industry witnessed
exceptional growth during this period. Figure 2, which we construct with our data on the uni-
verse of solar manufacturers in China, displays a clear increase in industrial activity, along
both production and patenting outcomes. On top of this, in 2006, the Chinese government
kick-started its Renewable-Energy Law to sustain and speed the incipient growth of its solar
industry. Of course, the 2004-08 period was one of big increases in demand for solar panels
from the US and EU due in part to policies to boost solar energy (such as Germany’s generous

feed-in-tariffs).

China reacted to the 2008-09 Great Recession through many stimulus policies including so-
lar energy through (i) investment in domestic power stations through feed-in-tariffs, (ii) the
“Golden Roof” program subsidising home installation of solar panels and (iii) the “Golden

Sun” demonstration stations.

With the Twelfth Five-Year Plan (2011-2015), the government kept pushing for solar adoption,
supply-chain expansion and indigenous R&D. The R&D goals became more detailed and cov-
ered all aspects of the production cycle: raw materials, ingots, wafers, cell, modules, auxiliary
systems, and even production methods and tools. WTO complaints against the Chinese solar
industry were launched in 2011 by the US and in 2012 by the EU. There was realisation of
over-capacity in NDRC ordinances and pressure for consolidation from 2012, with Suntech

and LDK both going bankrupt.

China’s Thirteenth Five-Year Plan (2016-2020) again mentions solar as a sector to prioritise
through industrial policy support, targeting capacity and R&D expansion, as well as industry-
wide cost-reduction. Within this plan, the China’s National Energy Administration issued, in

December 2016, a specific Thirteenth Five Year Plan for Solar Energy Development.
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A.2 Policy Support Towards Solar Manufacturing

China’s national, provincial, and local governments, all provided an array of subsidies to the
solar industry. However, the extent and nature of this policy support in China remains a
disputed issue, which has reached the international courts.’” Ball et al. (2017)’s qualitative
research, based on interviews with government officials, high-level members of the industry,
manufacturing firms and academics, provides some clarity on the administrative level and

characteristics of policy support and a rough estimate of its size.

Subsidies to solar manufacturing were managed and allocated by local governments, despite
following the national guidance embedded in the Five-Year Plans. The timing, size, and target-
ing of policy support thus varied significantly depending on the city or region. Local govern-
ments often engaged in competition via policy support to build up their solar manufacturing

industry.

Solar firms are predominantly privately owned with the strong patronage of local govern-
ment. As Chen (2015) puts it, “local governments in the solar PV episode have been essen-
tially strategic partners to local enterprises”, making investments like Venture Capitalists.
Local government bureaucrats are inventivised to grow their local economies (and solar in
particular) as it helps their cities look good and fosters their career advancement (see Bai et
al, 2020). Examples include Suntech (PV producer) founded in 2001 and sponsored by the city
of Wuiji, or LDK (wafer producer) founded in 2005 and sponsored by the city of Xinju.

Subsidies followed a similar structure to that of other sectoral industrial policies in China. At
first, they were mostly targeted towards manufacturing. Since 2006, many local governments
took advantage of the national legal framework easing policy support for renewable energies
and provided generous tax incentives to solar manufacturers. Many city-level governments
also offered discounts for land acquisitions and cash investments for struggling solar man-
ufacturers. Moreover, city governments hosting solar-manufacturing clusters within their
administrative boundaries, offered additional mechanisms for financial assistance to resident
firms. Ball et al. (2017) conjecture that this continuous and wide ecosystem of policy sup-
port may lay behind the continuous process innovation and improvements in China’s solar

manufacturing productivity, which is something we investigate directly in this paper.

3For example, the US Department of Commerce’s investigation in the wake of the SolarWorld trade allega-
tions. The EU and US anti-dumping investigations produced lengthy reports, but unfortunately most of the
information is redacted, which is why we have gone to considerable lengths to estimate solar policies.
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A.3 Policy Support Towards Solar R&D

China’s national vision and ecosystem for R&D involve a variety of governmental, corporate,
and academic actors, coordinated by the Five Year Plans’ national guidance. At the national
level, the National Development and Reform Commission (NDRC), the National Energy Ad-
ministration (NEA), the Ministry of Science and Technology (MOST), the Ministry of Industry
and Information Technology (MOIIT), the Ministry of Finance (MOF), and the Ministry of Ed-
ucation (MOE), all contribute, to varying degrees, to crafting energy-policy, and designing

industrial and R&D policies targeting the solar industry.

The structure of the Chinese government policy support towards R&D is much more com-
plex than that of policies targeting manufacturing. Government funding for solar innovation
encompasses a variety of programs at a range of firms, universities and research institutions,
which fund both basic and applied research. As it is the case for manufacturing subsidies,
there is a lot of opaqueness around the nature and quantity of public solar R&D expenditure
in China. However, Ball et al. (2017) provide some clarity on the government’s solar-R&D
efforts, constructed from the analysis of public information and interviews with key actors in
the Chinese solar industry. ** The authors estimate a lower bound of $74 million spending
in solar R&D during the 2000-2005 period by both the national and local governments. Over
the same period, they estimate that total solar R&D (public and private) was around $223 mil-
lion, implying that about a third of solar R&D was government funded. As it is the case with
manufacturing subsidies, there is considerable regional heterogeneity in solar R&D funding,
as cities and provinces support local laboratories and research centres dedicated to engineer-
ing and technology innovation. The next section explains our approach to measuring local

industrial policy support for both solar manufacturing and solar innovation.

%2In section 2.3 we explain how we provide novel city-level measurement of the government’s support towards
both solar manufacturing and solar R&D.
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B Data

We summarized the rich and original data we have compiled in the main text in 3. Here, we

go into more details on the various datasets that we have matched and compiled.

B.1 Solar industrial policy

The main data on industrial policy towards solar manufacturing and installation comes from
PKULaw’s Laws & Regulations dataset. The Laws & Regulations database is a comprehen-
sive and reliable source of China’s legal information, including all laws, regulations, and any
related legal information implemented by the central and local governments since 1949. We
obtain data disaggregated by industry and gather all regulations pertaining to the solar pho-
tovoltaics industry, which start in 2006. The dataset contains information on the title, validity,
administrative level, department, release date, and implementation date of each policy. It also
includes a link to the original policy document, which contains the text of each regulation or
announcement. We manually inspect the full text of each policy and classify them into sub-
sidies, announcements, poverty alleviation policies, and records. We further classify subsidy

policies according to whether they target solar installation, production, or innovation.

B.2 Solar panel and cell manufacturers register, production, and ca-

pacity data

The ENF Solar Industry Directory is a register of 50,800 worldwide photovoltaic (PV) compa-
nies. Because it is the leading solar website, most companies self-register on ENF’s platform.
ENF reviews daily news regarding the solar industry, as well as available lists of key solar
exhibitions, to incorporate the remaining new solar companies. Additionally, ENF relies on
government organizations and a variety of web-scraping techniques to complete the full list
of solar companies. ENF uses automatic scanning to detect company updates, which triggers
careful checks from ENF database experts to update manufacturers’ information. Finally, ENF
automatically scans for signs of companies ceasing their activities. Hence, ENF is able to rea-
sonably capture a snapshot of all solar panel manufacturers each year. We obtained access to
the historical directories of solar panel producers from ENF Solar Industry Directory, avail-
able from 2010 until 2021 (henceforth, “ENF register” dataset). We also gained access to the
last edition of ENF’s Chinese Cell & Panel Manufacturers Report. This dataset (henceforth,
“ENF production” dataset) allows us to measure, for each firm, their production and capacity

figures (in MWh) for both solar panels and solar cells across the 2004-2013 period.
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The ENF register and ENF production datasets overlap for the 2010-2013 period. We matched
the two datasets by firm name and contact details (address, phone, website, fax, and email).
We manually inspect and address the remainder of the mismatches. We are left with a sample
of 1,718 Chinese solar panel manufacturers, operating at some point between 2004 and 2020,
which includes production and capacity data for each manufacturer during the 2004-2013

period.

ENF includes projections of production and capacity in 2014, but we chose not to use this.
2013 is a transition year with some actual and some projected data, so we felt comfortable

with using this year. We also checked robustness of the results to ending the sample in 2012.

B.3 Firm counts, entry and exit

The Qichacha platform™ allows us to gather detailed firm-level information, spanning from
registration to exit, and updated periodically following government requirements. This in-
cludes the type of business, the identity of affiliated enterprises, a variety of judicial and legal
details, company news, corporate annual reports, and our main variables of interest, firm
entry and exit dates. The Qichacha platform collects this information from multiple data
sources, but mostly relies on government’s official sources, which include the National Enter-
prise Credit Information Publicity System, the China Court Judgment Documents Network,

and the China Enforcement Information Disclosure Network.

To retrieve the key variables for our sample of ENF solar manufacturers, we manually search in
the platform using ENF firms’ Chinese names. Some of the firms included in the ENF register
are based in Hongkong or Taiwan and are therefore excluded from the Qichacha platform.

Our final sample of manufacturers is restricted to those with an address in mainland China.

We still face one limitation when using this approach. The 2013 and 2014 ENF solar manufac-
turing registers only record firms’ English names, which cannot be uniquely matched to the
Qichacha platform. We use Google and Baidu to obtain the corresponding Chinese name for
the English-name-only firms, allowing us to further identify 462 firms (out of a total of 673

firms without Chinese name in the ENF register).

B.4 Patents and their characteristics

The Qichacha platform contains detailed intellectual property information from the State In-

tellectual Property Office (SIPO). This enables us to obtain, for each ENF manufacturer, the

*https://www.qcc.com/
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name, patent ID, type, application date, publication date, and assignee, of the patents it has
filed. We then use the SIPO patent ID to extract IPC codes and patent abstracts from the
PATSTAT database. To understand the nature of the underlying innovation, we classify the
patents filed by our sample of manufacturers into several categories. First, we rely on the
SIPO classification of patents into Invention, Utility Model and Design patents. Invention
patents have longer protection periods, require paying higher filing costs, and involve a more
cumbersome administrative process. They are therefore patents of higher quality and a more
innovative nature. The firms in our solar manufacturers dataset file mostly invention and util-
ity model patents. Second, using IPC codes, we further classify invention and utility model
patents into solar and non-solar patents. Finally, we use text mining techniques to detect
“learning-by-doing” (LBD) patents based on the information in the patent abstracts (see next

section).

