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Abstract

As in many school districts worldwide, high-school students in Ghana are assigned through
a centralized system. We build and estimate a model where students engage in costly search
to acquire information on school characteristics. Schooling decisions are exerted without full
examination of all available options, which may lead to sub-optimal choices. Using adminis-
trative data on choices and a survey on beliefs, we document substantial welfare loss: distance
traveled to schools could be divided by 3. We propose a new ranked-attributes-list mecha-
nism, which collects preferences over school attributes rather than actual choices and show it
recovers most of the lost welfare.
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Introduction

Over the last 30 years, many school districts have adopted coordinated mechanisms to assign
students to schools. In 2005, Ghana introduced the national Computerized School Selection and
Placement System (CSSPS) to match prospective students to high schools. The stated goal was
to increase equity and access to quality senior high schools. The matching is based on the serial
dictatorship algorithm, where priorities are determined by the student’s score on the Basic Educa-
tion Certification Examination (BECE). Every spring, several hundred thousands of students sub-
mit a wish list of schools and gain admission into one of the more than 2,000 schools/programs
at the end of summer, making it de facto one of the largest matching systems in the world.

However, throughout the process, logistical considerations outweigh efficiency concerns. First,
the timing introduces uncertainty, as rank-order lists (ROLs) are submitted before the examina-
tion determines priority scores. Then, students have to choose between more than 2,000 school-
ing options, which guarantees that some choices will be overlooked. Finally, constraints were
imposed on the length of rank-order lists (3 in 2005, 4 in 2007, then 6 in 2008), which prompted
agents to strategize over their submitted lists. The short history of the program, combined with
the low potential involvement of parents, may have worsened the potential welfare consequences
of these implementation issues.

Three years after introducing the CSSPS, data on applications demonstrates that more than
24% of students do not submit a complete list of choices. Matching outcomes show that more
than 13% of students end up unassigned." The application behavior of students led to substantial
variation in admission cutoffs, especially for low and medium selectivity schools, and more
than 30% of schools end up with at least one vacancy (including the very best schools). While
exacerbated in Ghana, many nations faced similar problems.*

This paper shows that even coordinated centralized allocations are not a miracle solution
against coordination frictions. We show that students may engage in a costly search to acquire
information about schooling opportunities in a large matching market. We make several method-
ological and empirical contributions to the literature.

First, we document that a substantial share of students submits a truncated list, and many
students and schools end up unmatched. Second, we formulate the school application process as
a dynamic search problem to rationalize the co-existence of vacancies at the school level and un-
matched students. Students engage in an iterative and costly search among alternatives to build
an endogenous consideration set, and the sequential acquisition of information about schools
implies a familiar optimal stopping structure. A key implication of the model is that schooling
decisions are exerted without thoroughly examining all available options, which may lead to

T According to Abdulkadiroglu et al. (2005), a little less than 30% of students were administratively assigned under
the decentralized application system in New York City, which motivated the switch to a centralized system.

2Two notable examples are Tunisia and Jamaica, where school officials have adopted “twists” to the standard
DA mechanism. In Tunisia, the algorithm runs sequentially, with cohorts being divided into three groups based on
priority scores. In Jamaica, when a student fails to match to a school from his ROL, an administrator assigns him to a
school with an existing vacancy ahead of students with lower priority who might have applied for that school.



sub-optimal decisions. Third, we assume that students have subjective beliefs about admission
chances, and those beliefs are likely to be biased for many schooling options. Information and
search frictions lead to welfare losses. Fourth, we overcome the curse of dimensionality, making
it impossible to account for sizeable potential choice sets, and limiting standard empirical ap-
plications to markets with few choices. Our empirical application, which uses data from more
than 160,000 students choosing more than 2,000 schooling options, requires us to specify a search
technology. We consider models where the search is random and a more general setting where
students can direct their search toward a specific set of schools. We use the model to rational-
ize the observation that similar individuals make very different choices and produce credible
counterfactual simulations. Potentially biased beliefs about admission chances and search fric-
tions lead to an inefficient allocation. Finally, we use the model to propose a policy reform that
generates substantial welfare gains.

Our work is related to the recent literature on the role of information in empirical market
designs (see for example Luflade, 2017; Kapor et al., 2018).5 While these papers introduce critical
innovations to the analysis of centralized school allocation systems, our setting differs with im-
perfect information, which results from the size of the market, and compels students to search
for information over schools. Recent literature analyzes similar questions (Arteaga et al., 2021)
using a theoretical model to derive testable predictions. Our framework allows us to endogenize
how consideration sets are formed. As such, our work is related to an extensive literature on
search frictions that dates back to Stigler (1961) and complements the active field of consumer
search in industrial organization.*

The most critical parameters for our analysis are preference parameters for school attributes.
These parameters may be affected by the information sets and search behavior of agents, which
are not observed in administrative data. We take three complementary approaches to isolate the
potential consequences on preference estimates and derive credible counterfactual analysis.

First, using survey data on 12,871 students, that contains extensive information about be-
liefs and realized test scores, we characterize the belief and information sets of students as in
Kapor et al. (2018). Analysis of the survey data shows substantial test score uncertainty, and
beliefs about school level cutoffs are generally biased. Ultimately, we apply the K-means clus-
tering technique to derive a mixture of distributions to account for belief heterogeneity in the
population. Second, we develop a series of behavioral search models with increasing complexity
to illustrate the empirical content of the administrative data. The first model, which is based
on exogenous consideration (Manzini and Mariotti, 2014), is shown to be identified using rank-

order list data. We provide two additional models where search is sequential and the sampling

3The predominant focus in the empirical school choice literature has been on lottery-based admission and the
Boston mechanism (see Abdulkadiroglu and Sonmez, 2003). The recent literature tries to quantify the welfare gains
associated with changing the allocation mechanism (Agarwal and Somaini, 2018; Fack et al., 2019; Calsamiglia et al.,
2020). Related literature also includes Kapor (2016); Abdulkadiroglu et al. (2017); Walters (2018).

4See for example Goeree (2008); Honka et al. (2017); Dinerstein et al. (2018) among others. A recent literature in
decision theory analyzes the role of information attention and rational inattention in individual choice (see Masatlioglu
et al.,, 2012; Caplin and Dean, 2011; Sims, 2003).



of schools may be random or directed. Third, we show that if search cost does not include an
unobserved component and the probability of considering an alternative is known a-priori, then
preference parameters can be identified provided that the econometrician has access to a special
regressor, which shifts consideration probabilities without affecting preferences. We perform a
Monte Carlo study confirming this result and showing that preference parameters are precisely
and accurately estimated. Finally, we show multiple specifications that confirm that preference
estimates are remarkably stable across different models and specifications. The results of the
three analyses show a clear and consistent pattern: preference parameters are identified.

Our estimated parameters are as expected, indicating individuals’ preferences for school qual-
ity and its proxies. Under our preferred model, the median student considers only seven choices
compared to more than 2,000 schooling options. Comparisons of the different search methods
conclude that a model where students direct their search toward specific groups of schools pro-
vides the best fit to the data.

We quantify the welfare implications of school choice in the presence of imperfect information
on school characteristics. Our welfare analysis shows that only 34% of the efficient allocation is
realized. As distance is the numeraire, our results imply that the cost of boarding could be
divided by three. Since low ability students incur the most sizable share of the welfare losses,
our findings suggest that the initial objective to increase equity in access to secondary education
may be negated. Further computations show that 37.4% of the welfare loss can be attributed to
the inability of students to gather information about alternatives. Test score uncertainty accounts
for 20.5% of the welfare loss and aggregate uncertainty for 14.8%.5

Finally, since the planner may be more informed about schooling opportunities than students,
we study whether restricting choice could improve welfare. Our intuition is that given the num-
ber of choices, some alternatives may be looked over. Yet, counterfactual outcomes will depend
mainly on the information set of the planner. On one extreme, if we were to assume that the
planner knows all the utility function parameters, efficient allocation is achieved. We propose
a simple mechanism, the Ranked-Attributes-List (RAL), which retains the key properties of the
serial dictatorship algorithm, as students are asked to resolve the trade-off between different
school attributes using a ranking of which characteristics to consider first. We find that school
choice under RAL generates substantial welfare gains - recovering most of the welfare loss. RAL
sidesteps the effect of uncertainty and search frictions on the application behavior and achieves
approximately 87.6% of the efficient allocation with a minimal change to the current system.

The rest of the paper is organized as follows. In Section 1, we describe our data and report
several empirical regularities. Section 2 describes the model, while estimation and identification
are discussed in section 3. The estimation results are presented in section 4. Section 5 presents a

welfare analysis. Finally, section 6 concludes.

5Welfare losses do not sum to 1 because of interactions between the various sources of uncertainty and search
frictions.



1  Motivation

Our data comes from Ghana, where the national school system consists of six years of primary
school, three years of junior high school (JHS), and three years of senior high school (SHS). In
contrast to most higher income nations, high-school completion (SHS) is the final qualification
for almost 80% of students (Duflo et al., 2021). Starting in 2005, students completing junior high
school apply for admission to senior high school through a centralized application system. One
may wonder about the rationale for organizing a nationwide education system for teenagers. As
we show later, top academic programs are located in few regions; a national education system
gives a pathway to elite schools for students in rural locations.® We should stress that the school
choice setting in Ghana is similar to college choice in higher income nations, with students
moving to boarding schools on the other side of the country.

Students apply to specific academic programs within a school and can submit a ranked list
of up to six choices. Available programs include agriculture, business, general arts, general
science, home economics, visual arts, and several occupational programs offered by technical or
vocational institutes.”

After submitting their rank-order lists, students take a standardized Basic Education Certifi-
cation Exam (BECE). The application system then allocates students to schools based on a serial
dictatorship where priorities are determined by the BECE score.

Students who are unassigned at the end of the algorithm are administratively assigned to a
nearby program with remaining vacancies. Our data, which provides individual choices along
with BECE scores as well as admission outcomes, consists of final year (grade 9) students from
the universe of junior high schools (grades 6-9) in 2008.

Appendix Section A provides a detailed description of individuals” application behavior as
well as admission outcomes. Our final analytical sample consists of 160,869 students, who choose
between 2,089 school-programs. In this section, we focus on some key empirical regularities that

motivate our analysis.

1.1 Evidence of Search.

First, we present empirical evidence of limited search. Despite having six choices out of more
than 2,000 options, many students do not submit all six choices. As documented by Table 1,
almost six percent of choices are missing. A choice is defined as missing if the student does
not list a choice, lists the same choice more than once, or lists a program that does not exist.
The traditional explanation for missing choice is based on the participation margins in school

matching - students prefer the outside option to many schooling alternatives.”

6Student placement before the centralized system was based on yearly regional selection meetings.

7For exposition simplicity, we use the term school or program to refer to a bundle school x program. When strictly
referring to a school, we use the term senior high school (SHS).

8This explanation is unlikely in Ghana. That is, outside options (labor market outcomes, matching outside of the
system) are extremely limited for many students.



Table 1: Missing Choices

Students test score (quartiles)

ROL All 0.337 —0.537 0.537 —0.603 0.603 —0.691 0.69 —1
All 0.9403 0.9283 0.9357 0.9421 0.9558
Choice 1 1 1 1 1 1

Choice 2 0.9993 0.9995 0.9994 0.9992 0.9993
Choice 3 0.9952 0.9935 0.9946 0.9952 0.9976
Choice 4 0.9833 0.9777 0.9812 0.9829 0.9915
Choice 5 0.9047 0.8957 0.9012 0.905 0.9175
Choice 6  0.7595 0.7032 0.7378 0.7705 0.8289

Notes: Table reports the proportion of non missing choices. Proportions are
computed for the full sample, and by interval of student test score.

