
Difference-in-Differences for Continuous Treatments and
Instruments with Stayers∗

Clément de Chaisemartin† Xavier D’Haultfœuille‡ Félix Pasquier§

Gonzalo Vazquez-Bare¶

First version: January 18, 2022. This version: January 26, 2024

Abstract

We propose difference-in-differences estimators for continuous treatments with hetero-
geneous effects. We assume that between consecutive periods, the treatment of some units,
the switchers, changes, while the treatment of other units does not change. We show that
under a parallel trends assumption, an unweighted and a weighted average of the slopes of
switchers’ potential outcomes can be estimated. While the former parameter may be more
intuitive, the latter can be used for cost-benefit analysis, and it can often be estimated
more precisely. We generalize our estimators to the instrumental-variable case. We use our
results to estimate the price-elasticity of gasoline consumption.

Keywords: differences-in-differences, continuous treatment, two-way fixed effects regressions,
heterogeneous treatment effects, panel data, policy evaluation, instrumental variable.

JEL Codes: C21, C23

∗We are very grateful to Alberto Abadie, Federico Bugni, Ivan Canay, Matias Cattaneo, Joachim Frey-
berger, Daniel Herrera, Brian Jacob, Joel Horowitz, Thierry Mayer, Isabelle Méjean, Jean-Marc Robin, Jeffrey
Wooldridge, and seminar participants at Bank of Portugal, IFAU, the International Panel Data Conference, Michi-
gan, Northwestern, Reading, Sciences Po, 2023 North American Summer Meeting of the Econometric Society,
the Stockholm School of Economics, Université Paris Dauphine, and York University for their helpful comments.
Clément de Chaisemartin was funded by the European Union (ERC, REALLYCREDIBLE,GA N°101043899).

†Sciences Po Paris, clement.dechaisemartin@sciencespo.fr
‡CREST-ENSAE, xavier.dhaultfoeuille@ensae.fr.
§CREST-ENSAE, felix.pasquier@ensae.fr.
¶University of California, Santa Barbara, gvazquez@econ.ucsb.edu.

1

Electronic copy available at: https://ssrn.com/abstract=4011782



1 Introduction

A popular method to estimate the effect of a treatment on an outcome is to compare over time
units experiencing different evolutions of their exposure to treatment. In practice, this idea is im-
plemented by estimating regressions that control for unit and time fixed effects. de Chaisemartin
and D’Haultfœuille (2023a) find that 26 of the 100 most cited papers published by the American
Economic Review from 2015 to 2019 have used a two-way fixed effects (TWFE) regression to
estimate the effect of a treatment on an outcome. de Chaisemartin and D’Haultfœuille (2020),
Goodman-Bacon (2021), and Borusyak et al. (2021) have shown that under a parallel trends
assumption, TWFE regressions are not robust to heterogeneous effects: they may estimate a
weighted sum of treatment effects across periods and units, with some negative weights. Owing
to the negative weights, the TWFE treatment coefficient could be, say, negative, even if the
treatment effect is positive for every unit × period. Importantly, the result in de Chaisemartin
and D’Haultfœuille (2020) applies to binary, discrete, and continuous treatments.

Several alternative heterogeneity-robust difference-in-difference (DID) estimators have been pro-
posed (see Table 2 of de Chaisemartin and D’Haultfœuille, 2023b). Some apply to binary and
staggered treatments (see Sun and Abraham, 2021; Callaway and Sant’Anna, 2021; Borusyak
et al., 2021). Some apply to designs where all units start with a treatment equal to 0, and
then get treated with heterogeneous, potentially continuously distributed treatment intensities
(see de Chaisemartin and D’Haultfœuille, 2023a; Callaway et al., 2021). By contrast, here we
allow the treatment to be continuously distributed at every period, as may for instance be the
case of trade tariffs (see Fajgelbaum et al., 2020) or gasoline taxes (see Li et al., 2014). Note
that de Chaisemartin and D’Haultfœuille (2023a) extend our approach to models with dynamic
effects (see Section 1.10 of their Web Appendix), while this paper focuses on models where past
treatments do not affect the current outcome.1 Allowing for dynamic effects may be appealing,
but in designs with continuous treatments, doing so may lead to hard-to-interpret and noisy
estimators (see de Chaisemartin and D’Haultfœuille, 2023a).