B.5 Text analysis on patent abstracts

To characterize the innovative content of patents filed by our sample of solar manufacturers,
we built a supervised learning model using Liu (2023)’s dataset to train our text classification
procedure. This dataset contains 3,299 solar patents (according to their IPC code), manually
classified by the author into productivity-improving or not, after careful analysis of the text
of all patent abstracts. These are essentially process innovations as opposed to the product
innovations that are more common in patent datasets. The low cost of patenting in the Chinese
patent office is an advantage in this respect as we capture many of the more incremental
improvements that LBD may foster. Figure B.1 display the most common words contained in

the patent abstracts for productivity increasing or learning-by-doing patents.**

We follow standard text cleaning procedures and train a random forest algorithm on 85% of
Liu (2023)’s data. The model classifies the remaining patent abstracts in the hold-out sample
with an accuracy of 85-90%, which seems a high rate of validation. We then use our model to
classify the universe of patents filed by ENF solar manufacturers during the full time period

of our analysis.

B.6 Examples of Learning by doing (LBD) patents

Figures B.2 and B.3 offer two additional instances of learning-by-doing patents. Their abstracts

highlight the benefits of the current patent for production processes, product quality, and

34The word ‘solar’ has been removed to ease visualisation.
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Figure B.1: LEARNING-BY-DOING PATENTS WORDCLOUD

s =silicon
S 8 = film
co@< QO crystal
8E9Q 2 >\hack
oot €8N O present
mveqtlon
production

industrial development.

Figure B.4 and B.5 offer two non-learning-by-doing patents. The first non-learning-by-doing
patent is a solar-related new product. This type of patent does not refer to firm productivity or
process improvement. Therefore, we do not count it as a learning-by-doing patent. The second
non-learning-by-doing patent improves the quality of solar cells and involves fundamental
chemistry and physics. This type of patent is also unlikely to reflect efficiency improvements

driven by increase in production.

B.7 Revenue, Employment and Capital: ORBIS and ASIE data

In order to expand the time horizon of our analysis and estimate long-run effects beyond the
effects on production that we calculate using ENF production data, we use Bureau Van Dijk’s
Orbis dataset, which gives us rich financial data, including total and tangible fixed assets,

revenue, employees, and cost of goods sold, throughout the 2004-2020 period. We use the
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Figure B.2: LEARNING-BY-DOING PATENT EXAMPLE 1
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Patent Abstract: The utility model discloses a transfer assembly of a solar cell piece with a metal-stacked
electrode. The assembly comprises a trolley body, a storage member arranged on the top of the trolley body,
and a positioning component arranged on the storage member. A plurality of slots are opened on the storage
member, and a storage plate is slidably connected in each slot. The top of the storage plate is provided with a
groove, a spring is provided on the inner wall of each slot, the spring is connected to the storage plate, a first
connecting hole is opened on the storage plate, and a second connecting hole penetrating all the slots is opened
on the storage member. The positioning component includes a support column, a crossbar, a pulley, a rope, a
motor, a limit rod, and a sliding block. The utility model delivers the solar cell piece through the newly designed
transfer assembly. The structure is simple, easy to install and transport, and will not damage the solar cell piece
during transportation, reducing the defect rate and ensuring product quality.

comprehensive firm contact information included in both the Orbis and ENF register datasets

to merge the two datasets, and obtain Orbis variables for our sample of solar manufacturers.

We validate the Orbis data making use of the Annual Survey of Industrial Enterprises (ASIE).
The Annual Survey of Industrial Enterprises (ASIE), also called as Annual Survey of Industrial
Firms (ASIF), is an administrative-level dataset for all large industrial® firms in China. The
ASIE is only available between 1998 and 2013 and the sample of firms included in the survey
changes over time. Before 2011, the revenue threshold for inclusion in the ASIE was 5 million

RMB. After 2011, this threshold was raised to 20 million RMB. Despite these limitations, given

*This includes manufacturing, mining, electricity, gas, and water firms
%6There is some data for three selected provinces after 2013, but with fewer variables and access is highly re-
stricted.
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Figure B.3: LEARNING-BY-DOING PATENT EXAMPLE 2

Patent Abstract: The present invention discloses a new type of double-sided light-receiving solar cell, which
includes a front electrode, a front anti-reflection layer, a front passivation layer, a PN junction, and a P-type
silicon substrate. A back passivation layer, a back anti-reflection layer, and a back electrode are also provided on
the back of the P-type silicon substrate. The present invention reduces the preparation process of existing double-
sided cells and is more conducive to industrial development.

that the Chinese government often uses this dataset to construct official statistics, we use the

ASIE to assess the quality of our longer-run Orbis data.

We match our ENF firms with the ASIE through a two-stage process. First, we search ENF
firms in the Qichacha platform and retrieve their registration data, which includes the stan-
dardised official Chinese name. This name standardisation is also used in the ASIE, so we
can conduct exact matching with the ASIE dataset on a second stage.”” We are therefore able
to identify ENF firms on ASIE and Orbis using two different matching procedures based on
rich contact information and the standardised naming convention shared by the ASIE and the
firm registration dataset. We can then compare the values registered in Orbis and ASIE for the
same variable, same ENF firm, and same year. Both Orbis and ASIE include information on
the value of total assets. Figure B.6 compares log(assets) in Orbis and in ASIE, with each data
point representing a firm-year combination. The fit is exceptionally close to the 45 degree line
with a coefficient of 1.01 and an R? of 0.97. **

Broadly, there are three types of missing values for revenues in the Orbis dataset. The first type
occurs when we we observe revenue data for the same firm in two different non-consecutive
years, but there are missing values for the years in between. In this case, if we were not to
interpolate, when aggregating at the city level, we would be assigning a value of 0 for this

firm, which would create a false discontinuity in the data. Therefore we use linear imputation

%"The ASIE and the Qichacha firm registration datasets are of administrative nature, so they share the same
standard firm naming system.

3We can discard the possibility that Orbis just used ASIE data for the overlapping years by noting that there
was no noticeable break in the time series of ENF firms’ total yearly assets as reported in Orbis before and after
ASIE became available. This is visible in Figure B.7
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to fill these missing values. The second case of missing data occurs when we observe some
values for revenue, but we fail to observe data for the first few years in the sample, when the
firm enters the market, or the last few years, before the firm exits. In this case, we use the
values we observe to replace the missing ones through extrapolation. The third case occurs
when we do not observe any information for a firm. In this case, we simply drop the firm
completely. We checked that the results are robust to just using the non-imputed data and

alternative ways of imputation.

B.8 Solar exports volume, value, and prices

The Chinese Customs Dataset contains information on all imports and exports between 2000
and 2016. It records all international trade transactions by Chinese firms, allowing us to ob-
serve the name of the importing/exporting firms, the value of the transaction, the quantity

and unit price, the HS8 product code, and the country of the trading partner.

We obtain export information for our sample of ENF manufacturers following the same two-
step procedure used for the ASIE data. First, we search by name in the Qichacha platform and
retrieve the standardised official name for all ENF firms. This allows us to match exactly with
the customs data and get information on the quantity, value and unit price of exports by ENF

solar manufacturers. *°

Not all exports by ENF manufacturers are solar products. We classify exports as solar-related
using the HS6 code "854140". This includes LED products as well as solar, so we also used the
HS8 code “85414020" which is solar-only, but was only created in 2009. The results were very
similar using the narrow category on the smaller set of years to the broader category thta we

use in the baseline analysis.

B.9 Adjustment of revenues to reflect multi-product firms

As noted in the previous subsection, some of the ENF solar producers also sell non-solar
products. The solar-specific revenue is not generally available for such multi-product firms.
Whereas we are able to split out solar patents, exports and production from the other datasets,

we are not generally able to do this for revenue (or other accounting variables from Orbis)

To address this, we use the solar exports data. From the customs data we know the value
share of total exports and use this to adjust downward the revenues for firms where this is

less than 100%. The challenge with this method is that some firms do not export. We make the

%Note that for now, we have cleaned and utilise only value information from these.
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following three adjustments in these cases. First, if a firm never exports, we use the city-level
solar export ratio of the exporting firms. If this is missing, we use the province level and if
this is also missing we use the national average. Second, some firms have no exports in their
first few years after entry, likely because entrants will likely sell some solar modules locally
in China before starting to export. We account for this “ramping-up” behavior by a linear
interpolation between the first year of export and the entry data. Third, we only observe
exports data through 2016, so we keep to the adjustment values from 2016 for all years 2017-
2020.

We can validate our adjustment by using the ENF data on solar panel production in the years
up to 2013. Even though we do not use these data for our adjustment, we find that regressing
the adjusted revenue on the panel production at the city level yields a higher R? than the non-
adjusted revenue (0.62 vs. 0.57). This suggests our export-based adjustment filters out some
of the non-solar activity. Figure B.8, shows binscatters of city-level panel production (x-axis)
on both adjusted and unadjusted revenue. The adjusted revenue is very close to the 45-degree
line, whereas the raw revenue lines lies a long way above. The over-estimation of revenues
seems particularly large for cities with small amounts of solar activity, suggesting that a lot

of this may be non-solar revenues.

We confirm that our results were robust to various ways of doing these imputations and in-
deed, even using the unadjusted revenue data (see Table F.7). The main difference is in the
precision of the estimates which improves when we deal with these various sources of mea-

surement error.

B.10 Pollution and CO, emissions data sets

To capture PM2.5 concentrations in Chinese cities between 2004 and 2020, we use the V5.
GL.04 data set of Van Donkelaar et al. (2021), which estimates annual average PM2.5 ug/m?
concentrations using information from satellite-, simulation- and monitor-based sources. The
estimates are stored on a 0.1 x 0.1 (approximately 11 km x 11 km) resolution grid. The data set
was validated against ground-based measurements specifically for China from 2014 to 2020
by Ali et al. (2023), and the validation results demonstrated a good agreement between the
estimates and ground-based PM2.5.

We map information on this raster to our cities by calculating, for all cities, the area-weighted
average concentration from all 0.1 x 0.1 resolution pixels with which it overlaps. These annual

city-level observation between 2004 and 2020 are distributed as:
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Figure B.9: PM2.5 CONCENTRATION DISTRIBUTION
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Notes: The histogram shows the distribution of yearly PM2.5 concentration in 358 Chinese admin2 between
2004 and 2020.

The variable has a less skewed than our other outcome variables which motivates using this

variable in levels rather than in an IHS transformed version.

To capture CO, emissions, we use the county-level data set of J. Chen et al. (2020), which is
available until 2017, and provides the most comprehensive coverage of our studied cities and
time period. The data set is constructed using provincial estimates of energy-related carbon
emissions and nighttime light data which is used to disaggregate these measures to 2,735
Chinese counties. The technique is shown to perform well in validation exercises. We map
these to our city-level observations using county names, which allows us to derive annual
CO2 emission for 348 cities from 2004 to 2017. (The data set does not cover cities in the Tibet

Autonomous Region.)

B.11 City panel dataset

Out main analytic dataset is a “city” (second administrative level) level panel that exploits
the policy variation at the city-level stemming from PKULaw data to examine the impact on

economic outcomes.