Low test score students are more likely to report truncated lists - that is 29.7% to be compared
to less than 17.1% for the highest test score students. More specifically, as higher ability students
have presumably better outside options, missing choices in this setting can not be attributed to
difference in outside values.

1.2 Biased beliefs

As we use administrative data, we do not have access to the beliefs of students. We use additional
data from a field experiment that surveys 12,871 students. The survey took place across 450 junior
high schools in the Ashanti Region in 2016 (Ajayi et al., 2020).? Several details about the survey
are important. First, students are interviewed before submitting applications for choice - as such,
the information set of students in the survey mirrors that of students in the administrative data.
Second, although the survey sample is from a single region, Appendix Table E shows that in key
dimensions such as gender, age and test score, there is almost no difference between the survey
sample and the population. It should be clear that the timing of the survey align perfectly with
the choice environment with respect to student search.

The survey contains detailed information about beliefs (admission chances, aspirations, and
expectations) as well as detailed socio-demographic attributes. Specifically, the survey asks all
students for a discrete measure of their likely BECE, which allows us to create a mapping be-
tween beliefs and realizations. Then, we consider uncertainty regarding cutoffs. Ahead of their
application, the survey asks students to list four choices, and their beliefs about the cutoffs of
these choices. In order to link beliefs about test score, which are stated once, and those about
cutoffs, which are stated for multiple schools, we proceed as follows. A student has correct be-
liefs about a school when her beliefs about admission chances align with realized chances. Stated

9As the survey and choice data are collected different years, our main assumption is that uncertainty is constant
across periods.



differently, belief are correct as long as the ordering between realized test score and cutoff of the
school is maintained. As such, the definition of correct belief is a little restrictive as pessimism
does not constitute a mistake. Similarly, when beliefs do not align with realizations, we refer to
these beliefs as incorrect. Beliefs may be incorrect because of cutoffs, test score uncertainties and
both. We perform a decomposition of belief errors in Table 2.

Table 2: Biased Beliefs

All Students test score (quantiles)
Beliefs Students 0.337 —0.537 0.537 —0.603 0.603 —0.691 0.69 —1
Correct 0.602 0.418 0.576 0.638 0.779

Incorrect Beliefs

Both 0.146 0.195 0.167 0.142 0.080
Cutoff 0.079 0.030 0.078 0.105 0.103
Test Score 0.172 0.356 0.179 0.115 0.037

Notes: Table reports percentage of choices for which students have correct beliefs
about their admission chances and then decomposes incorrect beliefs into mistakes
about cutoffs and test scores,

We find that 60.2% of all choices are exerted with correct beliefs. Conversely, almost 40%
of choices are based on incorrect beliefs. Exposure to these biased beliefs varies by test score.
That is, almost 78% of high test score students have correct beliefs, while only 41.8% of low test
score have correct beliefs. Yet, it would be incorrect to argue that low test score students are more
affected by uncertainty. The underlying reason is based on the differential effect of uncertainty on
students as illustrated by figure C in the appendix. High test score students tend to be pessimistic
about their admission chances, while low test score students are generally too optimistic. While
pessimism implies biased beliefs, its consequences in terms of admission probabilities are not as
severe as optimism.

We also quantify the instances where individuals have incorrect beliefs. On average, test score
and cutoff uncertainties account for respectively 17.2% and 7.9% of all mistakes. In 14.6% of all
choices, biased beliefs about both cutoffs and test scores lead to incorrect beliefs about admission
chances. Analyzing beliefs by test score quartiles reveals that test score uncertainty accounts for
a substantial part of mistakes for low test score students, while uncertainty regarding cutoffs is
more prevalent among high test score students.

1.3 Placement Outcomes.

Next, we consider the outcome of students’ application behavior. Table 3 reports the placement

outcome of all students. Placement outcomes are then derived by student’s test score. Finally, we



document the placement outcomes of students depending on whether or not one of their choices
is missing.

The vast majority of students gain admission into their first three choices. Altogether, 25.7%
of individuals are admitted into their first choice. Interestingly, not only high test score students
are placed into their first choice, approximately 11.2% of the low test score students are assigned
to their first choice as well, which speaks to potential non-diversification in the ROLs of some
students.

The value of the fifth and sixth choices appears relatively limited, as respectively 7% and
3.2% of students get admitted into those choices. This observation is at odds with the share of
unassigned students (administrative assignment), which is 13.3%."°

We should stress that administrative assignment is a dreadful prospect for anyone participat-
ing in the match. The uncertainty and panic over this outcome are summarized by press articles
stating “Over 60,000 students’ fate in limbo as they can not be placed under CSSPS”. Since 2018,
the government has adopted a double track system, whereby individuals initially placed are
assigned to the green track with school starting in September, while administratively assigned
students are placed on a Gold Track that starts in November. As a consequence, one should not
expect any student to purposely get administratively assigned in the hope of a better assignment later.

Table 3: Placement

Students test score (quantiles) Truncation

Placement ~ All  0.337 —0.537 0.537 —0.603 0.603 —0.691 0.69—-1 Complete Missing

1 0.257 0.112 0.199 0.273 0.448 0.242 0.301
2 0.211 0.117 0.181 0.252 0.297 0.212 0.207
3 0.166 0.131 0.176 0.201 0.159 0.171 0.154
4 0.131 0.143 0.156 0.152 0.072 0.138 0.109
5 0.070 0.085 0.089 0.085 0.022 0.080 0.040
6 0.032 0.058 0.052 0.017 0.000 0.042 0.000
99 0.133 0.354 0.148 0.021 0.002 0.115 0.190

Notes: Table reports the placement of students, including administrative assignment. The placement
outcome is also reported by student test score. Placement "99” refers to administrative assignment.

As expected, administrative assignment is closely related to test score - inasmuch as 35.4% of
lowest ability students are administratively assigned, while only 8o high test score students end
up unmatched. In Appendix A.2.2, we study the application behaviour of students and show
that some application lists contain multiple selective schools and no safety options leading to

administrative assignments. Finally, the truncation panel shows that while students who have

T°Recent press articles state that “About Sixty-seven thousand three hundred and eighty-two (67,382) students who
qualified for senior high schools (SHS) could not be placed under CSSPS this year (2018)”, and “we could not place
122,706 students” in 2019. The problem is still present.



missing choices are more likely to be assigned to their first ranked choice, they are also more
likely to be administratively assigned. As we document in Appendix A.2.5, similar schools face

very heterogenous numbers of applications.

1.4 Vacancies.

Finally, we consider the vacancy rate. Table 4 shows that only 71.5% of the schools end-up at
capacity.

Table 4: Vacancies

Full sample At-capacity Below-capacity

Share 0.715 0.285
Total Seats 78.434 79.532 75.748
Number of Vacancies 40.938
Historic 0.083 0.113 0.010
Boarding 0.562 0.660 0.319
Programs
Agriculture 0.146 0.120 0.211
Business 0.172 0.169 0.181
General Arts 0.212 0.223 0.186
General Science 0.118 0.142 0.057
Home Economics 0.174 0.176 0.168
Technical 0.064 0.052 0.094
Visual Arts 0.113 0.118 0.102

Notes: Table reports the occurrence of vacancy at the school level and
illustrates the characteristics of vacant and non vacant schools.

Not surprising, the vacancy rate is decreasing in school selectivity. However, vacancies are
not confined to low selectivity schools."* Almost 32% of vacant schools have boarding facilities,
and all academic tracks are represented.

The observation that almost a quarter of students do not submit the required number of
choices combined with two digits administrative assignment and vacancy rates suggest a deeper
problem, which we posit to be the existence of imperfect information. Under imperfect infor-
mation, students engage in a costly search process to learn about schooling options, similar to
standard consumer search models. Although beliefs about admission chances are not a central
part of our setting, we use survey data to account for the possibility that individuals may have

biased beliefs about their admission chances.

"'That is, only 78% of the 25% most selective schools are at capacity, a ratio that increases to 79.5% when we consider
the 5% most selective schools. While most vacant schools have one remaining seat, the least selective schools have
more vacancies.



2 A Model of School Application Under Imperfect Information.

In this section, we develop an empirical model, which is consistent with the key facts presented
in section 1. To that end, we introduce frictional search in the standard school application

problem."

We formulate the school application process as a search problem, where students
iteratively and sequentially acquire information about schools. The assumption that search is
sequential implies that the decision to stop acquiring information depends on the “luck” of the
student. This assumption helps us match the observation that some high ability students do not
list six choices. Also, the search framework allows us to generate mismatch on the extensive
(administrative assignment for students and vacancy at the school level) and intensive (matching
into more desirable school) margins. Finally, search costs may compel students to consider only

a subset of choices, leading to sub-optimal decisions.

2.1 Framework.

The school choice problem is summarized as follows. A finite set of students indexed by Z =i
{1,...,I} apply to a finite set of schools indexed by s € {1,2,...,S5}. We denote by S the full set
of schooling options. Each school has a positive and exogenous capacity. Total capacity is given

by x = ZEXS-

2.2 Utilities and Preferences.

A student i is characterized by a vector of observed attributes x; and a test score t/, which
is unknown when she submits a rank order list (ROL). The latter defines individual admission
priorities while the former captures preferences. School s is characterized by a vector of observed
attributes z,, and a cutoff g;. We describe our assignment mechanism later.

A student with characteristics x derives utility u(x, z, &, €) from an assignment to a school
with observed and unobserved characteristics z, £.'3 The parameter & captures choice-specific
unobserved attributes, which may be similarly valued across students, but unobserved to the
econometrician. Examples of £ include the reputation of a school and the quality of teachers.
Finally, €;5 captures individuals” and schools” match-specific shocks. For example, a student may
have an unobserved taste for her parents” alma mater.

Students can opt out of the matching system and enjoy an outside utility u;o. All other high
school admissions will go through the matching process except for international private high
schools. Therefore, 1y is best interpreted as the inclusive value of remaining unassigned. In our
empirical application, we specify the indirect utility of individual i at school s as:

2 A recent literature provides a theoretical foundation to search as originating from endogenous consideration sets
under the notion of rational inattention. Our approach is related to theoretical models that study the implications of
rational inattention for choices using search technology (Masatlioglu and Nakajima, 2013; Caplin and Dean, 2011).

BImplicitly, this formulation rules out preferences for peers that are not captured through observed and unobserved
school attributes.



K
wis = u(Xi zs, &s,€i5) = Y Y PrjZrsXij — dis + & + €is, (1)

J
j=1k=1

Ujp = 0-

where d;; is the distance as the crow flies between student i’s JHS school district and school s

district. There are K school covariates and | student characteristics. Further, we assume that

as ~ N<O/U§>/ €is ~ N<O/U§>' (2)

Since over 99% of programs are public schools, we use distance as our numeraire. This scale
normalization is embedded in the distance coefficient being —1. The set of parameters to be
estimated consists of B, 0z and .. Consequently, the parameters g measure students” willingness
to travel for school attributes and interactions between student and school characteristics.

Arguably, the distance variable is not the best numeraire as most students do not commute
daily in this setting. One would have preferred a measure such as value-added, however, we
do not have access to any such variable.’* In addition to the fixed lodging expenses (boarding
fee), there are multiple ways in which the distance between the parental home and the school
may decrease the student’s utility. Longer distance implies lengthy and expensive trips when
students go back home. As a consequence, we use distance as our numeraire.