We assume that we have a panel data set, whose units could be geographical locations such as
counties. We start by considering the case where the panel has two time periods. From period
one to two, the treatment of some units, hereafter referred to as the switchers, changes. On the
other hand, the treatment of other units, hereafter referred to as the stayers, does not change.
We propose a novel parallel trends assumption on the outcome evolution of switchers and stayers
with the same period-one treatment, in the counterfactual where switchers’ treatment would not
have changed. Under that assumption, we show that two target parameters can be estimated.
Our first target is the average slope of switchers’ period-two potential outcome function, from

1de Chaisemartin and D’Haultfœuille (2023a) cover that extension in the November 2023 version of their
paper, which is posterior to the first version of this paper.
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their period-one to their period-two treatment, hereafter referred to as the Average Of Switchers’
Slopes (AOSS). Our second target is a weighted average of switchers’ slopes, where switchers
receive a weight proportional to the absolute value of their treatment change, hereafter referred
to as the Weighted Average Of Switchers’ Slopes (WAOSS).

Economically, our two parameters can serve different purposes, so neither parameter dominates
the other. Under shape restrictions on the potential outcome function, we show that the AOSS
can be used to infer the effect of other treatment changes than those that took place from period
one to two. Instead, the WAOSS can be used to conduct a cost-benefit analysis of the treatment
changes that effectively took place. On the other hand, when it comes to estimation, the WAOSS
unambiguously dominates the AOSS. First, we show that it can be estimated at the standard
parametric rate even if units can experience an arbitrarily small change of their treatment
between consecutive periods. Second, we show that under some conditions, the asymptotic
variance of the WAOSS estimator is strictly lower than that of the AOSS estimator. Third,
unlike the AOSS, the WAOSS is amenable to doubly-robust estimation.

Then, we consider the instrumental-variable (IV) case. For instance, one may be interested in
estimating the price-elasticity of a good’s consumption. If prices respond to demand shocks,
the consumption trends of units experiencing and not experiencing a price change may not be
parallel. On the other hand, the consumption trends of units experiencing and not experiencing
a tax change may be parallel. Then, taxes may be used as an instrument for prices. In such
cases, we show that the reduced-form WAOSS effect of the instrument on the outcome divided by
the first-stage WAOSS effect is equal to a weighted average of the slopes of switchers’ outcome-
slope with respect to the treatment, where switchers with a larger first-stage effect receive more
weight, an effect hereafter referred to as the IV-WAOSS effect. The ratio of the reduced-form and
first-stage AOSS effects is also equal to a weighted average of slopes, with arguably less natural
weights, so in the IV case the WAOSS seems both economically and statistically preferable to
the AOSS.

We consider a few other extensions. First, we extend our results to applications with more than
two time periods. Second, we propose a placebo estimator of the parallel trends assumption
underlying our estimators. Third, we discuss how our estimators can be applied to discrete
treatments taking a large number of values.

Finally, we use the yearly, 1966 to 2008 US state-level panel dataset of Li et al. (2014) to estimate
the effect of gasoline taxes on gasoline consumption and prices. Using the WAOSS estimators, we
find a significantly negative effect of taxes on gasoline consumption, and a significantly positive
effect on prices. The AOSS estimators are close to, and not significantly different from, the
WAOSS estimators, but they are also markedly less precise: their standard errors are almost
three times larger than that of the WAOSS estimators. For gasoline consumption, the AOSS
estimator is marginally significant, and for prices it is insignificant. Thus, even if one were
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interested in inferring the effect of other tax changes than those observed in the data, a policy
question for which the AOSS is a more relevant target, a bias-variance trade-off may actually
suggest using the WAOSS. We also compute an IV-WAOSS estimator of the price elasticity of
gasoline consumption, and find a fairly small elasticity of -0.76, in line with previous literature
(for instance, Hausman and Newey, 1995, find a long-run elasticity of -0.81). Our estimated
elasticity is 30% smaller than, but not significantly different from, that obtained from a 2SLS
TWFE regression. Our placebo estimators are small, insignificant, and fairly precisely estimated,
thus suggesting that switchers and stayers may indeed be on parallel trends in this application.

Stata and R packages computing our estimators will be available soon. Some of our estimators
can already be computed by the did_multiplegt Stata and R packages (see the earlier versions
of this paper for details).