The ENF production dataset contains detailed address information, which allows us to geolo-
cate all firms through the Google API, and assign them their corresponding city. We aggregate
all production and capacity figures from ENF cell and panel manufacturers at the city-level.
We identify, for each city, the number of ENF panel and cell manufacturers using the ENF reg-
ister, ENF production, and firm registration dataset, which provides reliable firm entry and
exit data. We aggregate our patent data from SIPO, revenue and assets from Orbis, as well as
the total volume and total value of exports from customs data, for the same sample of ENF

manufacturers, at the city level. Finally, we calculate a simple average of the price of exports
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at the city-level. We additionally gather annual GDP, population, number of workers, and

government budget from the statistics yearbook, released by the Bureau of Statistics.

Table B.1 reports descriptive statistics for the key variables at the city-level. The full strongly
balanced panel has 6,086 observations - 17 years for 358 city-regions. The average city pro-

duced 13.1 patents by solar firms per year, a total of 79,902 over the period as a whole.

About 40% of of 358 cities had at least one solar firm who patented (there were a quarter
with patents in 2020, for example). The 42 cities with solar subsidies accounted for about half
(48.5%) of all the 9,261 solar patents in 2020. 67% of all patents were in five cities (three of these
had solar policies). In 2012, 102 cities had some solar PV capacity, 133 had nonzero revenue

and the top 5 cities accounted for 23.2% of all capacity.

Solar market structure was quite fragmented. For example, in the middle of our sample period
in 2012, the top 5 firms had 20.6% of panel production. These were Suntech (5.9%), Yingli
(4.5%), Trina (4.2%), Canada Solar (3.7%) and Renesola (2.1%) and
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Table B.1: CITY-LEVEL SUMMARY STATISTICS

Mean  Std. Dev.  Sample Size

SIPO, 2004-2020, 358 cities:

Total patents by solar firms 13.1 111.3 6,086
Design patents 1.2 10.4 6,086
Utility model and invention patents 11.9 102.8 6,086

Orbis and Qichacha, 358 cities:
Total number of solar firms, 2004-2020 2.9 10.2 6,086
Total revenue of solar firms, RMB, billions, 2004-2020 0.218 1.38 6,086
ENF, 2004-2013, 358 cities:

Total Solar Panel capacity, MWh 82.4 483.3 3,580

Total Solar Panel production, MWh 40.7 265.5 3,580

Total Solar Cell capacity, MWh 50.8 353.4 3,580

Total Solar Cell production, MWh 31.3 233.0 3,580

Total Number of Solar Panel firms 0.9 3.5 3,580

Total Number of Solar Cell firms 0.2 1.0 3,580

Customs, 358 cities:

Total export value of solar firms, millions USD, 2004-2016 24.8 186 4,654

Total export volume of solar firms, millions, 2004-2015 3.18 43.7 4,296

Average export price of solar firms, USD, 2004-2015 9,716 480,762 4,296

Statistics Yearbook, 2004-2020, 284 cities:
GDP, billion RMB 196.0 307.2 4,828
Population, thousand 4,453 3,176 4,828
GDP per capita, RMB 43,497 46,936 4,828
V5. GL.02 pollution data, 2004-2020, 358 cities:

Annual PM 2.5 concentration, ,ug/m3 36.6 15.8 6,086
J. Chen et al. (2020) CO, emissions data, 2004-2017, 348 cities:

Annual CO, emissions, Mt 22.6 22.5 4,872

Notes: Each observation is city-year pair. There are up to 358 cities between 2004 and 2020 (6,086 observations), but
different datasets may have lower numbers of observations as noted in the table. The revenue numbers are adjusted to
account for multi-product firms. See Section B.8 for more detail.
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Figure B.4: NON-LEARNING-BY-DOING PATENT EXAMPLE 1
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Patent Abstract: This utility model patent relates to a road cliff photovoltaic lighting device, which includes a
road cliff stone or road guardrail connected to the outer surface of a photovoltaic component. The photovoltaic
component is connected to the inverter and battery through a controller in sequence, and the controller is con-
nected to the light strip. The light strip is located on one side of the road cliff stone or road guardrail facing
the center of the road. By combining the photovoltaic power generation system with the road cliff or guardrail
lighting, photovoltaic power generation, which serves as green energy, is closely integrated with transportation,
solving the power supply and subsequent maintenance problems of traditional road lighting and reducing con-
struction and maintenance costs. It also produces an uninterrupted power supply to indicate the road dividing
lines and boundary lines, guiding the passage of vehicles and pedestrians, relieving driving fatigue and beauti-
fying the road.
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Figure B.5: NON-LEARNING-BY-DOING PATENT EXAMPLE 2

Patent Abstract: The present invention provides a carbon-doped P-type gallium phosphide material, in which
carbon is used as the doping element of the P-type gallium phosphide semiconductor material. The preparation
method of the material is to use metal organic chemical vapor deposition technology, introduce organic gallium
source and phosphorus source into the reaction chamber, let them decompose at high temperature, and react on
the surface of the substrate to produce gallium phosphide material. During the generation of gallium phosphide
material, carbon impurities are introduced by inputting substances containing carbon elements, or by utilizing
carbon atoms generated by the organic gallium source during thermal decomposition. In the present invention,
carbon replaces Mg or Zn. Since carbon doping has a small diffusion coefficient and stable properties, highly
doped GaP materials can be produced, which are characterized by high efficiency, low diffusion, and high sta-
bility.

Figure B.6: VALUE OF FIRM ASSETS IN ORBIS & ASIE
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Notes: The axis is the log(assets) in the ASIE data set, and the y-axis is the log(assets) in the Orbis data set. Each
point is one firm in one year. If we fit a linear line, the coefficient is 1.01, p<0.01, and R? = 0.9679
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Figure B.7: SMOOTHNESS IN ORBIS TOTAL YEARLY NON-IMPUTED ASSETS
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Notes: The time series shows the yearly sum of Chinese solar panel manufacturers’ total assets as reported in
the Orbis database. The dashed vertical line at 2013 indicates the last year when the ASIE data set is publicly

available.

Figure B.8: REVENUE ADJUSTMENT
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Notes: The plot shows the binned city-level relation between revenue and panel production with the Asinh
transformation. The dashed green line shows the 45-degree line.
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C Theory: Full version of Model

In this Appendix, we provide details of the full model described in the main text. We char-
acterize the determinants of our key endogenous outcomes (innovation, production, revenue,
the number of firms and exporting) with respect to exogenous parameters and the three types
of solar subsidies (demand, production and innovation) that we analyze. We do not generally
have closed form solutions for the endogenous outcomes we wish to model, so to conduct
comparative statics we have to calibrate some values and solve the model numerically. We
summarize these in subsection 4.4. of the main text. In the next Appendix (D), we consider
a simplified closed economy symmetric version of the full model where we can derive closed
form analytical solutions. This is what we use in the propositions for subsection 4.5 in the

main text.

C.1 The Grid Planner Problem
C.1.1 Demand for Energy Sources

Each region d hosts a representative household that consumes only electricity and a grid plan-
ner, who is in charge of installing power plants to provide electricity. One way of expressing
this problem, is that the grid planner chooses the electricity mix to maximise the value of the
final electricity services that it produces, subject to the prices of final electricity P, and the

price of solar and non-solar electricity P; and Py respectively.

max (Pyes — Pyseqs — Paveay)
€d,s:€q ¢/

st. e = <Kd,s/€5)s, + Kd,seg,s)l/p

We can re-express this problem more simply. Because our household consumes electricity
only, all of their income will go to the grid planner. Moreover, the production function for
electricity services is constant returns to scale. Therefore, the grid planner spends all the in-
come they receive on the production of electricity e, (zero profits), and the supply of electricity
is perfectly elastic, so the price will be pinned down by the production side. The household

has a utility function which is strictly increasing in electricity services e;.

We can therefore rewrite our problem as though the grid-planner uses the full income of

households in their area in order to maximise electricity output.
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1/p
p
max (de/eds + deeds)

edseds

s.t. Pd)sed)s + Pd,s’ed,s’ = Id

o =

_ P p
L= (Kd,s’ed’s/ + Kd,sed)s) - A(Pd,sed,s + Pd,s’ed,s’ - Id)

oL

1 P
p p p—1 _
- (Kd,s/ed)s, + Kd)sed)s) , [pkd,sed,s ] — APy =0
deqs P

Taking the ratio for e;; and e; ¢ FOCs:

p—1
Kdysed,s _ Pd,s

-1 —
Kd)s’ eg % Pd,s’

L
Pd s Kds !
€ds = (8%

Pd,s’ Kd,s

Multiplying by P, and adding P, ¢e; ¢ on both sides of the equation, we obtain:

_P_

P 1
2 ANTT a1 NPT g\
Pd,sed,s + Pd,s’ed,s’ = dps + P;jsll - €as
- Kd,s Kd,s/ Pd’s,

J

=14

Which simplifies into:

1— PISJKGS+ 1 a 0' [de ]
[Pii7xg P
Where ¢ = %p. Solving for e; ¢ and plugging back into the ratio of FOCs for each energy

1
source, we obtain the following expression for e, our solar installation demand function:

K 7 1

* d,s d

¢js (Pis Puy. 1) =( )

d,s dssdds s d o 1-o o 1-o
Pd,S Kd,s’Pd,s’ + Kd,sPd,s

C.1.2 Demand for Energy-Sector Manufactured Inputs

In order to meet the optimal demands for energy sources e; and e, the grid-planner has to

choose from the available manufactured varieties that aggregate into the final energy output
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(e.g. the grid planner chooses a set of solar panels to produce a solar park that meets their
solar energy output requirements). The choice of manufactured inputs determines the prices
P; and Py. The derivations below are for a planner in any region d. For notational convenience,
we omit the d spatial subscript until later in our derivations. A grid-planner can purchase

manufactured varieties from any region o, which aggregates using a CES technology:

Os

€ = <Z /weg qO,s(a))a‘S’;] dw)

The problem of optimally delivering e is a new constrained optimisation problem, nested in

the above, which we express as follows:

min(Z / qO,s(w)Po,s(w))
w(@) \ T Joe,,

U:il
ogs—1 *
s.t. <Z/ Go.s(@) o dco) =e,
0 WEQ

Note that the manufactured varieties in this problem are only sector s varieties (i.e. to generate

solar output the planner only uses solar panels and not manufactured varieties belonging to

other energy sectors). Below we detail all solution steps.

s

P <Z /wEQ qo,s(a))Po,s(“’)> -2 (Z /a)eQ qo,s(a))gffslda)> - e:

The FOCs (as many as solar panel varieties available across regions) are:

oL o os-1 o —1 1
= ~Pos —A - o,s s d - 0,5 =0
i OB (Z . e w) —0(0)