2.3 Assignment Mechanisms.

The assignment mechanism is a serial dictatorship, which uses submitted ROLs and students’
priority to determine final assignments. Test scores determine student priorities. Let R € R be a
ROL. Students submit a ROL that does not have to reflect their true preferences over schools. In
our current setting, students can submit up to six choices, a constraint that makes it even more
likely that ROLs may not reflect true preferences. The payoffs depend not only on which schools
are listed, but also on the order in which they are listed. We assume that students understand
this. We also assume that students act as price takers, taking admission probability as given.">
Finally and following the literature, we denote by g,, the cutoff of school s. Formally, the
cutoff of school s, gs, is the minimal test-score required for admission at school s and formally
defined as 1{D;(gs) < xs} Vs € S where Ds() is the demand for a school s with capacity x.

14School quality could be an alternative, but using this variable as a numeraire would hinder our ability to fit the
data.

5See, for example, Agarwal and Somaini (2018); Azevedo and Leshno (2016), among others, for a similar assump-
tion.
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2.4 Agent Beliefs.

At the time of submitting lists, priorities and cutoffs are not known. Priorities are based on
individual test scores obtained from a national exam that will take place four months later.
We assume agents submit optimal rank-order lists given a set of beliefs about the assignment
probability.

We assume that agents have private information about their preferences u;, and are endowed
with beliefs regarding test score and cutoffs. Specifically, we assume that individual beliefs about
test score are denoted by B! and follow B! ~ N (u!, (¢f)?). The parameters u! and ¢!, which are
individual-specific, introduce the idea that individuals do not know their test score, but the
underlying distribution.

We adopt a similar approach for beliefs about cutoffs B]. and follows Bl ~ N (ud,1). In that
sense, BZ is a prior over school cutoffs. Due to data limitations, we do not let the parameters that
characterize cutoffs’ beliefs vary across individuals. In addition, the variance of 537 is normalized
for reasons that will become clear later.

Finally, we assume that agents may update their beliefs about cutoffs through search, which
is described in section 2.7. Specifically, upon searching a school s, a student may update her
beliefs about the cutoff of that school. As, it will become clear in the section 2.7, students update
beliefs regarding only the discovered schools. Similarly, there is no update on beliefs regarding

test score. Under this setting, perceived admission chances are respectively given by
¢is = Pr(B; > B)- (3)

Given preferences u(-), and perceived admission chances ¢(-), the expected utility from re-
porting R is denoted by U/ (R). We should note that u(-) captures the utility of a school, while
U(-) denotes the expected utility from a ROL. Optimality conditions impose:

UR) >U(R') ¥V R €RS (4)

Where RS is the set of possible ROLs from choice set S.

2.5 Search Models

We consider the problem of an individual searching for a set of schools, taking the characteristics
of schools, and the behavior of other students as given. Agents are risk-neutral and maximize the
expected utility of the submitted ROL. In contrast to standard consumer search models, students
are searching for an optimal list of schools. We consider three alternative models.

6The standard approach to modeling beliefs is to assume agents have correct beliefs about the probabilities of
assignments given their priorities and the distributions of preferences and priorities in the population. The evidence
presented in section 1 on the share of administrative assignment strongly rejects rational expectations.'”
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2.5.1 Exogenous Consideration Sets.

In this section, we consider a model where the consideration set of students is a random draw
from the list of schools as in Manzini and Mariotti (2014) and Barseghyan et al. (2019).

In practice, the consideration set forms in two steps. First, with probability ¢,, a student
draws a consideration level n. The consideration level takes discrete values in {1,...,S} and
determines how the individual considers many schooling options. In the second step, a student
with consideration level 1, draws a consideration set K, sampling from & without replacement.
Standard approaches assume that both the consideration levels and sets are independent from
preferences. We maintain this assumption.

The exogenous consideration set model is a first step toward a theory of choices where all
alternatives are not considered. However, such a model is unable to match differences across
individuals when it comes to the application behavior: more than 29% of sixth choices for low
ability students are missing, compared to around 17% for the high ability students. As a con-
sequence, we propose an alternative model where students endogenously build consideration
sets.

2.5.2 Endogenous Consideration Sets

We propose a sequential search process, where students build and expand their endogenous
consideration set. The key insight of this model is that students expand their consideration set
until the expected benefit of search is inferior to the potential cost of searching. As we do not
observe the search sequence, the model requires several assumptions to discipline the behavior
of individuals. In the rest of this section, we describe the search problem.

Agents search over schools to build and expand their consideration set, denoted by L C .
At the beginning of time, the consideration set is empty. The assumption of an empty initial
consideration, which is easy to relax, is first and foremost motivated by the empirical observation
that more than 1,000 students submit less than three choices, and almost 25% of the sample do
not submit six choices. Search is random, an assumption that we relax in the next section.

At search step n, which corresponds to the norm of the consideration |||, upon paying a
search cost c(n), a student draws a school with probability As;. Given these elements, we can
provide a recursive formulation to the search problem of the agents. The initial value of search

is given by:

V2 = max {uO,Ev}} : (5)

where EV! depends on utilities u(-), perceived admission chances ¢(-), and sampling prob-
abilities A(-).”® To be clear, the definition of EV! implies a one-period lookahead simplifying
assumption for the initial search. Still, continuation values may differ across individuals be-

8The E notation in the IEV captures the idea of expected value as students are uncertain about the school draw of
the future period.
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cause of observed and unobserved heterogeneity. However, we assume that the first draw is free
such that all students whose participation constraint is satisfied (at least one school with positive
utility) keep searching after the initial step.

At search step n, the value of continuing search to a student i with consideration set K of
length n is given by V;(K):

VE = max {U(of), BV —e(K) | - ©)

where the value of search EV;(K) = Yscs\x Asu(pfs), and ks = K U s. The notation Z/I(pZKS),
which captures the utility of a ROL, implicitly includes the role of admission chances, and belief
updating. The value of search is the utility gain associated with the remaining schools, which
is weighted by the sampling probability. p¥ is the ROL that yields the highest utility, which is
formally defined as U (pX) > U(R!) V R! e RF.

The object EV(-) is the expected value of a consideration set, which is a scalar. As such, it
is weakly increasing and concave in the consideration set size. Consequently, the model implies
that there exists an optimal consideration set. Also, higher order beliefs students will have larger
consideration sets. The intuition follows that the expected gain from search EV increases with
test score when ¢(-) increases with beliefs. Finally, the term IEV(+) captures not only the expected
gain of search, but it also accounts for the fact that through search, students acquire a signal about
the cutoff.

2.6 Directed Search

A strong simplifying assumption of the two previous approaches is related to undirected search
as students are equally likely to consider desirable and undesirable schools. This section consid-
ers a version of the model where students can direct their search toward more desirable schools.
Although, we show in the Appendix Table C that there is no feature of geographical search,
individuals may use other characteristics to direct their search.

We follow the direct cognition model developed by Gabaix et al. (2006). The intuition is
that students classify schools into a finite number of groups and search over groups instead of
schools. There is still a random search component as students can not direct their search toward
a specific school.

Formally, assume there is a finite group of school types denoted by 7. The set of schools
belonging to group J is denoted by s;. The strategy is similar to Avery et al. (2014), where
students are advised to group schooling options into 3 categories: reach, match and safety. Each
of those types is characterized by a distribution of schools known to the students. Then, we
iteratively let students choose an optimal type that depends on its characteristics and current
consideration set, upon which she receives a draw of a specific school/program.

Formally, the search process is as follows. First, students choose the group that yields the
highest expected utility at the initial stage:
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J' = argmax {IEVZ@, — cj/(lC)} . (7)

Then, given consideration set K and for any chosen J, the individual randomly draws a
school belonging to group J, which enters into its consideration set K. Future search decision
is based on the difference between the utility of the current portfolio and the value of the best
alternative:

VE = max {U(pf), BV — 7 (K) } - ®)

In order to discipline the model, we need search cost to be alternative-specific. Introduc-
ing some directness into the search problem is likely to match observed choices without larger
consideration sets.

2.7 Belief update

Through search, agents construct consideration sets but students also learn about schools. We
assume that upon “searching” about a school s, a student i receives a noisy information signal
Bj. about the selectivity of school s. We let the signal be

Bi; = qs + € 9)

with € ~ N(0, (¢7)?). At the outset, it should be clear that the discovery of school s does
elicit a noisy signal about school s, and only school s. Additionally, it should be clear that there
is no updating of individual test score.

As only discovered schools can be listed, we can not separately identify the variance of B,
from that of B}.. Although the survey data allows us to elicit beliefs about cutoffs, there is no
additional information allowing to separate beliefs regarding schools that are listed (subject to
Bj.) and those that are not listed (not subject to B%). As a consequence, the variances of B?S and
B, can not be separately identified.

Hence, each signal B" leads to a Bayesian update of beliefs about cutoffs, with the following

expressions:

E(BL|B) = HZ+(€ls—VZ)71+(U,u)z'
u)\2

VBBY) — %)

( zs‘ zs) 1+(0.iL;)2

The sign of (g5 — p) determines the direction of the update, pessimistic students update their
belief upward while optimistic students adjust their belief downward. Although every signal
generates an update, the magnitude of the change in posterior beliefs depends on individual
priors. The posterior variance is independent of the direction of the update, and depends on the
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variance of the signal. As a consequence, the updated admission chance for a school s is given
by
¢is = Pr(B; > B{|Bj)- (10)

2.8 Constructing the optimal portfolio

Finally, we should note that constructing the best set of schools given a consideration set involves
a complex combinatorial analysis. Since an individual uses the same test score belief to evaluate
her admission chance throughout the search process, choices are interdependent. Explained
differently, rejection in the first choice conveys additional information on one’s test score and
the expected distribution of cutoffs. Recently, Shorrer (2019) and Calsamiglia et al. (2020) have
proposed a method to construct the best set of schools in that setting. The approach uses dynamic
programming to account for the inter-dependence in admission chances across choices. We use

this strategy to recover the highest utility ROL.

3 Identification and Estimation

Let 0 be a set of parameters to be estimated with parameter space ®, P is the true distribution of
the data, and P = {Py : 6 € ®} denotes our model for the distribution of the observed data. The
observed data comes from two distinct mechanisms: the formation of consideration sets and the

selection of a ROL. As a consequence, the probability of observing a portfolio is given by

Py(R|x,z,&) = 2 Py (R)Py(R = argmax Uy(x, zg/, &g/, €) ) (11)
ReKk R'eRK|x,z

Where Uy is the utility evaluated under parameter values 0, and Px (R) is the probability of
considering K, which includes the selected schools R. Assume the model is correctly specified in
the sense that there exists 0 € ® such that Pj = P. Formally, the identification problem consists
of determining under which conditions the solution to Py = P is unique.

The standard identification argument in discrete choice with limited attention involves us-
ing explicit data on consideration sets (see e.g. Jolivet and Turon, 2014, Honka et al., 2017;
and Dinerstein et al., 2018) or restrictions that some determinants of attention are orthogonal to
preferences (Barseghyan et al., 2019; Heiss et al., 2016). Abaluck and Adams (2017) show consid-
eration probabilities are identified from asymmetries of cross-derivatives of choice probabilities
with respect to attributes of competing products. However, the methods require a regressor that
is alternative-specific and enters the indirect utility function linearly.

We develop a strategy to identify and estimate all the parameters of the model. Recognizing
the limitations of using administrative data to identify beliefs and preferences separately, we use
data from a survey that combines realized test scores and as well as a survey of beliefs. Then, we

separate preferences from consideration.