Related Literature. On top of the aforementioned papers in the recent heterogeneity-robust
DID literature, our paper builds upon several previous papers in the panel data literature.
Chamberlain (1982) seems to be the first paper to have proposed an estimator of the AOSS
parameter. Under the assumption of no counterfactual time trend, the estimator therein is a
before-after estimator. Then, our paper is closely related to the work of Graham and Powell
(2012), who also propose DID estimators of the AOSS when the treatment is continuously
distributed at every time period. Their estimators rely on a linear treatment effect assumption
(see their Equation (1)) and assume that units experience the same evolution of their treatment
effect over time, a parallel-trends-on-treatment-effects assumption (see their Assumption 1.1(i)
and (iii)). By contrast, our estimator of the AOSS does not place any restriction on treatment
effects. But our main contribution to this literature is to introduce, and propose an estimator
of, the WAOSS.

de Chaisemartin and D’Haultfœuille (2018) and de Chaisemartin and D’Haultfœuille (2020) also
compare switchers and stayers with the same baseline treatment, to form heterogeneity-robust
DID estimators of the effect of binary or discrete treatments. Those papers have shown that
comparing switchers and stayers with the same period-one treatment is important: unconditional
comparisons implicitly assume constant treatment effects over time, and are therefore not robust
to time-varying effects. With a continuous treatment, the sample does not contain switchers
and stayers with the exact same baseline treatment, so this paper’s contribution is to use non-
parametric regression or propensity-score reweighting to compare switchers and stayers “with
the exact same baseline treatment”.

D’Haultfœuille et al. (2023) also consider a DID-like estimator of the effect of a continuous
treatment, but their estimator relies on a common change assumption akin to that in Athey and
Imbens (2006), rather than on a parallel trends assumption.

Finally, our estimators require that there be some stayers, whose treatment does not change
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between consecutive time periods. This assumption is unlikely to be met when the treatment
is say, precipitations: for instance, US counties never experience the exact same amount of
precipitations over two consecutive years. In de Chaisemartin et al. (2023), we discuss the
(non-trivial) extension of the results in this paper to applications without stayers.

Organization of the paper. In Section 2, we present the set-up, introduce notation and
discuss our main assumptions. In Section 3, we introduce the AOSS and discuss its identification
and estimation. Section 4 then turns to the WAOSS. Section 5 extends our previous results to an
instrumental variable set-up. We consider other extensions in Section 6. Finally, our application
is developed in Section 7. The proofs are collected in the appendix.

2 Set-up, assumptions, and building-block identification result

A representative unit is drawn from an infinite super population, and observed at two time
periods. This unit could be an individual or a firm, but it could also be a geographical unit,
like a county or a region.2 All expectations below are taken with respect to the distribution
of variables in the super population. We are interested in the effect of a continuous and scalar
treatment variable on that unit’s outcome. Let D1 (resp. D2) denote the unit’s treatment at
period 1 (resp. 2), and let D1 (resp. D2) be the set of values D1 (resp. D2) can take, i.e.
its support. For any d ∈ D1 ∪ D2, let Y1(d) and Y2(d) respectively denote the unit’s potential
outcomes at periods 1 and 2 with treatment d.3 Finally, let Y1 and Y2 denote their observed
outcomes at periods 1 and 2. Let S = 1{D2 ̸= D1} be an indicator equal to 1 if the unit’s
treatment changes from period one to two, i.e. if they are a switcher.

In what follows, all equalities and inequalities involving random variables are required to hold
almost surely. For any random variables observed at the two time periods (X1, X2), let ∆X =
X2 −X1 denote the change of X from period 1 to 2.

We make the following assumptions.

Assumption 1 (Parallel trends) For all d1 ∈ D1, E(∆Y (d1)|D1 = d1, D2) = E(∆Y (d1)|D1 =
d1).

Assumption 1 implies the following lemma, our building-block identification result.

Lemma 1 For all (d1, d2) ∈ D1 × D2 such that d1 ̸= d2 and P (S|D1 = d1) < 1,

E

(
Y2(d2) − Y2(d1)

d2 − d1

∣∣∣∣∣D1 = d1, D2 = d2

)
= E

(
∆Y − E(∆Y |D1 = d1, S = 0)

d2 − d1

∣∣∣∣∣D1 = d1, D2 = d2

)
.

2In that case, one may want to weight the estimation by counties’ or regions’ populations. Extending the
estimators we propose to allow for such weighting is a mechanical extension.