Which simplify as:

1

po,s<w>:—A(Z / ) qo,s<w>“3?dw) Gos(@)

We can take the ratio of two FOC for two different varieties (within the solar sector), denoting

the varieties arbitrarily as 1 and 2:
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po,s(wl) — qo,s(a)l)ia%
po,s(a)Z) qo,s(a)2)_f71s

This can be expressed as:

QO,s (601) — (po,s (601) > S
qo,s (602) po,s (602)

Which is equivalent to:

Pos (0)1) Go,s (601) = (po,s (601)) o (po,s (0)2))0S Go,s (602)

We now take the integral with respect to w; and sum up across all origin regions o :

Z / Poss (0)1) Qo.s (0)1) dwl = Z / (po’s (wl))l_os (po,s (0)2))05 o, (0)2) da)l

=E;

By = (Pos (©2))” gos (@) ¥ / (pos (@)™ do

Where E; is the expenditure on the solar sector (in any region d, where the spatial subscript

has been omitted). We can generalise for any variety » and express the demand function as:

(Pos(@)) ™

qo,s(a)) = (Ps)l_gs s

Where P; is the price index for solar that region d faces. Replacing E; = e P;, we obtain our

expression for the demand for each panel variety:

Gos(@) = Me:ps _ (po,s_(w))_”s = (pL(w)>_gs (E)U I

(P)™" P, P, P,) KkoP\ +xIPl0

This applies to any region d, so we now generalise notation:

—0 o
_ pod,s(a)) Kds Id
QOd,s(C‘)) - P P o Plfa + x° Pl*(f

ds d,s Kd’s’ ds’ Kd,S d,s
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C.2 The Manufacturer Problem

Each region o has a continuum of potential manufacturing firms i in each sector s, which

operate under monopolistic competition.

C.2.1 Manufacturing Technology

Firm i, who produces intermediate goods for electricity sector s (e.g. solar panels for the solar
electricity sector), uses effective units of labour L, ;, with unit cost w,. Firm subscripts i are
dropped from now onwards for notational simplicity. To operate, a firm must pay a sunk
cost w, f,, which we express in terms of effective units of labour. This sunk cost could be
understood as the cost incurred in initial product definition and development. Upon paying
the entry cost, the firm draws an initial level of productivity ¢, from a Pareto productivity

distribution, whose cumulative distribution function is:

—0,
o= (2)

That is, once a firm decides which product or variety to produce, it learns about its pro-
ductivity. To produce g, (¢) units of a variety, a firm requires an amount of effective labor
los = fos + %, where f,; is the fixed cost of production, expressed in terms of effective units

of labour, and é is the marginal cost of production.
Technological Upgrading/Innovation:

Upon observing its initial productivity ¢, a firm can upgrade its technology (innovate), which
increases the fixed cost of production by an additional f], but reduces its marginal cost to

1 .
5o with go,s >1

C.2.2 Firm Profits

A firm can make profits by selling the manufactured intermediate goods to grid planners in d
regions. Among these regions there are Chinese second administrative level regions (‘cities’)
and a foreign region d. We assume there are no market access fixed cost within China. On the
other hand, a firm must pay an international exporting fixed cost w, fo”‘é’s if it wants to serve
a representative foreign grid planner, whose demand function for energy sources coincides

with that of each of the regional planners within China.

Trade (intra-China and international) is subject to iceberg trade costs such that in order for

Qoas(¢) to arrive to destination d, a firm in o needs to produce 7,44 s(¢) units of the variety,
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with 7,45 > 1. Trade costs are normalised, such that they are equal to 1 if and only if d = o.

Firm profits after drawing a productivity ¢ are therefore:

I.od,sqod,s(qo)

Eostp } ~1ld=dl (Woffaz,s) ~ Woos

”o,s((P) = Z {pod,s((P)qod,s((p) — W
d

Where 1[d = d] takes the value 1 if a firm decides to serve foreign destination d and 0 other-

wise. Note that if a firm decides to export, the summation above is over Chinese regions and

the foreign destination c?, while if a firm chooses not to, it sums over national regions and does

not pay the exporting fixed cots. Similarly, &, is greater than 1 if a firm decides to innovate,

and 1 otherwise.

Recall that the demand function for each manufactured variety, with our generalised notation,

is:

(pod,s(a))) s
(Pd,s) o

Taking the FOC of firm profits with respect to p,qs(¢), and replacing the optimal g,4 () above,

qod,s(c‘)) = d,s

we obtain:
—0s —0s—1
0 0.5 od,s 0Tod.s od,s
71,—(@ =(1- O—S)M s Wolod, O (p ! (go)l)_d E;s=0
9 Pod.s(¢) (Pd,s) ’ Eosp (Pd,s) ’
Which simplifies to:
_ Os  WoTods
pod,s((p) - o, — 1 g_/o)sqo

Thus, the optimal price is a constant markup over marginal cost, where the exporting and
innovation decisions change the marginal cost of production. Substituting the optimal pric-
ing and demand functions in the expression for firm profits, we obtain the potential value

functions for each technology and exporting choice.

DOMESTIC MARKET ONLY USING OLD TECHNOLOGY:

(Gs - 1)0—8_1 Ed,s WoTod,s s
ﬂo,s((p) = Z { o (Pds)l_US - Woﬁ),s

d#d ¢

DOMESTIC AND FOREIGN MARKET USING OLD TECHNOLOGY:
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(Gs - 1)0—3_1 Ed s <WoTod s ) e }
”o,s((p) = { o ’ : — W, o= Wo Jo,s
zd: 0! s (Pd,s)l_as ® 0d,s f

DOMESTIC MARKET ONLY USING NEW TECHNOLOGY:

— (O—s — 1)05_1 Ed,s WoTod,s e
ﬂo,s(q)) = % { o (Pd,s)ligs §o,s§0 Wof(‘),s

DOMESTIC AND FOREIGN MARKET USING NEW TECHNOLOGY:

_ (O's - 1)0—3_1 Ed,s WoTod,s e X
ﬂo,s((p) - Zd: { o-fs (Pd,3)1_05 go,s(p Wofo,gl,s Wof(‘),s

Assuming that the productivity thresholds governing these decisions are such that a firm does

not innovate without exporting internationally first, firm optimal profits are:

5_105_1 Es otod,s e
ILy(p) = max{ Y. {(0 Ug) d (w Tod, ) } .

i Os (Pd,s)l_gs @
Z (O-s - 1)05—1 Ed,s WoTod,s s _ x
o @\ e Welads ~ Voboe
Z (O'S - 1)0-3_1 Ed,s WoTod,S s —w f~x~ —w f
P O-?S (Pd,s)l_os §o,s§0 *lods o

C.2.3 Productivity Thresholds

We now calculate the productivity cutoffs that determine firms decisions to i) stay in the
market after drawing a productivity, ii) access the international market aNV, and iii) innovate.

DOMESTIC MARKET EXIT THRESHOLD:

We define ¢, as the domestic market exit productivity threshold. This is the productivity

that generates zero profits from serving the domestic market only.

Os— 1-0;
Z (O-s - 1) +1 Ed,s WoTod,s 7 —w f -0
O-gs (Pd,s)l_o's (p;o,s e

d=d

That is,

1

(P* — Z { (O-s - 1)0—3_1 Ed,s (Wofod,s ) 105} e
00,8 dﬂ; Ugs Wofo,s Pd,s
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EXPORTING THRESHOLD:

Let ¢”. describe the productivity level which makes a firm earn zero profits from exporting
to foreign country d, and therefore indifferent between serving d or limiting its supply to the

domestic market. We also assume that the marginal exporting firm is using the old technology.

The extra profits from serving d are:

s—1 . - 1-0
o (O-s - 1)0‘ Ed,s <W0Tod,s) ’ N
0

T = wa ¥
od,s O.gs (P(i,s)l_os @ fo,d,s

*

¢’ . is the productivity level ¢ such that r; (¢) = 0. That is:

1-0y

(O's - 1)05_1 EJ,S WOTO{;,S =w fx~
O.?x (P&,s)l_cs q):a)s 0Jods
1 1-0y
(Us - 1)(,—3— E&,s To&,s X
o5 0O B - — Jogd,
Woso.s s (Pd,s)l O (PZC},S 0,d,S

1 (O's - l)gx_l EJS 1—0,

1-05

*

—3 - = (p ~

X Os 405 P+ )1-0s ods ( od,s)
f(‘J,d,s Wo O ( d’s)

Therefore: :
. - o—1 \ 179
o 7"od,s Ed,s (Us - 1) y
od,s - . X Os _Os
Pd,s ods  Wo'Os

INNOVATION THRESHOLD:

Let ¢}, , be the productivity level which makes a firm indifferent between upgrading its tech-
nology or not. We define profits using the old technology as low productivity profits, or 7,
and profits using the new technology as high productivity profits, or 7,;,. We assume that

the marginal innovator is already exporting to the international market d.

_ 1-0, _ 1-0,
Kool = Z { (05 - 1)03 ! Ed,s WoTod,s ’ } + (O-s - 1)03 ! Eai,s WOTOIJ,S ’ _
0,8, i O_?'s (pd)s)l—oS (p O.;J's (P(;’s)l—as (p
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_ 1-0y _ 1-05
Tysn = Z { (O-s - 1)03 ! Ed,s (Worod,s) ’ } + (O—S - 1)05 ! E&s <W0T0d~,s> ’ _
o,s,h — 5 — X _
P O'g (Pd,s)l s §o,s(P O-g (P&'s)l s §o,s§0

X

—Wo ods Woﬁ),s

(pf)d,s therefore fulfils:

. 1-0y Os— 1-os
y O e () g [ B (e
d O-gs (Pd,s)l_o's (P:)d,s d O-gs (Pd,s)l_as §0,S(pz)d,s o

1-o0 -1 1-0;
1- 0,5 : (O-s - 1)05 Ed,s WoTod,s _
= Z 1-0, 0 = WoJos
d

0,8 Os (Pd,s)l_(rS 405,61,5

_ gl=os

_ 1—0,4
1 0,5 (Gs - 1)03 ! Ed,s WoTod,s 7 _ ; 1—0,
= Z 1-0; 605 w f J2 - ((pod,s)
d N oJo,s d.s

0,8

The innovation threshold is therefore:

1
1-o -1 1-05 \ I-os
o (3 0 B ()
ods — 1-0 o
4 0,8 : os’ Woﬁ),s Pd,s

Where recall, from the grid planner problem, we obtained:

1-0
Ide,S

o
Kas 1-o 1-o
( Kds ) Pd,s’ + Pd,s

Ed,s =

In order to express the exporting and innovation thresholds as a function of the exit threshold,
it is useful to regroup terms in each expression as follows (where we have removed the sectoral

subscript s to simplify notation):

. (0._1)0'—1>1_15 (1)1_10{ (T0d>lo'}la
() (1) [
T Wo Jo d=d Fa

. G-1 1\ 1\ A R
o od d



(DT (g (T N
900_< oowg > ( gol—a ) (’70fo> {zd:Ed(Pd> }

We can now express the exporting and productivity thresholds as a function of the exit thresh-

old:

o, = o, =
no&s

)
(8T [ moa (i) |

C.3 Industry Equilibrium

In equilibrium, grid-planners maximise utility from electricity services, manufacturers max-

imise profits, and labor demand equals labor supply in each region.