15



3.1 Identifying Beliefs

In this section, we discuss the identification and estimation of assignment probabilities of stu-
dents. The environment features two sources of uncertainty. First, at the time of submitting the
ROL, the student does not know her test score, as priorities are based on test scores obtained
from a national exam that will take place four months later. Second, cutoffs are not known.
The substantial share of unmatched students implies that rational expectations may not hold.
Also, results from Agarwal and Somaini (2018) and Carvalho et al. (2019) show that beliefs and
preferences cannot be separately identified. Under our theoretical model, we have the following

distributions characterizing beliefs.

Bf ~ N(u,(c)%) (12)

BUBE ~ N+ (g i) ) (13)
A T T ()2 1+ (0f)?

We use survey data to estimate the parameters of these distributions. As explained in section
A.2.4, we use additional data from a field experiment that surveys 12,871 students across 450
junior high schools. Prior to submitting a list of choices, the survey asks students about their
beliefs regarding their BECE score as well as beliefs for the cutoffs of four choices. Unfortunately,
we do not have enough data to estimate u' and ¢ for each individual and beliefs over schools o*
by individual.

As a consequence, our main goal is to devise a strategy to derive heterogeneity in these
parameters. An additional difficulty comes from the fact that the survey and administrative
data are collected on different students such that any belief parameter needs to be projected
on the administrative data. We use discrete types that allow us to construct a finite mixture
representation of beliefs in our setting.

Let G be the number of points of support of student types, and let us denote the types
as g(i) € {1,...,G}. A group g is characterized by a distribution of test score beliefs with
parameters 5 and 0'§ such that the test score belief of an individual i, belonging to group g(i) is

given by

Bi ~ N (i) Ogi))* (14)

The formulation allows for inter-group variability and intra-group heterogeneity. In the ap-
plication, we assume G is known and is the largest number that guarantees inter- and intra-group
heterogeneity.

We proceed similarly for schools. Schools can be partitionned into H groups. Beliefs regard-
ing the cutoffs of those schools follow a same distribution with parameters VZ and (TZ such that
beliefs about the cutoff of a school s, belonging to group h(s) are given by:
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Biqs ~ N(VZ(S)IU (15)

7| 3u A q 1 (755))”
BilBi ~ Vh(s)+(qS_Vh(s))lJr(mi‘(s))z’lJr(m?(s))z ' (16)

The expressions for BJ. and BL|BY are both needed as students evaluate the continuation
value of search without updating their beliefs. In order to maintain the basic structure of the
model as well as heterogeneity in beliefs, we use a dimension reduction method (k-means) to
partition students and schools into classes. For a given number of classes, we find all possible
partitions and derive class-sizes (w', w7) and class-specific parameters (u, u%,0' and ¢*). The
number of classes is set a-priori G = 10 and H = 5. As we estimate the model by gender, we

have 5 heterogeneity groups for male and female students and schools.

3.2 Identifying Preferences

In this section, we analyze the identification of preference parameters. We restrict our attention
to the cases where sub-utilities are additive in the unobserved components, such that

u(x,z,&€) =m(x,z&) + e (17)

Where m(-) is a known function, which depends on an unknown vector of parameters to be
estimated. Matching effects between students and schools are denoted by €. In addition, we
assume that the error terms € are i.i.d across students and schools and normally distributed with
cdf F.. We analyze the identification of the model under full consideration, then study how the
introduction of limited consideration changes our identification results.

3.2.1 Full consideration

Let U(x,w,zg, &g, €) denote the expected utility of a ROL R. The utility of the ROL depends on
u(-) and p(-). The variable w is a potential shifter that affects admission chances p(-), but does
not affect utilities u(-). Conditional choice probabilities can be derived:

Pr(R|x, zr, Er) = Pr(U(x, W, zg, &g, €) > U(x, W, 2/, Err,€')) VR € Rk, (18)

Because of the portfolio structure of the choice problem, there is no closed-form solution.
However, choice probabilities can be derived by simulation." Results from Agarwal and Somaini
(2018) and Carvalho et al. (2019), show that m(-) and F.(-) are identified. The identification results
from Agarwal and Somaini (2018) require either a special regressor, which has large support or
variation in choice environments. However, the most intuitive way to think about identification

9For example, a simple frequency simulator can recover the choice probabilities.
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is to recall that we have access to a ROL. Under our mechanism, the submitted ROL reflects true
preference order among the school ranked. As a consequence, a ROL provides a set of moment
conditions, which along with additional parametric restrictions guarantee identification. Using
the ROL does not preclude the need of a special regressor, as the reported choice of some students
may be selected.*”

In our empirical application, we use test score as a special regressor following Agarwal and
Somaini (2018). In practice, we do not include the individual test score as a determinant of
utilities, implying that the distributions of (preference) €’s do not vary with test scores. We
proceed to study how the introduction of limited attention changes these identification results.

We first consider the model with exogenous consideration sets, then the sequential search model.

3.2.2 Exogenous consideration sets:

In this section, we consider the identification of the exogenous consideration model presented in
section 2.5.1. Recall that the probability of choosing a given ROL is

Pr(Ri|x,z,&) = Y Px(Ry)Pr(R; | K)- (19)
Rielk

Where Py (R;) is the probability of drawing a consideration K that contains R;, and Pr(R; |
KC) gives the probability that the ROL R; is selected from consideration K. Recall that under our
exogenous consideration model, individuals draw a personalized set, which is a random subset
of the choice set. As the consideration set is unrelated to individual characteristics, the ROL still
provides a set of moment conditions, based on the ordering of schools, which can be used to
identify individual preferences.

However, identifying consideration probabilities requires either additional information or
restrictions. In our empirical application, we assume that consideration size in a random draw

for the discrete uniform distribution with a-priori set parameters.

3.2.3 Sequential search:

Finally, we consider the sequential version of the model. In contrast to the previous case, agents
endogenously decide whether or not to expand their consideration. Consequently, it is not pos-
sible to write a generic expression for choice probability.

Consider a simpler example, where a student is choosing between two alternatives. Let A;
and A, denote respectively the probabilities of drawing R; and R;. In addition, let ¢ denote the
search cost. Then, the probability of selecting R; may be written as:

20When there is no endogeneity concern (i.e., the error term € = (ey,...,€s) is distributed independently from
individual observed x and school unobserved and unobserved z, £). However, selection issues occur when for example
low test score students apply only to a specific set of schools.
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Pr(Rq|x, w,zg,, &r,) = MPr(EV(Ry) < ¢(1))
+ MPr(EV(Ry) > ¢(1))Pr(U(x, W, zr,, &Ry, €) > U(X, W, ZR,, ER,, €))
+ APr(EV(R2) > ¢(1))Pr(U(x, W, zr,, &Ry, €) > U(X, W, ZR,, ER,, €))*  (20)

Where w is the special regressor, x is individual attributes, while z and & are school observed
and unobserved attributes.

The first part of equation 20 accounts for the eventuality that R; is drawn first. In this case, R,
is not considered if the gain of search is lower than c. The second line accounts for the possibility
that R, may have been considered, in which case, R; is selected only if it yields higher utility.
Finally, R, may have been drawn first, in which case R; is selected only if the gain of search
outweighs its cost, and R; yields higher utility. Equation 20 for choice probabilities is relatively
simple in this case because i) search technology is known, and ii) students sample schools at
random. Yet identification is more complex as we need to identify not only the parameters of the
utility function but also consideration probabilities and search cost.

Making use of the large support condition in choice probabilities equations 20, we have the
following system of equations:

Pr(Ri|x, W, zg,, &r,) = MPr(EV(Ry) <c(1)), (21)
Pr(Ry|x,W,zg,, &r,) = A1+ APr(EV(R) > c(1))- (22)

In essence, we need beliefs to be such that some schooling options can be excluded. While
the presence of a special regressor simplifies the problem, preferences can not be identified sepa-
rately from consideration probabilities. To make further progress, we parametrize consideration
probability A as:

A =L (23)

where x; is the number of openings at school s, and x = Y5 xs. Then, with A; and A, a-priori
known, the conditional probabilities identify the optimal stopping probability. Unfortunately, the
identification works only in a setting when search cost varies with the size of the consideration.
As such, we focus on a setting where ¢(K) = ¢, which implies that individuals keep searching
until the value of search is equal to c¢.>* Our main conclusion is that the sequential search model is
identified, provided that sampling probabilities are known a-priori and the researcher has access

to a special regressor, which shifts consideration but not preferences.

21A recent paper by Agarwal and Somaini (2022) analyzes the identification of a choice model with unspecified
consideration sets. Identification in that setting requires two sets of instruments. Identification in our setting requires
additional restrictions.
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3.2.4 Directed Search Model

The identification of the directed search model follows from the same argument. To see this,
let J tend toward the number of schools S, then the directed search is similar to the sequential
search model.** In the next section, we confirm these results using Monte Carlo simulations.

3.3 Monte Carlo Experiments

To study the practical identification of these parameters, we performed a Monte Carlo simulation.
In the design, the sample size is N = 160,000, and the number of choices is 2,089 just like the
real data. The true preference parameters are drawn from a uniform distribution ¢/(0, 1), and we
assume that the model is correctly specified, i.e., the the data generating process (DGP) is correct. In
practice, for a set of parameters, we simulate choices for each model and derive a set of empirical
moments. We then try to recover the preference parameters that rationalize the empirical mo-
ments. Table 5 reports true parameters as well as the 95% confidence intervals from 100 Monte

Carlo experiments.

Table 5: Monte Carlo Experiment.

True Full Consideration Exog. Consideration Endog. Consideration Directed Search

Lower Upper Lower Upper Lower Upper Lower Upper

Historic 0.069  0.067 0.088 0.049 0.089 0.053 0.074 0.068 0.079
Boarding 0.818  0.785 0.831 0.81 0.847 0.805 0.822 0.81 0.828
Religious 0.943  0.905 0.965 0.925 0.969 0.921 0.965 0.937 0.965
Single-Sex 0.269  0.259 0.292 0.243 0.318 0.231 0.28 0.261 0.304
School Quality 0.169  0.163 0.196 0.16 0.179 0.147 0.192 0.168 0.199
Gen. Science 0.034  0.033 0.067 -0.002 0.076 0.011 0.043 0.031 0.08
Business 0.179  0.172 0.184 0.143 0.184 0.153 0.2 0.172 0.201
Gen. Arts 0.642  0.616 0.653 0.609 0.661 0.609 0.66 0.639 0.66
Home Econ 0.023  0.022 0.062 -0.002 0.025 -0.007 0.034 0.022 0.044
V. Arts 0.008  0.008 0.013 -0.029 0.016 -0.009 0.018 0 0.037
Agri. 0.393 0.377 0.428 0.365 0.431 0.353 0.421 0.389 0.443
o3 0.814 0.781 0.825 0.78 0.834 0.792 0.838 0.813 0.841
Oe 0.376  0.361 0.39 0.361 0.394 0.364 0.397 0.37 0.428
c 0.03 0.028 0.034

c(reach) 0.05 0.041 0.053
c(match) 0.02 0.018 0.025

Notes: Results of the Monte Carlo experiments. Estimates from the simulated method of moments, with moments
described in section 3.5. Lower and Upper bounds constructed from 100 Monte Carlo experiments. Exogenous
consideration sets are drawn from 2/ (3, 100), while the endogenous consideration sets is the search cost is given by
c(n) =c.