3Throughout the paper, we implicitly assume that all potential outcomes have an expectation.
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Proof:

E (Y2(d2) − Y2(d1)|D1 = d1, D2 = d2)
=E (∆Y |D1 = d1, D2 = d2) − E (∆Y (d1)|D1 = d1, D2 = d2)
=E (∆Y |D1 = d1, D2 = d2) − E (∆Y (d1)|D1 = d1, D2 = d1)
=E (∆Y |D1 = d1, D2 = d2) − E (∆Y |D1 = d1, S = 0)
=E (∆Y − E (∆Y |D1 = d1, S = 0)|D1 = d1, D2 = d2) ,

where the second equality follows from Assumption 1. This proves the result □

Intuitively, Assumption 1 is a parallel trends assumption, requiring that ∆Y (d1) be mean
independent of D2, conditional on D1 = d1. Then, the counterfactual outcome evolution
switchers would have experienced if their treatment had not changed is identified by the out-
come evolution of stayers with the same period-one treatment. If a unit’s treatment changes
from two to five, we can recover its counterfactual outcome evolution if its treatment had not
changed, by using the average outcome evolution of all stayers with a baseline treatment of
two. Then, a DID estimand comparing switchers and stayers outcome evolutions identifies
E (Y2(d2) − Y2(d1)|D1 = d1, D2 = d2), and we can finally scale that effect by d2 −d1 to identify a
slope rather than an unnormalized effect. Not that in a canonical DID design where D1 = 0 and
D2 ∈ {0, 1}, the only value of (d1, d2) ∈ D1 × D2 such that d1 ̸= d2 is (0, 1), and the estimand in
Lemma 1 reduces to the canonical DID estimand comparing the outcome evolutions of treated
and untreated units. Thus, the estimands we propose below can merely be seen as extensions of
the canonical DID estimand to applications with a continuous treatment.

Our DID estimands compare switchers and stayers with the same period-one treatment. Instead,
one could propose estimands comparing switchers and stayers, without conditioning on their
period-one treatment. To recover the counterfactual outcome trend of a switcher going from two
to five units of treatment, one could use a stayer with treatment equal to three at both dates.
On top of Assumption 1, such estimands rest on two supplementary conditions:

(i) E(∆Y (d)|D1 = d) = E(∆Y (d)).

(ii) For all (d, d′) ∈ D2
1, E(∆Y (d)) = E(∆Y (d′)).

(i) requires that all units experience the same evolution of their potential outcome with treatment
d, while Assumption 1 only imposes that requirement for units with the same baseline treatment.
Assumption 1 may be more plausible: units with the same period-one treatment may be more
similar and more likely to be on parallel trends than units with different period-one treatments.
(ii) requires that the trend affecting all potential outcomes be the same. For the aforementioned
DID estimand comparing a switcher going from two to five units of treatment to a stayer with
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treatment equal to three to be valid, E(∆Y (2)) and E(∆Y (3)) should be equal. Rearranging,
(ii) is equivalent to assuming

E(Y2(d) − Y2(d′)) = E(Y1(d) − Y1(d′)) : (1)

the treatment effect should be constant over time, a strong restriction on treatment effect het-
erogeneity. Assumption 1, on the other hand, does not impose any restriction on treatment
effect heterogeneity, as it only restricts one potential outcome per unit.

Lemma 1 implies that

E

(
Y2(d2) − Y2(d1)

d2 − d1

∣∣∣∣∣D1 = d1, D2 = d2

)
can be consistently estimated, for any value of (d1, d2). However, Lemma 1 also shows that
estimating this effect requires estimating the values of two conditional expectations with respect
to continuous variables, at points D1 = d1, D2 = d2 and D1 = d1. Unless one is willing to make
parametric functional-form assumptions, the resulting estimator will converge at a slower rate
than the standard

√
n− parametric rate. Instead, in this paper we focus on parameters that can

be estimated at the standard
√
n− parametric rate. For that purpose, in Sections 3 and 4 we

consider in turn two averages of switchers’ slopes

E

(
Y2(d2) − Y2(d1)

d2 − d1

∣∣∣∣∣D1 = d1, D2 = d2

)
.

Assumption 2 (Bounded treatment, Lipschitz and bounded potential outcomes)

1. D1 and D2 are bounded subsets of R.

2. For all t ∈ {1, 2} and for all (d, d′) ∈ D2
t , there is a random variable Y ≥ 0 such that

|Yt(d) − Yt(d′)| ≤ Y |d− d′|, with sup(d1,d2)∈Supp(D1,D2) E[Y |D1 = d1, D2 = d2] < ∞.

Assumption 2 is a technical condition ensuring that all the expectations below are well defined.
It requires that the set of values that the period-one and period-two treatments can take be
bounded. It also requires that the potential outcome functions be Lipschitz (with an individual
specific Lipschitz constant). This will automatically hold if d 7→ Y2(d) is differentiable with
respect to d and has a bounded derivative.

For estimation and inference, we assume we observe an iid sample with the same distribution as
(Y1, Y2, D1, D2):

Assumption 3 (iid sample) We observe (Yi,1, Yi,2, Di,1, Di,2)1≤i≤n, that are independent and
identically distributed vectors with the same probability distribution as (Y1, Y2, D1, D2).