To determine the equilibrium price indices, number of firms, aggregate production and rev-

enue, and mass of exporters and innovators in each region, we impose a free entry condition.

Free entry implies that the sunk entry costs equals expected profits from drawing a produc-

tivity:

Wofo‘fs = (1 -G [(pZO,S]) E [77: | ¢ > (p:;o,s] (9)

We can express the above condition as follows:

Wofss = (G [(p:&s] -G [(pjo,s] ) E |:7l’0’s | (p:&,s >0 > (pjo’s] +
+ <G [qof)d,s] -G [(p:&,s] ) E |:7To,s | (pf)d,s > ¢ > 40:;;,3] + (l -G [(pf)d,s] ) E [”0!3 | 4 > (pf)d,s] =
= oot mod@)glo)de + [ mo(@)glp)dp + [, mos(0)g(@)de

Replacing the expression for firm profits for reach range of productivities and the expression

for the Pareto distribution function we obtain the following:
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Notice that the exit, exporting, and innovation productivity thresholds satisfy the following:

WO]‘;) s /(Pod s
0,b% 0

0,8

O 3_105 otod,s e
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Replacing these equations into the above expression for the free entry condition, the latter

simplifies to:

05
o,—0,—1 [(o,—0,—1 bos \ bos \ .. bos
oe,s = < _> ( i’ ) ﬁJ,S_< *’ > od.s ( > ﬁJS (10)
Os — 1 Os — 1 (Po,s §0on (poos

Now, replacing the exporting and innovation thresholds with their expression as a function

of the exit threshold we obtain the following expression for the exit threshold as a function

of fundamentals and price indices:

05 . 1-0s+0s
0 o;—1 o,—0,—1 1— g\ ot 15 1-os
(o) = oo (et ) (R e (B2) e
0,5 O-s_es_1 O-s_1 ’7055 * ﬁ)s

Where

1 1
1- 1

Z E Tud =0 7 Z Ka, sTqu L
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1-o K0 i7osy
Z . E Tod § d,s od d
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OA-30



|‘H
a

1-o ﬁ 1-o0
a7 [2a() .
®o,s = i = il -1 = ((I)l_g — 1) e

1-o 1-o
zdi& Eq (%) Zdi& Eq (;L:)

Replacing this expression for the exit threshold in the zero-profit condition that defines it, we
get a system of equations (one for each domestic region d and sector s), which determines the

price indices:

_ os—1 o I 5
Z { o S (Wofod,s)1 } B

g o 1-0 o pl-o
o Wo fos0s" K3 Py + kg Py

1-0s
s

s . 1*(7_3;95
fos po T~ 1 o, —6,—1 1-§77\ " o0 fas\ 0% _ 1
re Jos _ 0. — _ ~ Tos T ol-o, - -
0,8 O N 1 O 1 ’70,550,8 f(‘),S

Note that if there are no exports the exit threshold simplifies to:

b5
* 0 ﬁ),s 9 1 1 951‘*'_17;05 01;08 105
¢ :—9b5<——__ Bo ‘ s +1
( OO’S) f:fs oo o,—0,—1 0 ( S) 1- ol,s %

C.4 Aggregate variables

In this section we derive expressions for some of our remaining aggregate (city-level) variables

of interest.

C.4.1 Mass of firms

The price index in each region d for each sector s satisfies:

Mod,x

P = Y [ Doa o) d (11)
o+d

Note that foreign firms do not serve the domestic market, so the price aggregation is only over
domestic suppliers. Also note that firms that are active serve every regional market within

China. We can express it as follows:
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Integrating and simplifying, we obtain:

05 — 1 0,8

_ Moq0 N O Ee 1 o L \ovbee
Psls 7 = Z o _0‘25 i 1 (q)oo,s)e (WOTOd’SO—S) < = 1-0; ((pi)d,s)o' o - (q)oo,s)a ’ 1>
N

The mass of active firms in each region is related to the mass of entrants in each region in the

following way:

0
bO S )
( i ) Me

(p50)"

Moas = (1-G (¢5,,)) M, = (12)

The expression for the price index therefore becomes:

Os A fe 1-0; 1-oy _
P(l—(rs) _ bo,sMo,ses WoTod,sO's 0,5 1 i os—0;5—1 * 0s—05—1
ds - z : 0 1 1—0, (qood,s) - (q)oo,s)
i Os —Us —
0%

Gs_l 0,8

We thus obtain an expression relating the mass of entrants, the price index and the exit thresh-
old:

93 1-os os— —0s %
P(l_a_s) _ Z b Me 9 WoTOd,SO-S ((p )0‘9 9 -1 @0'9 6 1’7% §01 e _ 1
ds 6 —0,—1\ o,—1 ° ) -1

o+d

C.4.2 Production

We can define aggregate city-level production for city o as:
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Which is equivalent to:
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Where B, = (o, — 6;) ((,j_ilWO)UX é

Without foreign market the expression for aggregate production simplifies to:

Os
o 1-0; T-os
Bo,s _ Kd,sId —0s 795;21’”5 0,8 '
Qo = Mod,s > plo > Do (Tod,s) () s D +1
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Where C, s = (%{&bﬁg (— =t ol))m

os—0;—1 s
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D Theory: Simplified version of the Full Model

In this simplified version of the model, we remove the export market and we only consider

the solar industry. This enables us to prove the four propositions summarized in the main

text.

D.1 The Grid Planner Problem: Demand for Solar Energy Sources

Js

os—1
os—1
max Uy, = (@) dw
God,s(®) S <; /weQM 9o ,s( )

s.t. (Z Xd,s/ C]od,s(CO)Pod,s(@)d@) = Ed,s
0 WEQ

Solve it, we get

(pod,s(a))) h Ed,s
(Pd,s) o Xdss

qod,s(c‘)) =

Where

IFEDY / . (poas (@) " de

D.2 The Manufacturer Problem: Technology and Profits

-6,
) _._ (@
G (9:bos) =1 <b>

Ao.sTod,s9o ,s( ) i
ﬂo,s(ﬁ”) = Z (pod,s(qo)qod,s(@) - Wo,s%) - Wo,sf; - Wo,S¢o,sf;
d 0,8

Take the FOC, we can get
O Wo,sao,sfod,s

05 — 1 'go,s(p
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Productivity threshold
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D.3 Free entry
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From the definition of the price index
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D.4 Solving the model
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To simplify M;, we obtain:

OA-35



PGS Cal CAS) ( o >

os feo, o,—1

Us_lh
T Xi,s Ez’s
X 0 1-0 + 0 1-0
-1 (% ) ° w )OS (o Yos+0s—1 * )78 -1 w0\ U8 ok Yost0s—1
7% ((pl,s) - (al,s(pz,s) (991,5)03 : <(p1,s) — 7% (al,S(pZ,s) ((pl,s)gs :

D.5 Some Theoretical Conditions

There are a number of regulatory conditions we need for sensible economic outcomes. In
particular, o, > o > 1 to obtain non-negative profits. For profit to be bounded, o, — 60, —1 < 0.

And, o, — 6; < 0 to ensure production is bounded.

D.6 Comparative Statics Proof

PROPOSITION 1 (THRESHOLDS):

We can obtain analytical expressions for the exit threshold as follows:

. Os+1—0g Os
o _ o fi o1 N ET T
)= - ae) T
((,01,3) s fse 0, +1—o, <<¢1,s 3 ) 1— 11;05

Note that the production subsidy a;; and demand subsidy y;; do not enter this expression. If

Os+1—0s
. . . i l1-os +1—

we have an innovation subsidy, then as ¢, ; decreases, <¢1s%> increases because % <
s N

0. Consequently, ¢7  will increase, making it harder for low productivity firms to survive. This
is because some firms on the margin of deciding whether to innovate will now innovate, and
this will be the relatively more productive firms (those who are already innovating will benefit
from a lower cost of their innovation). The additional firms who innovate will now have lower
marginal costs, lowering the price index. Therefore, those firms who are just above the zero
profit line will lose from this increased market competition and will to exit (i.e. an increase in

the exit threshold).

We can write the innovation threshold as:

1
1-o0, T-0s
i o x 1_ 1,s ’ f; ”
P1s = Puis -0, ;
1,s ¢1,Sf;

8 f O\
L7 k)
and it will decrease if we introduce innovation subsidy. Hence, a larger fraction of producing

The relative distance between innovation threshold and exit threshold is <
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firms will innovate. However, since we showed in the last paragraph that the exit threshold
increases with the innovation subsidy, there might be an ambiguity in the effect. To analyze

the total effect, write the innovation threshold as:

((pil’s)Gs —A <B¢1)s + (¢1,S)ng51)

where A = pfL oL T p o and B = (£ = a7 o 0 and both terms are
TS fotios \ g% F A -5,

positive.

Since % < 0, an innovation subsidy will unambiguously decreases the innovation threshold.

PROPOSITION 2 (MASS OF FIRMS):

To prove this, we can solve for the equilibrium mass of firms:

TUS_I h

E
_ Xis 2,8
MLS =C os—1 « )% * 1_05( * )03+9571 * « \% o5—1 * I_US( * )o’s+0371
T q)l)s - al,sq)Z,s q)l,s qol,s -7 al,Sq)Z,s q)l,s

_ (=) b (o-1) (o,
where C = — 1, (Url

tion subsidy, and ¢7 , is not affected by the demand or production subsidy. From the following

1 ) . ) )
)U . Notice that ¢7 ; is the only term that contains the innova-

derivation, it is clear that demand and production subsidies will both increase the mass of

firms.*

E Tmfl%

Lls Xl,s
® Xl,s ‘L - Xis T; - TJS_]((PTs)es—(al,s(PE3)1_U$(¢Ts)03+85_1 T: - Ml,s T

§— Els
L \1-0s 7% lfis Es,
* dys l«—) (al,s(Pz,g) T, - T”S*l(wf5)95—(ﬂh,s(PE5)1763(4075)63*93’1 Tand (¢TS)95_T6571(a1,5(p;5)1765(¢75)63+9371
- Ml,s TT

Also notice that the demand subsidy will only affect the first term, while the production sub-

sidy will affect both terms. We can write down the derivatives as follows:

-1 Els
oM, A
g S =90 - 7 ):13 — - /8)(1’3
Xl,s TJS_I (q)l,s) - <a1,5902,s) (¢1,s)gs+63_1

“’For the demand subsidy to have an positive effect, we need the denominator to be positive. This is almost
always guaranteed. In the purely symmetric and no subsidy case, a;s = 1, ¢]; = @5 = ¢;. The denominator

0; e . o . o . .
can be written as (7”5‘1 - 1) ((p:) and it will be strictly positive since 7 > 1 by definition. Then if we introduce
some small subsidy, the denominator will remain to be positive since the function is continuous.
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Os 1&
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a1\/11 S a]\/Il S

guarantee that |5 | > |52 | Intuitively, as long as the untreated region is large enough, or
equivalently, as long as there are enough untreated regions, then production subsidy will be

more effective because treated firms can sell to more regions and larger market.