?>The identification problem is relatively simple as the direction of the search is assumed known.
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Comparisons between the true parameters and the estimated coefficients show that parame-
ters are similar in all cases. The parameters are also precisely estimated, confirming our theoret-
ical identification results. Yet, it should be clear that the estimated model does not correspond to
the DGP, parameters are less acurately and precisely estimated.

3.4 Estimation

Given beliefs and the identification results, we can estimate preference and search cost parame-
ters. There are two complications. Given the number of choices, it is impossible to compute all
potential consideration sets. In addition, as consideration sets are endogenous, constructing the
probability requires conditioning on possible consideration sets and the order in which schools
are sampled. As a consequence, we use simulation methods. That is, we simulate forward the op-
timal stopping problem for every student in our sample and construct ROLs. Simulations allow
us to deal with complications related to the number of choices and the stochastic components of
the utility and the search process.

We estimate the parameters using the Simulated Method of Moments. That is, we match the
empirical characteristics of student ranked choices. Formally, let ® denote the set of parameters
to be estimated. The criterion function is given by:

(7 = m(©)) W (i — m(©))- (24)

where 71 is a set of empirical moments, and W is the weighting matrix.*
The model is simulated using the following algorithm, which is initialized with an initial set

of parameters @°:

1. Given the number of discrete individual belief groups G = 10 and school belief groups H =
5, use K-means to determine the weights of each class (w' and w7) and the corresponding
distributional parameters u',of,u? and o7

2. Given w', draw a class for each student, and then draw a test score belief {1} };c7 for all
students.

3. Given w1, draw a set of belief for all schools {Biqs}ieI,seS
4. Calculate the matrix of utility and admission chances.
5. Draw an initial consideration set.

6. Simulate forward the search problem and derive simulated portfolios.

23We use a diagonal weighting matrix, with the elements set equal to the inverse of the diagonal variance-covariance
matrix of the empirical moments. Since we have discrete dependents, any approximation of the gradient vector will be
sensitive to the chosen step size. Therefore, we calculate the derivative by approximating the function by a low-order
polynomial function as we vary each parameter locally.
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7. Given portfolios, solve for the matching algorithm, derive placement outcomes for all stu-
dents, and construct the set of moments.

8. Repeat steps 2 to 7 R times to integrate out the stochastic component in the utility function,

and update the criterion function.

The directed search model requires additional details. We group schools into 3 categories
which is on line with Avery et al. (2014). In order to simplify this process, we define:

back-up if Bfe (0,(1—¢)BL)
J = { match if Ble((1-¢)BL (1+¢)B)) (25)

18’/

reach if Bte((1+¢)BL1)-

s’/

While preference estimates are sensitive to the choice of g, we find that when ¢ is between 0.2
and 0.4, estimates are relatively stable. Further, we set ¢ to 0.3, which is the value that best fits
the data.

3.5 Moments

Our final specification of the utility function consists of 11 parameters which capture key choice
characteristics, and interactions between individual and choice characteristics. To identify these
parameters, we construct empirical analogs that capture the identification content provided by
the data. We use three sets of moments:

First, we construct the average characteristics of schools” observable by ranked choice

1
E ; lef . (26)

where s is the simulated choice of individual i at ranked choice k. These moments consist of
the key characteristics of the simulated portfolios (Historic, Boarding, Religiousity, Academic
tracks as well as the average school quality) for each ranked choice k = 1,...,6. This first set of
moments capture the general features of ranked choices.

Second, we construct a similar set of moments conditioning on some individual characteris-

tics. .
E ; Zisi? | Xi' (27)

The conditioning variables are gender, and test score Q1 (lowest 25% test score) and Q4
(highest 25% test score) students. This second set of moments allows us to capture differences
related to gender and academic ability in the ranked choices.

Finally, we use a third set of moments that captures the mismatch in the sample. Consistent
with the search literature, we match the vacancy rate, and the share of administrative assignment.

Then, we use the share of missing choices for each ranked choice as well as the correlation
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between past and realized cutoffs. Our Monte Carlo study indicates that these moments are
crucial to pin down the search cost parameter. We have a total of 267 moments.

4 Results

This section presents our estimation results. First, we discuss the estimates of the model of belief
formation. Then, preference estimates are presented. Search cost parameters and the implied
consideration sets are then described. Finally, the fit of the model is discussed.

4.1 Beliefs

We present estimates from the model of belief formation. As explained before, we use K-means

to group students into ten groups and schools into five groups.

Table 6: Beliefs about test score.

Groups Beliefs Weights Realized test score
ut ot wt mean sd
Female
1 0.481 0.323 0.014 0.309 0.037
2 0.568  0.306 0.094 0.421 0.031
3 0.616 0.287 0.225 0.513 0.025
4 0.660 0.260 0.330 0.594 0.024
5 0.720 0.231 0.274 0.680 0.027
Male

0.484 0.307 0.062 0.388 0.044
0.561 0.287 0.287 0.522 0.038
0.643 0.259 0.485 0.639 0.037

0.775 0.195 0.166 0.754 0.038
0.819 0.173 0.064 0.776 0.033

g~ W N R

Notes: K-means estimates for the distribution of test score
beliefs.

Table 6 shows the parameters (scale and location) as well as the weights of the five distri-
butions for female and male students, which are then associated with the realized distribution
of test scores. Not surprisingly, students with higher realized test scores have higher test score
beliefs. However, the scale parameters are large enough that the distribution of beliefs overlaps
for many groups. The estimation captures the essential aspects of the data: i) students with sim-
ilar realized test scores have very different beliefs, ii) students with similar beliefs have different
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realized test scores, and iii) beliefs about test scores may not be precise, but higher realized test
score students tend to have higher beliefs.

Table 7 then considers beliefs about cutoffs. Almost half of the choices (48.5%) are perceived to
be highly selective, while a little less than 20% of the choices belong to the least selective group.*
Ex-post heterogenous schools are clustered together in relatively homogenous belief groups. In
addition, and contrary to test scores, realized higher selectivity schools are not systematically

associated with higher beliefs.

Table 7: Beliefs about cutoffs.

Groups Beliefs Weights  Realized cutoffs
uil loatl wf mean sd

1 0.082  0.028 0.123 0.550 0.117

2 0.227 0.033 0.060 0.560 0.123

3 0.400  0.044 0.152 0.565 0.125

4 0.605  0.043 0.180 0.581 0.128

5 0.846 0.098 0.485 0.600 0.134

Notes: K-means estimates for the distribution of belief
about cutoffs.

Consequently, our main finding is that the two sources of uncertainty have different implica-
tions. Students may have accurate beliefs about their academic standings, but there is a sizeable
amount of randomness in the BECE performance, which leads to significant noise in test score
beliefs. In contrast, when it comes to schools, students do not have accurate beliefs about school
selectivity, which may come from the size of the choice set.

4.2 Preferences

We consider preference parameters governing the utility of students. Table 8 presents eight differ-
ent specifications that correspond to models of full, exogenous, and endogenous considerations.

Column (1) corresponds to the full consideration. Recall that this is a model in which students
choose between schools based on observed characteristics, stochastic components, and distance.
Analysis of this model is helpful because it provides a benchmark to compare our estimates to
the rest of the literature, which is set in full information. The second model adds heterogeneity
in consideration but independently from individual characteristics. Columns (2), (3), (4), and
(5) present four specifications where the consideration sets are exogenously drawn from uni-
form distributions ¢/(3,10), U(3,100), ¢4(3,1000), and ¢(3,5).?> The third model considers the

*4These patterns are unlikely to be driven by selection into the choice set as students submit choices from different
types of schools.

25For example, under U(3,10) consideration sets are drawn from a discrete uniform distribution with boundary
parameters 3 and 10. We attempted to estimate the parameters of the uniform distribution, but the optimization of
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sequential search model, where individuals endogenously build consideration sets. Compared
to the previous model, the size of the consideration sets depends on individual beliefs and luck
during the search process. Columns (6) and (7) present specifications with sequential search
under random and directed search. Under both models, the search cost is set to c.

real and integer parameters turned out to be complicated. As a consequence, we calibrate those parameters. We tested
lower bounds from 1 to 10 and upper bounds ranging from 10 to the number of schools S.
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Table 8:

Estimates of Preferences and Search Cost.

Historic
Boarding
Religious
Single-Sex
School Quality
Gen. Science
Business
Gen. Arts
Home Econ
V. Arts

Agri.

g,

Oe

C

c(reach)
c(match)

Historic
Boarding
Religious
Single-Sex
School Quality
Gen. Science
Business
Gen. Arts
Home Econ
V. Arts

Agri.

e

O¢

C

c(reach)
c(match)

Full Exogenous Consideration Endogenous Consideration
Consideration  1/(3,10) 4(3,100) 4(3,1000) U (3,S) Random Directed
(1) 2) (3) @) ) ©) %)
Female
0.772%** -2.251%%% 0.085 0.038 0.037 0.048 0.035
-0.196™** 1.157%%%  0.888*** 1.005%** 1.007%**  0.823%** 0.867***
-1.316%** -1.282%** 0.204 0.217 0.343* 0.287* 0.317%*
-4.427% 0.409 0.38 0.444 0.453 0.412 0.424
2.34%** 2.495%** 0.855%** 0.998*** 1.005%**  0.861%** 0.886***
-0.429 -2 -0.062 -0.085 0.042 -0.122 -0.092
-1.429™* -0.144 -0.585%** -0.644*  -0.64***  -0.533*** -0.522%%*
0.6927** 0.044™* 0.619%** 0.666*** 0.892%**  0.743*** 0.757%**
0.23 -3.059™*  1.313*** 1.331%% 1.445%  1.217%** 1.238%**
-1.206*** -2.963*** 0.361 0.449% 0.32 0.262 0.272
-3.108*** 0.37%* -0.405 -0.419 -0.538 -0.368 -0.371
1.577%%% 1.45* 0.775%** 0.885%** 0.881***  0.884*** 0.905***
1.246%%* 1216 0438 0.45*** 044 0.439™** 0.443***
0.018**
0.03**
0.017**
Male
1.552°%** -1.12%* 0.584%** 0.657%* 0.576™*  0.671*** 0.676***
-0.435 -1.107%%*  1.302*** 1.235%% 1.321%%  1.323*** 1.367%**
-0.645%** 0.873***  0.408*** 0.549*** 0.428***  0.556%** 0.586***
-4.55%** 0.567 0.252 0.336 0.418 0.441 0.462
1.125*** 2.002*** 0.456*%—* 0.454*** 0.527*** 0.554*** 0.577***
-4.252°%** 0.687* 0.697* 0.765%* 0.644* 0.666* 0.698%
-4.465%* 0.89** 0.754* 0.779* 0.722* 0.882** 0.901**
-0.634*** 0.123 0.506*** 0.551%** 0.444™*  0.567*** 0.575%**
_4.814*** 1.115*** _1‘574*** _1'767*** _1'56*** _1'756*** _1'729***
-2.753%% 0.782%** 0.24 0.449* 0.336 0.451* 0.457*
-2.411%* 1.116™** 0.129 0.165 0.101 0.117 0.129
2.246%** 1.906*** 0.275 0.439** 0.332% 0.319% 0.33*
2.249%** 2.223%*  0.741% 0.998*** 0.925***  0.991*** 1.018***
0.025%*
0.031**
0.011**

Notes: Estimation results for four models and eight specifications. The models are estimated by gender.
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We estimate the model flexibly using gender-specific parameters.*

In Appendix B, we present the fit of four models: full consideration, exogenous consideration
U(3,100), endogenous consideration, and directed search. Surprisingly, all these models fit the
data reasonably well with the choice attributes (boarding, historical, religious, school quality),
but less so for academic tracks. Overall, the directed search provides the best fit to the data, and
in most instances, there is almost no difference between the data and the model.?”