The impact of innovation subsidies are more ambiguous. From Proposition 1, we know that
innovation subsidy will increase the production threshold ¢7,. However, there is no linear
relationship between ¢7, and M;;. We can prove that innovation subsidy will increase the

mass of firms if the following condition is satisfied:

Os+1—0s 0s

L) L\ 6
() = ()0 R
Os+1-0g o, + 03 -1 1,

O
i 1-0g 1-0s T1-0s
(4) ™ (&) "+

This condition is likely to hold when intra-national trade costs are not too large. To see this,

consider the case when we start from no innovation subsidy and then slightly increase the
subsidy. When ¢, ; = 1, the left hand side of the inequality above becomes 1 because we have
<1

assumed symmetry between regions. For the right hand side of the inequality, +9 -

o5
because o > 1. Therefore, (0 fg — ) *7' < 1. We also know that a?; < 1if innovation subsidies
are only available in cities with production subsidies (which is the empirically relevant case

in our data).
PROPOSITION 3 (INNOVATION):

We derive the solution for the mass of innovators:

. : —0, 1-0 Qi

. 1 - G L L S 1 — s os—1

PSS RV (—“’1’5) o= (L2 )
1- G(‘Pl,s) P1,s Ls P15 fi

aMl oM s

As Proposition 1 showed that < 0 and aMl < 0 and that the innovation threshold was
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. . . . 1. . . OM:
invariant with respect to these subsidies, the mass of innovators must rise: —— < 0 and

. a)(l,s
oMl
Pans <0.
. . . oM, M
With the same conditions that Ey is large enough, we can also prove that |31 > |ax—1’|. So
5 S

when the untreated region is large, production subsidy will be more effective than demand

subsidy in terms of bolstering innovation.

In Proposition 2, we also proved that with some regulatory condition, we can guarantee that
innovation subsidy will increase the mass of firms. Similarly, if the same regulatory condition

holds, we can guarantee that the innovation subsidy increases the mass of innovators. How-

i _95
ever, since (Zi‘ ) will also increase if we have innovation subsidy, the regulatory condition

1,s

for the innovation subsidy to raise the mass of innovators is weaker compared to Proposi-
tion 2. In other words, even if the mass of firms decreases in some cases with the innovation

subsidy, the mass of innovators can still increase.

PROPOSITION 4 (REVENUE AND OUTPUT):

Os+1—0s
1-os

050 fi
Ris=Mris =M ——— =
1,s 1,s'1,s 1,s 95 + 1 -0, ( 1,s 2

05
1_0'5 1-0s
1,s
(—1 — = +1 ] f
1,s

City-level total revenue equals the mass of operating firms multiplied by the average revenue
per firm. All subsidies increase the mass of operating firms (Proposition 2), thus raising total
revenue. Innovation subsidies encourages more firms to become innovators (Proposition 3),

leading to higher average revenues per firm. Hence, revenue rises.

Since prices fall, output will also rise will all subsidies.
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E Further Simulation Results
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Figure E.1: AGGREGATE EFFECTS OF POLICIES

(a) Aggregate Solar Innovation
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41 T — T T

8.1
8.08
8.06
8.04

8.02

798

7.96

7.94

3.96 792
1 0.998 0.996 0.994 0.992 0.99

(b) Aggregate Solar Firms

Solutions of M: with varying a, x and ¢
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(c) Aggregate Solar Revenue

Solutions of R: with varying a, x and ¢
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(d) Aggregate Solar Quantity

Solutions of Q: with varying a, x and ¢
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(e) Aggregate Solar Price

Solutions of P: with varying a, x and ¢
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Note: These are numerically simulated effects of the full model of different city-level subsidies on solar outcomes.
Each of the panels looks at a different outcome, with the level on the y-axis. The x-axis changes the level of the
subsidy from the no-subsidy economy normalized at 1 up to a 10% subsidy (0.9). The different lines represent

different types of subsidy: production (a), demand (y) and innovation (¢). Details in text and Appendix C.
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F Further Econometric Results

F.1 Outcome variables in levels

Table F.1: ALL PATENTS

(1) () (3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
All patents 6.310 —7.076 20.046™ 25.613"
(9.949) (14.578) (9.569) (14.873)
Observations 6,086 6,086 6,086 6,086
Mean of Dep. var. 13.128 13.128 13.128 13.128

Notes: *0.1 ** 0.05 *** 0.01. Each observation is a city (admin2 level region) and there are 358 cities in China.
43 regions are treated by any subsidy. The time period is 2004-2020. Outcome variables are winsorised at 1%.
Each column contains one Synthetic Difference In Differences (SDID) estimate of the Average Treatment of the
Treated (ATT), which averages the staggered treatment effects across all cohorts (years in which there were
solar policies). Column (1) has any solar policy, column (2) the demand (installation) subsidies, column (3) pro-
duction subsidies and column (4) innovation subsidies. Bootstrapped standard errors below the ATT. All regres-
sions without controls.

Table F.2: Firm COUNT

(1) (2) (3) 4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Firm count 1.199 —0.257 2.505% 2.900
(0.898) (0.617) (1.462) (2.122)
Observations 6,086 6,086 6,086 6,086
Mean of Dep. var. 2.872 2.872 2.872 2.872

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions in
China. 43 regions are treated by any subsidy. Time: 2004-2020. Outcome variables are winsorised at 1%. Each
column is one sdid regression. The coefficient is the ATT which averages the staggered treatment effect. All re-
gressions without controls.

Table F.3: REVENUE

1) ) 3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Revenue (million RMB) 135 —0.95 329* 397*
(123) (109) (148) (179)
Observations 6,086 6,086 6,086 6,086
Mean of Dep. var. 157 157 157 157

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions in China. 42
regions are treated by any subsidy. Time: 2004-2020. Outcome variables are winsorised at 1%. Each column is one sdid
regression. The coefficient is the ATT which averages the staggered treatment effect. All regressions with the revenue
adjustment procedure summarized in Section B.8 and without controls.
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Table F.4: PANEL PRoDUCTION CAPACITY

(1) (2) ®) 4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Panel capacity (MWh) 319.567* 138.574 366.728*" 480.764***
(128.377) (127.902) (147.783) (175.088)
Observations 3,580 3,580 3,580 3,580
Mean of Dep. var. 82.449 82.449 82.449 82.449

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions in China.
18 regions are treated by any subsidy. Time: 2004-2013. Outcome variables are winsorised at 1%. Each column is one
sdid regression. The coefficient is the ATT which averages the staggered treatment effect. All regressions without
controls

Table F.5: EXPORTS

(1) (2) ®) 4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Solar export value (million dollar) 22.1% 4.6 26.9* 31.9*
(12.4) (13.7) (12.7) (17.3)
Observations 4,654 4,654 4,654 4,654
Mean of Dep. var. 19.27 19.27 19.27 19.27

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions in China. Time period
for estimation: 2004-2016 for export value, and 2004-2015 for export volume and price. Outcome variables are winsorised at 1%.
Each column is one SDID regression. The coefficient is the ATT, which averages the staggered treatment effect for all cohorts. All
regressions are without controls.

F.2 Solar Panel and Cell results 2004-2013: Production, Capacity and

Firm Numbers

Table F.6: SOLAR PRODUCTION, CAPACITY AND FIRM COUNTS

(1) (2) ©) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Panel production 2.140™ 0.705™ 2.513" 3.078™
(0.471) (0.341) (0.525) (0.702)
Cell production 1.831° 1.298" 2.024™ 2.455™
(0.592) (0.664) (0.707) (1.010)
Cell capacity 1.928™ 1.310" 2.066™ 2.3227
(0.672) (0.709) (0.842) (1.197)
Panel firm counts 0.558"™** 0.146 0.677"* 0.806™"
(0.125) (0.109) (0.140) (0.184)
Cell firm counts 0.380™ 0.229 0.422™ 0.540™
(0.152) (0.213) (0.183) (0.262)
Observations 3,580 3,580 3,580 3,580

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions in
China. 43 regions are treated by any subsidy. Time: 2004-2013. Each column is one sdid regression. Without con-
trols. The coefficient is the ATT which averages the staggered treatment effect. All regressions without controls
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F.3 Unadjusted revenue results

Table F.7: UNADJUSTED REVENUE

(1) (2) 3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy

Revenue 1.033** 0.144 1.777* 2.618"
(0.441) (0.173) (0.753) (1.145)
Observations 6,086 6,086 6,086 6,086

Notes: The main results have our estimates solar-only revenues, whereas these are the results using the
raw revenue data for solar firms (including revenue from non-solar products). * 0.1 ** 0.05 *** 0.01. Each
observation is an admin2 level region and there are 358 admin2 regions in China. 42 regions are treated
by any subsidy. Time: 2004-2020. Each column is one sdid regression. The coeflicient is the ATT which
averages the staggered treatment effect. All regressions without controls

F.4 Exports results

Table F.8: EXPORTS: NUMBER OF EXPORTERS AND NON-SOLAR EXPORTS

(1) (2) ®3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Exporters firm count 0.220™ 0.046 0.314" 0.400™*
(0.095) (0.107) (0.107) (0.167)
Non solar export value 1.388 —0.736 3.094™** 3.560™
(0.924) (0.979) (1.026) (1.641)

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions in China.
43 regions are treated by any subsidy. Time: 2004-2016. Each column is one sdid regression. Without controls. The
coefficient is the ATT which averages the staggered treatment effect. All regressions without controls

F.5 Cross-city spillovers

Table F.9: CROSS-CITY SPILLOVERS

(1) (2) ©) 4) ®)
All patents Firm count Revenue Panel capacity Solar export value
Any subsidy in an adjacent city ~ 0.372"** 0.112* 0.617"** 0.385 1.099*
(0.101) (0.061) (0.199) (0.263) (0.491)
Observations 5,049 5,049 5,049 3,210 3,861

Notes: * 0.1 ** 0.05 *** 0.01. Dependent variables are reported in columns. Each observation is an admin2 level region and there
are 358 admin2 regions in China. This sample here is restricted by dropping the 43 regions that have been treated directly by any
subsidy. From the remaining regions, 103 cities’ neighbours received any kind of subsidy. Time: 2004-2013 for panel capacity,
2004-2020 for patents, firm count and revenues. Each column is one sdid regression. The coefficient is the ATT which averages
the staggered treatment effect. The revenue numbers are adjusted to account for multi-product firms following the mechanism
described in Section B.8. All regressions without controls.
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F.6 Pollution and CO, emissions

Table F.10: PM 2.5 CONCENTRATION

(1) ) (3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
PM 2.5 concentration —0.611 —1.192" —0.167 —0.161
(0.441) (0.581) (0.394) (0.584)
Observations 6,086 6,086 6,086 6,086
Mean of Dep. var. 38.58 38.58 38.58 38.58

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions in China.
Time: 2004-2020. Each column is one SDID regression. The coefficient is the ATT which averages the staggered
treatment effect. The outcome variable is annual average pg/m> concentration of PMys. It is in levels and is win-
sorized at 1%. Its source is the 0.1 x 0.1 degree resolution V5. GL.02 data set, from which, we calculate area-weighted
averages for cities. All regressions without controls.

Table F.11: CO, EMISSIONS

(1) (2) (3) 4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Annual CO, emissions —0.038** —0.042" —0.028 —0.020
(0.015) (0.023) (0.017) (0.028)
Observations 4,872 4,872 4,872 4,872

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 348 admin2 regions in China
with available data. Time: 2004-2017. Each column is one SDID regression. The coefficient is the ATT which aver-
ages the staggered treatment effect. The outcome variable is annual CO, emissions and it is transformed using THS.
Its source is the county-level annual data set of J. Chen et al. (2020), which we remap to our admin2 regions. All re-
gressions without controls.

F.7 City-level total solar patents

Table F.12: CITY-LEVEL TOTAL SOLAR PATENTS

(1) (2) (3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Patent 0.444* 0.114 0.662*** 1.029"*
(0.150) (0.138) (0.213) (0.219)
Observations 6,086 6,086 6,086 6,086

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions
in China. 43 regions are treated by any subsidy. Time: 2004-2020. Each column is one sdid regression.
Without controls. The coefficient is the ATT which averages the staggered treatment effect. All regres-
sions without controls
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F.8 Learning by doing patents

Table F.13: LEARNING-BY-DOING PATENTS

(1) (2) (3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Patent 0.365™ 0.187 0.604™* 0.914*
(0.149) (0.186) (0.235) (0.377)
Observations 5,728 5,728 5,728 5,728

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions
in China. 43 regions are treated by any subsidy. Time: 2004-2020. Each column is one sdid regression.
Without controls. The coefficient is the ATT which averages the staggered treatment effect. All regres-
sions without controls. 25.6% of the utility + invention patents are classified as LBD patents.

F.9 Productivity Analysis

Table F.14: PRODUCTIVITY OUTCOMES

Panel A (1) (2) (3) (4)
Period: 2004-2020 Any subsidy Demand subsidy Production subsidy Innovation subsidy
Revenue 1.015* 0.069 1.802"* 2.563"
(0.455) (0.277) (0.629) (0.844)
Labor 0.758" 0.020 1.474 1.844*
(0.429) (0.232) (0.601) (0.932)
Capital 0.526 —0.186 1.260*" 1.712**
(0.354) (0.175) (0.518) (0.799)
Observations 6,086 6,086 6,086 6,086
Panel B (1) (2) (3) (4)
Period: 2004-2013 Any subsidy Demand subsidy Production subsidy Innovation subsidy
Revenue 1.776* 0.294 2.2217 2.653"
(0.570) (0.209) (0.654) (1.017)
Panel production capacity 2.098" 0.587 2.496" 2.930™
(0.532) (0.467) (0.575) (0.773)
Labor 1.460™" 0.137 1.825*" 2.084™
(0.598) (0.246) (0.710) (1.017)
Capital 1.177* 0.103 1.494™ 1.792*
(0.524) (0.246) (0.611) (0.923)
Observations 3,580 3,580 3,580 3,580

Notes: 0.1 ** 0.05 *** 0.01. Each observation is a city (admin2 level region) and there are 358 cities in China. 43 cities
are treated by a subsidy. The time period of panel A is 2004-2020, and 2004-2013 for panel B. Each column contains one
Synthetic Difference In Differences (SDID) estimate of the Average Treatment of the Treated (ATT), which averages the
staggered treatment effects across all cohorts (years in which there were solar policies). Column (1) has any solar pol-
icy, column (2) the demand (installation) subsidies, column (3) production subsidies and column (4) innovation subsidies.
Bootstrapped standard errors below the ATT. The revenue numbers are adjusted to account for multi-product firms fol-
lowing the mechanism described in Section B.8 and all regressions are without controls.
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F.10 Controlling for GDP per Capita

Table F.15: CONTROLLING FOR GDP PER CAPITA

1) (@) ®) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy

All patent 0.483™" 0.226 0.867*" 1.001"**
(0.205) (0.242) (0.220) (0.341)

o Design patents 0.187 0.275 0.240 0.141
(0.132) (0.190) (0.167) (0.254)
o Invention/utility model patents 0.527** 0.191 0.960"* 1.051™
(0.213) (0.241) (0.232) (0.361)
« Solar patents 0.523*" 0.247 0.802*"* 0.875™**
(0.191) (0.230) (0.204) (0.339)
« Non-solar patents 0.254 —0.061 0.739""* 0.801*"
(0.182) (0.215) (0.217) (0.349)
Firm count 0.210™** 0.030 0.380"* 0.396"**
(0.081) (0.031) (0.125) (0.138)
Revenue 1.007"** 0.083 1.767"* 2.496™
(0.458) (0.197) (0.505) (0.686)
Panel capacity 2.025™ 0.531 2.415™ 2.848™
(0.466) (0.428) (0.470) (0.705)
Solar export value 4515 1.367* 6.250™" 8.967"*
(0.970) (0.741) (1.428) (2.136)
Export value 2.409™ 0.577 3.210™ 4.041*"
(0.886) (1.009) (1.292) (1.992)

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region. Here we control GDP per capita, and this data is available
for 284 cities (update: available for 314 cities now). 43 regions are treated by any subsidy. Time: 2004-2020. Each coefficient is one
sdid regression. The coefficient is the ATT which averages the staggered treatment effect. The revenue numbers are adjusted to
account for multi-product firms following the approach described in Section B.8.
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F.11 Compositional changes and dynamic effects

F.11.1 Aggregate event studies for cohorts between 2007 and 2013

Figure F.1: ALL PATENTS BY SOLAR FIRMS - COHORTS BETWEEN 2007 AND 2013
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Note: Cohort- and year-specific ATTs are estimated by synthetic DID methods and are aggregated into event
studies as described in Section 5. Only estimates from cohorts between 2007 and 2013 are taken into account.
The red vertical line indicates the last year for which all cohorts have available estimates. The outcome variable
in all panels is the total number of patents by solar firms (with arcsinh transformation). The treatment variable
varies by panel: panel A uses any subsidy, panel B demand subsidy, panel C production subsidy and panel D
uses innovation subsidy. 95% confidence intervals are plotted around point estimates.
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Figure F.2: FirRm COUNT - COHORTS BETWEEN 2007 AND 2013
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Note: Cohort- and year-specific ATTs are estimated by synthetic DID methods and are aggregated into event
studies as described in Section 5. Only estimates from cohorts between 2007 and 2013 are taken into account. The
red vertical line indicates the last year for which all cohorts have available estimates. The outcome variable in all
panels is the total number of solar firms (with arcsinh transformation). The treatment variable varies by panel:
panel A uses any subsidy, panel B demand subsidy, panel C production subsidy and panel D uses innovation
subsidy. 95% confidence intervals are plotted around point estimates.
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Figure F.3: REVENUE - COHORTS BETWEEN 2007 AND 2013
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Note: Cohort- and year-specific ATTs are estimated by synthetic DID methods and are aggregated into event
studies as described in Section 5. Only estimates from cohorts between 2007 and 2013 are taken into account. The
red vertical line indicates the last year for which all cohorts have available estimates. The outcome variable in all
panels is the total revenue of solar firms (with arcsinh transformation and adjustment leveraging export data).
The treatment variable varies by panel: panel A uses any subsidy, panel B demand subsidy, panel C production
subsidy and panel D uses innovation subsidy. 95% confidence intervals are plotted around point estimates.
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Figure F.4: PANEL PRODUCTION CAPACITY - COHORTS BETWEEN 2007 AND 2013
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Note: Cohort- and year-specific ATTs are estimated by synthetic DID methods and are aggregated into event
studies as described in Section 5. Only estimates from cohorts between 2007 and 2013 are taken into account.
The red vertical line indicates the last year for which all cohorts have available estimates. The outcome variable
in all panels is the total panel capacity MWh of solar firms (with arcsinh transformation). The treatment variable
varies by panel: panel A uses any subsidy, panel B demand subsidy, panel C production subsidy and panel D
uses innovation subsidy. 95% confidence intervals are plotted around point estimates.
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Figure F.5: SOLAR EXPORT VALUE

Panel A: Any subsidy Panel B: Demand subsidy
20 I 20 !
| |
15 ! s | 15 T
| 10 |
10 | . .. [ :
5 ' 5 ° i |
| . Ve * o
o . 0 .
0+ + T .
| 5 }
-5 I |
T T T T T T T T T T T T
o N N ) o A ) ) N N ) %) A )
Panel C: Production subsidy Panel D: Innovation subsidy
20 } 20 }
| |
15 i - 15 i
| | .
10 | . 10 | . .
5 ' : 5 L_£ : c
| A ° | .
0 + = 04+ +
| |
-5 I -5 I
3 N N > % A 5 > N N o s A 5
* Point Estimate 95% CI

Note: Cohort- and year-specific ATTs are estimated by synthetic DID methods and are aggregated into event
studies as described in Section 5. Only estimates from cohorts between 2007 and 2013 are taken into account. The
red vertical line indicates the last year for which all cohorts have available estimates. The outcome variable in all
panels is the total solar export value of solar firms (with arcsinh transformation, million dollars). The treatment
variable varies by panel: panel A uses any subsidy, panel B demand subsidy, panel C production subsidy and
panel D uses innovation subsidy. 95% confidence intervals are plotted around point estimates
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F.11.2 Cohort-specific event studies (2007 and 2013 examples)

Figure F.6: NUMBER OF PATENTS BY SOLAR FIRMS - ANY SUBSIDY (2007 EXAMPLE)
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Note: Synthetic DID methods. The left-hand side graph reflects the raw trends of the control group and treated
group. The right-hand side graph reflects the difference between the control and treated groups with 95% and
90% confidence interval. The outcome variable is firm patents (with arcsinh transformation). These are estimates
for the cohort of cities treated in 2007. There are 358 cities and 3 are treated in 2007.