Finally, we should note that several models, namely the directed search, the endogenous and
exogenous consideration with ¢/(3,1000) lead to almost identical estimates for most preference
parameters. Because of these reasons, our comments focus on the parameters of the directed
search model.

The coefficients for observed characteristics are generally consistent with the demographic
patterns reported in descriptive evidence in Appendix A. On average, students prefer board-
ing schools. Religious and mixed-sex schools appear to impact utility positively, although the
coefficients are not always significant. School quality is arguably an essential determinant of in-
dividual choices. Academic tracks such as visual arts and agriculture do not significantly affect
workers” utility.

However, there are some differences across gender groups. For example, female students dis-
play weaker preferences for historic schools than their male counterparts - which may be related
to the competitive nature of these schools. In addition, there is a stark divide in preferences for
academic tracks. For example, female students prefer home economics programs, while male
students are more attracted to business and general sciences.

Table 8 reports estimated parameters for the distributions of unobserved preferences. The
results show essential heterogeneity in unobserved tastes. The estimated coefficients on the id-
iosyncratic taste o, are larger for male than female students, suggesting that male students are
more likely to select a school on the basis of individual-school match effects. On the contrary, the
relative importance of school-specific matches and idiosyncratic taste o is reversed. Female stu-

dents are more likely to select a school based on school-specific matches than male counterparts.

4.3 Search cost and Consideration Sets

Finally, we quantify the role of search cost. Table 8 displays estimates for the search cost param-

eters. As the quantitative value of search costs does not have a clear structural interpretation,

26Given the complexity of the models, the criteria function displays non-convexities. We find that low dimensional
parameters are easier to handle, and as such, we estimate models separately by gender.

*7The ability of the various models to provide a good fit to the data creates some confoundedness between spec-
ification and identification issues. Although all these models are identified in practice, they are not encompassing
and may use different tools to rationalize the same observation. For example, consider the observation that more
than 25% of the sample submit less than six choices. The full consideration model can rationalize these patterns only
through the participation condition, pushing downward estimates for school quality. As such, the full consideration
model implies negative utility for most schools. Especially for male students, choices are almost exclusively driven by
stochastic shocks. As models with consideration sets allow students not to consider all options, negative utilities are
not required.
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we simulate choices for all students multiple times and report the implied distribution of con-
sideration in Figure 1. The distribution of consideration sets is identified from information on

truncated lists and identifying restrictions.

Figure 1: Distribution of consideration sets
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The share of students who consider one to five schools is observed in the data, and normality
assumptions on the error terms imply that the distribution of consideration sets is approximately
normal. Intuitively, given the observed consideration sets, the model derives a distribution of
consideration sets under i) a consideration set formation technology, and ii) individual hetero-
geneity. The model implies that students consider between 1 to 26 choices. The median student
considers seven choices compared to 2,089 choices. This relatively small consideration set speaks
to the potential for misallocation but raises important questions about why students do not search
more. The model provides two potential explanations. First, the gains to search are relatively
small given the number of choices - even within our directed search model, the probability of
drawing a highly desirable school is small. Second, biased beliefs may lead to a bias in assessing
the value of a ROL.?

28While any notion of efficient search would be complex in this setting, we can perform a simple simulation where
we let students have accurate beliefs about admission chances and see how the distribution of consideration changes.
We find that considerations for lower ability students would substantially increase - the median student would con-
sider up to 18 choices.
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5 Counterfactual Simulations

In this section, we analyze the efficiency content of our model. Given individual preferences and
technological constraints on vacancies, we investigate whether a social planner could achieve
a better allocation. Then, we build on this result to explore ways to improve the allocation of
students. The rest of this section is based on the specification with a fixed search cost.

5.1 Quantifying inefficiencies

Inefficiencies stem from the existence of search friction and uncertainty.*” Inefficiency is reflected
in the existence of missing choices, vacancies, administrative assignments, and potential mis-
matches among the matched students.

We quantify the particular importance of search frictions and uncertainty for welfare. We
propose a simple utilitarian welfare function } ; U that aggregates individual utilities, where U
is the utility individual i derives from the school she was assigned. Individuals who do not gain
admission into any of their choices are randomly assigned to a local school.

We consider three settings. Frictional Application is our benchmark case. In our benchmark,
students are subject to uncertainty and frictions. Then, the problem of the Constrained Plan-
ner (CP) is analyzed. Under CP, the planner maximizes total welfare subject to preference and
technology constraints. Specifically, the planner collects preferences and assigns students based
on the number of vacancies at each school. Since matching is centralized, we assume that the
planner can mitigate the effect of frictions and uncertainty.

Finally, we evaluate welfare sequentially, relaxing the sources of inefficiencies: search fric-
tions, test score uncertainty, and aggregate uncertainty. The effects of these changes need to
account for the possibility that cutoffs may change endogenously for students as there are no
uncertainty or search frictions. As a consequence, we solve for the Bayesian Nash Equilibrium.
That is, given an initial set of cutoffs denoted by g°, and preferences estimated in our setting
summarized by u, we solve for the following algorithm.

1 Individuals select the rank-order lists that maximize expected utility.

2 Given submitted lists, students get admitted to schools, and the realized matching determines
the new distribution of cutoffs.

3 Repeat until cutoffs converge.

The solution concept is similar to Walters (2018), with the difficulty of accounting for belief
bias. In practice, starting from a distribution of test score and cutoffs beliefs, we let students use
past realizations to update these beliefs. Table 9 reports the results.

29 Another source of inefficiency comes from the discrepancy between private and social values of search, which
arises because of the standard “overcrowding” among students: when an extra person lists a school, it reduces the
availability of vacancies for other students. This is an externality that students are not likely to internalize. See
Abdulkadiroglu et al. (2015) for a theoretical analysis of this problem in school choice. However, we do not address
this. Also, the fact that students can submit only six choices induces additional efficiency concerns.
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We compute the aggregate utility under each of these scenarios using estimates from the
directed search model and compare them to the efficient allocation.?°

Table 9: Efficiency

No Search Frictions With Search Frictions

Benchmark NoUnc. AUonly TUonly NoUnc. AUonly TU only

(1) ) €) 4) (5) (6) ?)
Welfare 0.34 1 0.852 0.795 0.726 0.547 0.481

Decomposition of welfare by student test score

Students Q4 0.45 0.33 0.52 0.39 0.40 0.53 0.48
Students Q3  0.28 0.29 0.24 0.32 0.31 0.22 0.26
Students Q2  0.22 0.26 0.15 0.18 0.19 0.18 0.16
Students Q1 0.05 0.12 0.09 0.11 0.10 0.07 0.10

Notes: Welfare under different scenarios and welfare decomposition by student ability. No Unc =
No uncertainty; AU only = aggregate uncertainty only; TU only = test score uncertainty only.

Column (1) presents the welfare effect under our benchmark, including search frictions, ag-
gregate uncertainty, and test score uncertainty. Column (2) corresponds to the normalized welfare
under the efficient allocation. Columns (3) and (4) quantify the welfare loss that can be attributed
to coordination frictions, and test score uncertainty when there are no search frictions. Column
(5) quantifies the welfare loss that can be attributed to search frictions. Finally, Columns (6) and
(7) characterize the welfare loss that can be attributed to coordination frictions, and test score
uncertainty when there are search frictions.

We show that the constrained planner achieves approximately three times more welfare than
our benchmark. More precisely, the welfare under the benchmark accounts for 34% of the efficient
allocation. These estimates are relatively robust across the various models. That is, we obtain
respectively 36% and 41% under the sequential random search and exogenous consideration
models.

As we measure welfare in terms of willingness-to-travel, our results indicate that the cost of
boarding could be divided by three in the economy. This magnitude of the gap between the two
allocations suggests that administrative assignment alone cannot explain the difference. Indeed,
we find a substantial mismatch, as more than 60% of students gain admission into a higher utility
choice.

Efficiency is not the only problem that comes from search frictions and uncertainty, the alloca-

tion of resources is more unequal. That is, the highest ability students receive 33% of total welfare

3°As it is not obvious how to treat the search cost when interpreting these results, we do not consider it. As a
consequence, our results may be viewed as a lower bound on the welfare gain.
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under the efficient allocation to be compared to 45% under the benchmark. As a consequence,
school choice as implemented in Ghana, may not be a progressive policy.

Finally, we quantify the relative importance of these sources of inefficiencies in shaping wel-
fare. Further computations show that 37.4% of the welfare loss can be attributed to the inability
of students to gather information about alternatives, while test score uncertainty accounts for
20.5% of the welfare loss and aggregate uncertainty for 14.8%. Of these inefficiencies, test score
uncertainty is likely the most straightforward problem to solve. In the next section, we consider

an alternative design that alleviates these problems.

5.2 Choice Paradigm and Welfare

School choice is based on the premise that students (or parents) know best about which school to
attend. The standard paradigm in choice theory, the more options, the better, reinforces the notion
that expanding the horizon of choices beyond an assigned neighborhood, for example, improves
welfare. This is the rationale that motivates a national placement system in Ghana. However,
students may be worse off when school decisions are made without the full examination of all
available options. Furthermore, as the number of choices increases, it becomes almost impossible
for decision-makers to consider all choices. One extreme case of restricting choice is the efficient
allocation, where the planner has full information on the preferences of all students. In this
section, we analyze whether realistically restricting choice could be welfare-improving.

We propose a different mechanism, where instead of asking for specific schools, the planner
collects preferences over the limited number of school attributes. As noted before, informational
constraints, uncertainty, and the inability of students to construct ROLs under interdependent
admission chances are the primary sources of inefficiencies. However, it is easy to see that an
elicitation mechanism that would reveal preferences over school attributes will likely alleviate all
these concerns. We refer to this mechanism as the Ranked-Attributes-List (RAL).

In theory, RAL retains the key properties of the serial dictatorship algorithm, as students
are asked to resolve the trade-off between different school attributes using a ranking of which
characteristics to consider first. For example, an example of RAL could be: i) selectivity: Do, ii)
District: Accra, iii) Boarding, iv) Religious, and v) general science. Given this list, the planner
assigns the student to a school belonging to the 10% most selective schools in the Accra District,
with boarding facilities, in a religious institution, and academic track general science. The plan-
ner fulfilled as many choice characteristics as possible focusing on the highest-ranked factors. If,
for example, there is a choice S1 that fulfills requirements i) and ii) and another S2 that satisfies
i), iii) and iv), the student is assigned to S1. In an extreme case, where there is a choice 51 that
tulfills requirement i) and another S2 that satisfies ii), iii) and iv), the student is assigned to S1.
In principle, it is possible to weigh differently ranked attributes lists; or adopt a mix of attribute
and school choices - these extensions are left for future research.

As we have only preference estimates, it is not trivial to implement this policy in our coun-
terfactual simulations. We proceed as follows. First, we calculate the utility of students for all
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choices but focus on the 200 preferred choices. Then, we perform a utility decomposition to
isolate the effect of each school attribute. As we consider only discrete co-variates, the reported
school characteristics can be discretized. This is mostly relevant for capturing the effect of school
quality and distance. We use indicators for the deciles of school selectivity and each pair of
home and school districts. Then, we calculate the partial R, for each of these characteristics and
derive an RAL based on their respective importance. There are two reasons why all students
do not have the same RAL. First, we calculate utilities accounting for the stochastic components
(& and €;)), as such, different draws may affect the relative ranking of school attributes. Second,
as we discretize distance, the effect of location is heterogeneous across individuals. We repeat
these calculations multiple times to integrate out the stochastic components. Table 10 reports the

average welfare.