Figure F.7: NUMBER OF SOLAR FIRMS - ANY SUBSIDY (2007 EXAMPLE)
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Note: Synthetic DID methods. The left-hand side graph reflects the raw trends of the control group and treated
group. The right-hand side graph reflects the difference between the control and treated groups with 95% and
90% confidence interval. The outcome variable is number of solar firms (with arcsinh transformation). These are
estimates for the cohort of cities treated in 2007. There are 358 cities and 3 are treated in 2007.
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Figure F.8: REVENUE BY SOLAR FIRMS - ANY SUBSIDY (2007 EXAMPLE)
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Note: Synthetic DID methods. The left-hand side graph reflects the raw trends of the control group and treated
group. The right-hand side graph reflects the difference between the control and treated groups with 95% and
90% confidence interval. The outcome variable is total revenue of solar firms (with arcsinh transformation).
These are estimates for the cohort of cities treated in 2007. There are 358 cities and 3 are treated in 2007.

Figure F.9: TOTAL PANEL CAPACITY BY SOLAR FIRMS - ANY SUBSIDY (2007 EXAMPLE)

——= Control —— Treated @ Point Estimate 90% Cl === 95%Cl
8 ! 8
i
1 m———— -~ _
i e —_————
! 6 » 0 >
6 H - . =
I , S
| / -
’ . -
i ; -
| 4 7 =7
4 i . . 4
| ) >
i B %
I 2 ",
- .
2 ‘ - L
1 0-re- = >
| e i == -
--‘T-----""’ T~
O=== I
T T T T T T E
2004 2006 2008 2010 2012 2014 y T T T T T T T T
& & §§ S & ® N N @ >
year I S S M

Note: Synthetic DID methods. The left-hand side graph reflects the raw trends of the control group and treated
group. The right-hand side graph reflects the difference between the control and treated groups with 95% and 90%
confidence interval. The outcome variable is total panel capacity of solar firms (with arcsinh transformation).
These are estimates for the cohort of cities treated in 2007. There are 358 cities and 3 are treated in 2007.
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Figure F.10: SOLAR EXPORTS BY SOLAR FIRMS - ANY SUBSIDY (2007 EXAMPLE)
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Note: Synthetic DID methods. The left-hand side graph reflects the raw trends of the control group and treated
group. The right-hand side graph reflects the difference between the control and treated groups with 95% and
90% confidence interval. The outcome variable is total solar exports of solar firms (with arcsinh transformation).
These are estimates for the cohort of cities treated in 2007. There are 358 cities and 3 are treated in 2007.

Figure F.11: NUMBER OF PATENTS BY SOLAR FIRMS - ANY SUBSIDY (2013 EXAMPLE)

——= Control —— Treated ® Point Estimate 90%Cl --- 95%Cl
4
PO
/
/
-~ /
PN
/ >
2
/ « ° °*
==~ .
/ ~ 7/ L]
/ ~. /7
/ < /
/ ST __ P N T T /——
= T . . o o . . 2 >
0 e ~_ e =~ 7 N ’ RN
S \\\/ - S N //
/\/] NS
Pty N\ /
- N/
N
2005 2010 2015 W00 S S S —
¥ $H Q& P O O N D X o o QA @ O O
N N O O O N N N N WS N N NS N N N Q
year L S S S S I S S S S

Note: Synthetic DID methods. The left-hand side graph reflects the raw trends of the control group and treated
group. The right-hand side graph reflects the difference between the control and treated groups with 95% and
90% confidence interval. The outcome variable is firm patents (with arcsinh transformation). These are estimates
for the cohort of cities treated in 2013. There are 358 cities and 3 are treated in 2013.
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Figure F.12: NUMBER OF SOLAR FIRMS - ANY SUBSIDY (2013 EXAMPLE)
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Note: Synthetic DID methods. The left-hand side graph reflects the raw trends of the control group and treated
group. The right-hand side graph reflects the difference between the control and treated groups with 95% and
90% confidence interval. The outcome variable is firm patents (with arcsinh transformation). These are estimates
for the cohort of cities treated in 2013. There are 358 cities and 3 are treated in 2013.

Figure F.13: REVENUE BY SOLAR FIRMS - ANY SUBSIDY (2013 EXAMPLE)
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Note: Synthetic DID methods. The left-hand side graph reflects the raw trends of the control group and treated
group. The right-hand side graph reflects the difference between the control and treated groups with 95% and
90% confidence interval. The outcome variable is total revenue of solar firms (with arcsinh transformation).
These are estimates for the cohort of cities treated in 2013. There are 358 cities and 3 are treated in 2013.
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F.12 City-level total patents

Table F.16: PLACEBO: CITY-LEVEL TOTAL PATENTS

(1) (2) 3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Patent —0.064 0.004 —0.118 —0.034
(0.438) (0.965) (0.309) (0.811)
Observations 6,086 6,086 6,086 6,086

Notes: * 0.1 ** 0.05 *** 0.01. Outcome is total patents (mainly non-solar) Each observation is an admin2
level region and there are 358 admin2 regions in China. 43 regions are treated by any subsidy. Time: 2004-
2020. Each column is one sdid regression. The coefficient is the ATT which averages the staggered treat-
ment effect. All regressions without controls

F.13 Quality-adjusted patenting: patent citations

Table F.17: PATENT CITATIONS

(1) () ®3) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Patent citations 0.676™ 0.388 0.854™ 1.076*"
(0.218) (0.328) (0.300) (0.482)
Observations 6,086 6,086 6,086 6,086

Notes: *0.1 **0.05 *** 0.01. SDID on 358 cities. Time: 2004-2019. Each column is one sdid regression. Without
controls. Outcome is IHS of patent count (weighted by future citations) by solar firms in a city-year pair. Ci-
tations are measured as the number of patent families citing a patent’s patent family. SE cluster bootstrapped
by city.

F.14 GDP per capita

Table F.18: PLAaceEBO: GDP PER CAPITA

(1) (2) ©) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Patent 0.028 0.027 0.034 0.038
(0.195) (0.201) (0.468) (0.568)
Observations 5,491 5,491 5,491 5,491

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions
in China. 43 regions are treated by any subsidy. Time: 2004-2020. Each column is one sdid regression.
Without controls. The coefficient is the ATT which averages the staggered treatment effect. The number
of observation is smaller because not all cities have GDP per capita data.
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F.15 Cost of policies: subsidy

Table F.19: SUBSIDY VALUE

(1) ) ®) (4)
Any subsidy Demand subsidy Production subsidy Innovation subsidy
Subsidy value (million RMB) 13.601* -0.527 15.993* 24.177
(7.693) (1.293) (9.276) (17.621)
Observations 2,457 2,457 2,457 2,457
Mean of Dep. var. 1.492 1.492 1.492 1.492

Notes: * 0.1 ** 0.05 *** 0.01. Each observation is an admin2 level region and there are 358 admin2 regions in China. Time
periods included in the estimation: 2004-2007 and 2011-2013. 7 regions treated by any subsidy between 2008 and 2010 are
excluded. Each column is one SDID regression. The coefficient is the ATT, which averages the staggered treatment effect for
all cohorts. All regressions are without controls.

OA-58



	Introduction
	Related Literature

	Institutional Background: China's Industrial Policy Towards Solar PV
	Solar PV in the Government's Five-Year Plans
	Policy Support toward Solar Manufacturing
	 Measuring Solar Industrial Policy

	Data
	Model
	The Grid Planner Problem
	Demand-Side Industrial Policy

	The Manufacturer Problem
	Manufacturing Technology
	Innovation
	Internal Trade and Exporting
	Supply-Side Industrial Policy (Production and Innovation subsidies)
	Firm profits
	Firm optimal choices

	Industry Equilibrium
	Comparative Statics: Closed Form Solutions in a Simplified Model
	Comparative Statics in the Full Version of the Model: Quantification and Simulation
	Summary on the Model

	Empirical Strategy
	Innovation
	Number of Solar Firms
	Output: Revenues and Production
	Exports
	Impact of Solar Subsidies: Summary

	Extensions and Further Robustness Tests
	Business Stealing? Cross-city spillovers
	Pollution
	Patent Quality
	Learning-by-doing Patents
	Productivity Analysis
	Placebo Tests: Using Non-Solar Patents and GDP per capita as Outcomes
	Adding Controls
	Compositional Changes and Dynamic Effects
	Solar Patents Taken out by Non-solar Firms
	Magnitudes

	Conclusions
	Institutional Background on China's Industrial Policy towards Solar
	Solar PV in the Government's Five-Year Plans
	Policy Support Towards Solar Manufacturing
	Policy Support Towards Solar R&D

	Data
	Solar industrial policy
	Solar panel and cell manufacturers register, production, and capacity data
	Firm counts, entry and exit
	Patents and their characteristics
	Text analysis on patent abstracts
	Examples of Learning by doing (LBD) patents
	Revenue, Employment and Capital: ORBIS and ASIE data
	Solar exports volume, value, and prices
	Adjustment of revenues to reflect multi-product firms
	Pollution and CO2 emissions data sets
	City panel dataset

	Theory: Full version of Model
	The Grid Planner Problem
	Demand for Energy Sources
	Demand for Energy-Sector Manufactured Inputs

	The Manufacturer Problem
	Manufacturing Technology
	Firm Profits
	Productivity Thresholds

	Industry Equilibrium
	Aggregate variables
	Mass of firms
	Production


	Theory: Simplified version of the Full Model
	The Grid Planner Problem: Demand for Solar Energy Sources
	The Manufacturer Problem: Technology and Profits
	Free entry
	Solving the model
	Some Theoretical Conditions
	Comparative Statics Proof

	Further Simulation Results
	Further Econometric Results
	Outcome variables in levels
	Solar Panel and Cell results 2004-2013: Production, Capacity and Firm Numbers
	Unadjusted revenue results
	Exports results
	Cross-city spillovers
	Pollution and CO2 emissions
	City-level total solar patents
	Learning by doing patents
	Productivity Analysis
	Controlling for GDP per Capita
	Compositional changes and dynamic effects
	Aggregate event studies for cohorts between 2007 and 2013
	Cohort-specific event studies (2007 and 2013 examples)

	City-level total patents
	Quality-adjusted patenting: patent citations
	GDP per capita
	Cost of policies: subsidy