Table 10: Restricting Choices and Welfare

Benchmark RAL

Utilities 1 0.876
Vacancies 0.325 0.09

Notes: Welfare under a ranked at-
tributes list (RAL) mechanism.

We find that school choice under RAL generates substantial welfare gains - recovering most
of the welfare loss. RAL sidesteps the effect of uncertainty and search frictions on the application
behavior and achieves approximately 87.6% of the efficient allocation with a minimal change to

the current system.

6 Discussion and conclusions

This paper develops and estimates a model to understand individual preferences for schools
in a large matching market. We introduce imperfect information in the standard school appli-
cation problem. Search allows students to learn about the characteristics of schools and build
consideration sets.

Using additional survey data on beliefs, we isolate the effect of consideration sets, preferences
and beliefs. We show that there is substantial test score uncertainty, and students have biased
beliefs about cutoffs. Our analysis of welfare shows that only 34% of the efficient allocation is
realized. Further computations show that 37.4% of the welfare loss can be attributed to the in-
ability of students to gather information about alternatives, while test score uncertainty accounts
for 20.5% of the welfare loss and aggregate uncertainty for 14.8%.

Our findings raise new questions about school choice in large matching markets. Given the
number of choices, students may not be aware of all schooling opportunities. The size of the
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choice set imposes several challenges on low ability students. The first is related to the lack
of social ties that allow students to easily collect information about schools. Second, liquidity
constraints are likely to affect those students more severely. Finally, the expected gain from
search is relatively small for lower ability students, which decreases their value of search.’

The methods used in this paper provide several avenues for future research. Although our
analysis focuses on key features of the education system in Ghana, the potential behavioral
implications can be extended to many countries, as well large school districts in the US. One key
extension would be to augment these types of administrative datasets with surveys on search
behavior to get a better understanding of the nature of search as in Arteaga et al. (2021). These

extensions are left for future work.

31Unfortunately, our data do not allow us to quantify the respective importance of these channels.
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Appendix

A Motivation

Our data comes from Ghana, where the national school system consists of six years of primary
school, three years of junior high school (JHS), and three years of senior high school (SHS). In
contrast to most higher-income nations, high-school completion (SHS) is the final qualification
for almost 80% of students (Duflo et al., 2021). Starting in 2005, students completing junior high
school apply for admission to senior high school through a centralized application system. One
may wonder about the rationale for organizing a nationwide education system for teenagers. As
we show later, top academic programs are located in few regions; a national education system
gives a pathway to elite schools for students in rural locations.?*

Students apply to specific academic programs within a school and can submit a ranked list
of up to six choices. Available programs include agriculture, business, general arts, general
science, home economics, visual arts, and several occupational programs offered by technical or
vocational institutes.?3

After submitting their rank-order lists, students take a standardized Basic Education Certifi-
cation Exam (BECE). The application system then allocates students to schools based on a serial
dictatorship where priorities are determined by the BECE score.

Students who are unassigned at the end of the algorithm are administratively assigned to a
nearby program with remaining vacancies. Our data, which provides individual choices along
with BECE scores as well as admission outcomes, consists of final year (grade 9) students from
the universe of junior high schools (grades 6-9) in 2008.

In principle, students are not able to switch schools and academic tracks once admitted
through the centralized system.3

We checked the consistency between applications and admission outcomes, and we find a
95% matching rate. The inconsistency comes from students who submit a truncated ROL. It is
possible that the admission office administratively assigned all students with missing choices.
Because of this inconsistency, in the rest of the paper, we use the matching algorithm to generate
admission outcomes, and vacancies.35

In the remainder of this section, we study in detail individuals” application behavior as well

as admission outcomes, revealing some regularities that will guide our modeling strategy.

32Student placement before the centralized system was based on yearly regional selection meetings.

33For exposition simplicity, we use the term school or program to refer to a bundle school x program. When strictly
referring to a school, we use the term senior high school (SHS).

34However, there are some exceptional cases where some students manage to get admitted into a different program
or school, likely through illegal means. As we do not have any data on these changes, we abstract from them.

35In the original data, a larger share of high selectivity schools have vacancies due to this problem.
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A.1 Students and Schools.

This section reports the underlying statistics behind our data. We describe the characteristics of
students before considering schools.

The full sample consists of 340,823 students, among which, 160,869 students (47%) passed
the qualifying exam and are therefore considered for the matching. We consider only qualified
students, as individual test score is not available for unqualified students.

Table A reports the basic characteristics of students. Over half (58.2 %) are male, and the
average age is 16.6. More than 47% of students live in the Ashanti and Accra (capital) regions.
Student performance, measured by the BECE exam ranges from 158 to 469 points out of a possible
600, which is re-scaled to take values between o and 1.3° As such, students have very heteroge-
neous chances of gaining admission to any given program. Table A also reports that younger
male students are over-represented among higher test score students. Similarly, high test score
students are over-represented in the Accra and Ashanti regions. In the absence of information on
family background, we proxy for it using measures of academic success at the junior high school
level. JHS quality measures the average test score of students from a JHS, while JHS pass rate
is the share of students who obtain a passing grade at the BECE. As expected, higher test score
students are associated with higher quality JHSs.

Table A: Students Characteristics

Students test score (quartiles)

Characteristics All 0.337 —0.537 0537 —0.603 0.603 —0.691 0.69—1
Age 16.662 17.26 16.959 16.552 15.851
Male 0.582 0.573 0.583 0.592 0.581
JHS quality 0.621 0.553 0.584 0.626 0.721
JHS pass rate 0.682 0.496 0.616 0.739 0.882
Regions
Ashanti 0.228 0.144 0.217 0.272 0.283
Accra 0.243 0.15 0.185 0.241 0.401
Central 0.083 0.111 0.093 0.078 0.05
Eastern 0.101 0.119 0.112 0.097 0.074
Volta 0.066 0.091 0.076 0.062 0.034
Western 0.093 0.114 0.104 0.088 0.063
Number of Observations 160869 41079 40168 40019 39602

Notes: The table shows the average characteristics of junior high schools students who qualify
for senior high school placement. Average characteristics are computed for the full sample, and
by interval of student test score. For concision, the largest six of the ten regions are reported.

36There are 281 distinct values of the BECE score. Nevertheless, ties in the matching process are rare because of the
size of the choice set. For example, the mode of the test score distribution is 262, with 1,324 students. Among the first
choice of this group, there are 654 distinct options. When ties occur during the estimation, we break them randomly.
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Then, we consider the other side of the market, which consists of senior high schools. There
is a total of 641 schools, and some offer as many as 33 programs.’” Altogether, there are 2,230
school-programs.?® Table B reports the characteristics of all schools, regardless of students’
choices.

Table B: Schools/program Characteristics

School cutoffs (quartiles)

Characteristics All 0.337 —0.458 0.458 —0.512 0.512-0.612 0.612 —0.923
Boarding 0.562 0.300 0.412 0.657 0.879
Historic 0.083 0.006 0.010 0.038 0.280
Religious 0.213 0.147 0.167 0.253 0.282
Size 78.434 78.919 72.313 78.820 83.655
Gender
Boys Only 0.042 0.002 0.006 0.025 0.136
Girls Only 0.063 0.021 0.016 0.044 0.172
Coed 0.895 0.977 0.979 0.931 0.692
Programs
Agriculture 0.146 0.187 0.179 0.134 0.084
Business 0.172 0.185 0.163 0.165 0.176
General Arts 0.212 0.209 0.175 0.215 0.249
General Science 0.118 0.049 0.111 0.107 0.203
Home Economics  0.174 0.172 0.198 0.197 0.130
Technical 0.064 0.091 0.093 0.050 0.023
Visual Arts 0.113 0.108 0.080 0.132 0.134

Notes: The table shows the average characteristics of all schools/programs. The size variable
is defined as the number of vacancies reported by the school. The gender category reports the
gender exclusivity of the school. Average characteristics are computed for the full sample and
by interval of school selectivity measured by realized cutoffs in 2008. For concision, all the tech-
nical programs have been grouped into one category.

There is substantial variation across schooling options. Over half of the choices (56.2%) offer
boarding facilities. The presence of boarding facilities implies that students may gain admission
everywhere in the country. The British colonial administration established the historic schools
(8.3%) before Ghana gained independence in 1957, and a little more than 21.3% of the programs
were offered in schools with a religious affiliation. The average program has the capacity to
admit 78.4 students, with a range from 10 to 120. While co-education has been generalized
over the years, 10.5% of schools are still single-sex, with three-fifths of them being girls-only

programs. A substantial share of the single-sex schools are also religious and were established

37This includes traditional high school, and both technical and vocational training institutions.

380ur attempts at reducing the dimensionality of the problem have failed as there are no systematic matching
patterns between individuals and schools. As such, restrictions on the set of schools or individuals considered may
alter the matching outcomes, and limit the scope of any counterfactual analysis.
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pre-independence.

Finally, general arts is the most commonly offered program, accounting for approximately
21.2% of available academic tracks. Technical, which includes all vocational education programs
represents 6.4% of the choices. We now consider the same characteristics by school selectivity.
In this setting, selectivity is based on observed cutoffs in 2007.3° There is a strong correlation
between school quality and the indicators for boarding, pre-independence, and coed status. That
is, a vast majority of high-selectivity schools offer boarding facilities (87.9%), over a quarter of
them date back to the colonial era, and single-sex schools are over-represented among them.
We also note that although there is not a monotonic relationship between school quality and
size, more selective schools appear to offer more seats. Finally, exploring the level of selectivity
by programs shows a consistent pattern: choices in general arts and general sciences are the
most over-represented among high selectivity options. On the contrary, agriculture and technical
programs are the least selective.

A.2 Choices.

The matching mechanism is based on serial dictatorship, which is strategy-proof when individ-
uals are allowed to submit an unlimited number of choices. However, in our case, ROLs are
truncated at six (6) choices, which prompts individuals to be strategic. Determining which sub-
set of schools to submit is a complicated problem. Students must find the right balance between
sought-after schools, which are likely to be selective while insuring themselves against the risk
of un-assignment. While there is no simple strategy to construct a portfolio, the literature has
provided some results about the properties of the optimal portfolio.

Proposition 1 Haeringer and Klijn (2009). Let N, = S = ||U, > 0|| be the set of alternatives with
positive utilities. Then, the optimal strategy consists of choosing N among Ny, and ranks them according
to the true preference ordering.

Proposition 1 illustrates a simple property: while finding the optimal portfolio may not be
obvious, the ordering within the portfolio is. Specifically, not ranking choices according to true

preferences conveys the risk of getting assigned to a less preferred option.

39We have the same results when using realized cutoffs in 2008.
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Table C: Characteristics of the ranked choices

Choices
1 2 3 4 5 6

Historic 0.250 0.147  0.100 0.069  0.026  0.018
Boarding 0.869 0.812 0.754 0.671 0.604 0.592
Coed 0.749 0.873 0.921 0.949  0.965 0.978
Cutoff 0.677 0635 0.603 0570 0.526 0516
Distance 34.012 32.747 30.457 26.980 30.953 31.890
Home District 0.358 0336  0.342 0382 0.220 0.205
Programs

Agriculture 0.058 0.072  0.082 0.095 0.085 0.085
Business 0.198 0.215 0.205 0.191 0.196 0.188
General Arts 0.406 0.397 0.400 0.398 0430 0438
General Science 0.137  0.102  0.088 0.078  0.083 0.074
Home Economics  0.098 0.104 0.110 0.116 0.106 0.113
Technical 0.038 0038 0038 0039 0.036 0.032
Visual Arts 0.066 0.072  0.078 0.082  0.065 0.070

Notes: The table shows the average characteristics of all schools/programs
by ranked choices for 6 choices. Average distance (in miles) is evaluated be-
tween the centroid of the junior high school and senior high school districts
using GPS coordinates.

In addition to the ordering of choices reflecting true preferences, students are often advised
to diversify their rank-order lists, including selective schools as well as safer options. Using, this
simple framework, we describe individual choices in detail.

Table C presents descriptive statistics on students’” ranked choices. We report the characteris-
tics of each ranked option to determine whether there exists a consistent pattern across choices.
As mentioned before, students were allowed to list six choices in 2008. We find that students are
more likely to list a school that was established pre-independence as their first choice. That is,
25.0% of first choices are historic schools, to be compared to 1.8% for the sixth choice. A similar
pattern is observed for schools with boarding facilities, and single sex status.

Then, we examine the distance between a student’s junior high school and selected senior
high schools. We do not have exact coordinates for school locations, so we measure the distance
between centroids of the 110 administrative districts in the country. Ghana’s school choice system
is truly national, and some students apply to schools as far as 450 miles away (roughly the
distance from London to Geneva). At the same time, a substantial share of students apply only
in their home region. Students’ first choice is, on average, 34.01 miles away from their junior
high schools, and their second choice programs are 1.27 miles closer to them. Their third and
fourth-ranked choices are 30.46 and 26.98 miles away, but their last two choices are further away
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at a distance of 30.95 and 31.89 miles on average. Interestingly, individuals’ first choices are more
likely to be to located in their home district compared to their sixth choices. The arguments
against a simple geography-based matching are better illustrated by the share of students who
apply to schools in their home district. That is, 36% of first choices are to schools in their home
district to be compared to 20% for the last choice. As such, it is unlikely that students are
applying to their neighborhood schools as back-up options.

In contrast to preferences for distance, the selectivity of ranked programs decreases mono-
tonically. The cutoff score of a students’ first choice is 0.677 but falls to 0.516 for the lowest
ranked-choice, which represents a difference of almost 1.5 standard deviations in the BECE score
distribution.

Finally, we examine discrete program characteristics and reveal additional characteristics of
aggregate choices in Table C. General arts is the most popular program track, with over 40%
of students choosing it as their first and sixth choices, which is mostly explained by the large
supply of general arts academic tracks. General science has the steepest gradient in choices.
13.7% of students choose a general science program as their first choice to be compared to 7.4%
as a sixth choice. The remaining programs are more equally represented across choices, with
19.8% of students choosing a business program, 9.8% choosing home economics, 5.8% choosing
agriculture, 6.6% choosing visual arts, and 3.8% choosing technical programs.

A.2.1  Selectivity in Choices.

After reporting the aggregate characteristics in choices, we provide a more in-depth analysis of
school selectivity in ranked choices. As explained before, students should find a balance between
selective schools and include some safety options. In this section, we discretize school selectivity
by equally sized intervals and then report choices by school selectivity in Figure A.
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Figure A: Diversification of Schools
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Notes: Q1 corresponds to the 25 lowest percentiles. Q4 corresponds to 25 highest percentiles. SchQ1,
SchQz2, SchQ3, and SchQ4 refer to schools belonging to the first, second, third, and fourth quantiles of
selectivity respectively. StudentsQ1, StudentsQ2, StudentsQ3, and StudentsQ4 refer to students belonging

to the first, second, third, and fourth quantiles of the test score distribution.

Half of the first choice applications of the lowest test score students are to the most selective
schools compared to less than 10% for the sixth choice. Similar patterns are observed for all
ability groups, and approximately 71% of first choices consist of the most selective schools, a
ratio that decreases to 16% for sixth choices. However, the sharp decline in the share of top
schools over ranked choices is almost entirely compensated by applications to schools belonging
to the 25-75% percentiles of the cutoff distribution. More interestingly, almost 50% of sixth choice
applications from the lowest ability group are to the two most selective groups of schools. Given
these patterns, the risk of administrative assignment is real for many students. As a consequence,
some individuals may not be diversifying as they should.

A.2.2 Diversification.

While instructive about aggregate patterns, the tables above do not speak to the internal consis-
tency of individual choices. We, therefore, analyze whether individuals target a specific set of
characteristics in their application behavior.



Table D: Repeated Characteristics in Choices

Number of distinct choices

1 2 3 4 5 6
Programs 0.149 0.342 0.325 0.157 0.025 0.002
Schools 0.002 0.005 0.025 0.113 0.192 0.662
District 0.047 0.143 0.252 0.284 0.201  0.073
Historic 0581 0.280 0.102 0.030 0.006 0.000

Boarding* o0.044 0.093 0.162 0.248 0.261 0.179
Religious* 0.314 0.239 0.124 0.041 0.008 0.001
Coed 0.005 0.023 0.060 0.159 0.296 0.457

Notes: Table analyses whether individuals target specific pro-
gram characteristics in their applications. The first three rows
describe the distribution of the number of distinct programs,
schools, and districts ranked. The remaining rows report the
number of listed options that satisfy each of the row labels.
Reading: 14.9% of students apply to a single program track
through out their application. x in front of boarding (resp. re-
ligious) indicates that some students do not report any school
with boarding facilities (resp. religious affiliation).

Table D investigates whether students apply to choices with the same set of characteristics
— such as academic tracks, SHS, districts, and regions. Our intuition is that individuals may
target specific characteristics, and in the pursuit of these characteristics, choices may not reflect a
thorough trade-off. Yet, we recognize that students’ preferences over schools/programs are not
unidimensional, as such our goal is simply to rule out the trivial cases. Only 14.9% of individuals
apply to a single academic track throughout their entire list, which suggests that the vast majority
of individuals do not attach a high value to a single academic track. A larger share of students
apply to two and three program tracks (respectively, 34.2% and 32.5%). Regarding senior high
schools (SHS), individuals almost exclusively apply to multiple SHS. Finally, choices are scattered
geographically; with more than 28.4% of students are applying to four distinct districts.

The observation that students do not attach a strong value to program nor specific SHS points
to a genuine attempt to construct portfolios of schools that balance ambition and preferences.
However, the fact that a limited set of variables cannot characterize choices suggests that the
portfolio construction problem may be complex, with potential substitution between multiple
choices. The complexity of constructing a portfolio may lead to mistakes.

A.2.3 Uncertainty.

In this section, we introduce the notion of uncertainty. There are two sources of uncertainty in our

setting. The first, which we refer to as individual uncertainty, comes from the fact that students
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apply to schools before taking the exam that determines their ranking in the matching algorithm.
The second, which we refer to as aggregate uncertainty, comes from limited information about
the preferences of other students.

Figure B reports a strong correlation between cutoffs across years (0.979). However, the corre-
lation drops to 0.762, when we account for schools with at least one opening (by setting the cutoff
to zero for schools with open vacancies). Nonetheless, we note that there is more variation in
cutoffs for lower selectivity schools. Uncertainty is a key characteristic of the market we analyze.
We use data from a field experiment to collect additional information about beliefs.

Figure B: Stability of Cutoffs
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capacity.

A.2.4 Survey Data

We use additional data from a field experiment that surveys 12,871 students across 450 junior
high schools, which took place in the Ashanti Region in 2016 (Ajayi et al., 2020).4° Although the
survey sample is from a single region, Table E shows that in key dimensions such as gender, age
and test score, there is almost no difference between the survey sample and the population. The
survey contains detailed information about beliefs (admission chances, aspirations, and expecta-
tions) as well as detailed socio-demographic attributes. Specifically, the survey asks all students
for a discrete measure of their likely BECE, which allows us to create a mapping between beliefs
and realizations.

4°As the survey and choice data are collected different years, our main assumption is that uncertainty is constant
across periods.
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Table E: Coverage

Characteristics Survey Population

Female 0.437 0.418
Age
Mean 15.854 16.662
Median 16.000 16.000
Test score
Mean 0.583 0.621
Median 0.591 0.603

Notes: Comparison between survey and
population. ‘Population’ is universe of
2008 students at time surveyed. ‘Survey’
describes surveyed individuals.

Figure C illustrates the differential effect of uncertainty on students. High test score students
tend to be pessimistic about their admission chances, while low test score students are generally

too optimistic. While pessimism implies biased beliefs, its consequences in terms of admission
probabilities are not as severe as optimism.

Figure C: Optimism, Pessimism and Beliefs
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Notes: Figure indicates the differential effect of uncertainty on students based on test scores.

A.25 Applications and Selectivity

In this section, we show that seemingly similar schools face very heterogeneous number of appli-
cations. Figure D shows the number of first-round applications for the 50 most selective schools.

46



For example, we find that the 13 most selective school receives three times fewer applications
than the 14" despite being located in the same school district and offering the same academic
track.

Figure D: Number of applications to the 50 most selective schools
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Notes: Total number of applications for the first 50 schools. Schools are ranked by selectivity.

Strategic interactions are likely to play an important role in generating these patterns. Given
that programs in our setting are high schools, one should not expect the kind of trade-offs faced
by college students between majors. As such it is hard to conceive why only 300 individuals will
apply to the second most selective school, whereas the third most selective school receives more

than 500 applications.

A.2.6 Vacancies

Finally, we document the existence of vacancies.

First, we explain how we obtain information about vacancies. The government maintained
a registry of schools with information about seats and vacancies from 2005 to 2009. However,
vacancy outcomes may not be reliable when individuals do not take up with admission outcomes.
As a consequence, using applications alone, and information about seats, we compute the serial
dictatorship algorithm and retrieve placement outcomes as well as the number of vacancies for
each school. Table F shows that only 71% of the schools end-up at capacity.

Not surprisingly, the vacancy rate is decreasing in school selectivity. However, vacancies are
not confined to low selectivity schools. That is, only 78% of the 25% most selective schools are at
capacity, a ratio that increases to 79.5% when we consider the 5% most selective schools. While
the median high selectivity school has one remaining seat, the least selective schools have more

vacancies.
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Table F: Vacancies

Full sample  At-capacity Below-capacity

Share 0.715 0.285
Total Seats 78.434 79.532 75.748
Number of Vacancies 40.938
Historic 0.083 0.113 0.010
Boarding 0.562 0.660 0.319
Programs
Agriculture 0.146 0.120 0.211
Business 0.172 0.169 0.181
General Arts 0.212 0.223 0.186
General Science 0.118 0.142 0.057
Home Economics 0.174 0.176 0.168
Technical 0.064 0.052 0.094
Visual Arts 0.113 0.118 0.102

Notes: Table reports the occurrence of vacancy at the school level and
illustrates the characteristics of vacant and non vacant schools.

The existence of vacancies and administrative assignment suggests a deeper problem, which
we posit to be the existence of imperfect information. As such, one side of the market (students)
may not be able to collect information about the other side of the market, resulting in violation
of the law of one price, and mismatches. Thus, the existence of administrative assignments,

vacancies and truncated list is a textbook example of imperfect information.

B Fit

This section presents the fit for the complete set of moments used for the estimation.
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Figure B.1: Male - Academic Tracks
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Figure B.2: Male - Characteristics
Religious School Quality
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Figure B.3: Female - Academic Tracks
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Figure B.4: Female - Characteristics
Religious School Quality
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