Importantly, Assumption 3 allows for the possibility that Y1 and Y2 (resp. D1 and D2) are
serially correlated, as is commonly assumed in DID studies (see Bertrand et al., 2004).

7

Electronic copy available at: https://ssrn.com/abstract=4011782



3 Estimating the average of switchers’ slopes

3.1 Target parameter

In this section, our target parameter is

δ1 := E

(
Y2(D2) − Y2(D1)

D2 −D1

∣∣∣∣∣S = 1
)
. (2)

δ1 is the average, across switchers, of the effect on their period-two outcome of moving their
treatment from its period-one to its period-two value, scaled by the difference between these two
values. In other words, δ1 is the average of the slopes of switchers’ potential outcome functions,
between their period-one and their period-two treatments. Hereafter, δ1 is referred to as the
Average Of Switchers’ Slopes (AOSS). Note that with a binary treatment such that all units
are untreated at period 1 and some units get treated at period 2, the AOSS reduces to the
standard average treatment effect on the treated. Thus, the AOSS generalizes that parameter
to non-binary treatments and more complicated designs.

The AOSS averages effects of discrete rather than infinitesimal changes in the treatment as in
Hoderlein and White (2012), for instance. But if one slightly reinforces Point 2 of Assumption
2 by supposing that d 7→ Y2(d) is differentiable on D1 ∪ D2, by the mean value theorem,

Y2(D2) − Y2(D1)
D2 −D1

= Y ′
2

(
D̃
)

for some D̃ ∈ (min(D1, D2),max(D1, D2)). Then, the AOSS is an average marginal effect on
switchers:

δ1 = E[Y ′
2

(
D̃
)

|S = 1]. (3)

The only difference with the usual average marginal effect on switchers E[Y ′
2(D2)|S = 1] is

that the derivative is evaluated at D̃ instead of D2. Note that (3) implies that unlike TWFE
regression coefficients, the AOSS satisfies the no-sign reversal property. If Y ′

2(d) ≥ 0 for all d,
meaning that increasing the treatment always increases the outcome of every switcher, δ1 ≥ 0.

However, the AOSS is a local effect. First, it only applies to switchers. Second, it measures
the effect of changing their treatment from its period-one to its period-two value, not of other
changes of their treatment. Still, the AOSS can be used to identify the effect of other treatment
changes under shape restrictions on the potential outcome function. First, assume that the
potential outcomes are linear: for t ∈ {1, 2},

Yt(d) = Yt(0) +Btd,
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where Bt is a slope that may vary across units and may change over time. Then, δ1 =
E (B2|S = 1): the AOSS is equal to the average, across switchers, of the slopes of their po-
tential outcome functions at period 2. Therefore, for all d ̸= d′,

E(Y2(d) − Y2(d′)|S = 1) = (d− d′)δ1 :

under linearity, knowing the AOSS is sufficient to recover the ATE of any uniform treatment
change among switchers. Of course, this only holds under linearity, which may not be a plausible
assumption. Assume instead that d 7→ Y2(d) is convex. Then, for any ϵ > 0,

E (Y2(D2 + ϵ) − Y2(D1)|S = 1) ≥ E (Y2(D2) − Y2(D1)|S = 1) + ϵδ1.

E (Y2(D2) − Y2(D1)|S = 1) can be identified following the same steps as those we use to identify
the AOSS below. Accordingly, under convexity one can use the AOSS to obtain a lower bound
of the effect of changing the treatment from D1 to a larger value than D2. For instance, in
Fajgelbaum et al. (2020), one can use this strategy to derive a lower bound of the effect of even
larger tariffs’ increases than those implemented by the Trump administration. Under convexity,
one can also derive an upper bound of the effect of changing the treatment from D1 to a lower
value than D2. And under concavity, one can derive an upper (resp. lower) bound of the effect of
changing the treatment from D1 to a larger (resp. lower) value than D2.4 Importantly, the AOSS
is identified even if those linearity or convexity/concavity conditions fail. But those conditions
are necessary to use the AOSS to identify or bound the effects of alternative policies.

3.2 Identification

To identify the AOSS, we use a DID estimand comparing switchers and stayers with the same
period-one treatment. This requires that there be no value of the period-one treatment D1 such
that only switchers have that value, as stated formally below.

Assumption 4 (Support condition for AOSS identification) P (S = 1) > 0, P (S = 1|D1) < 1.

Assumption 4 implies that P (S = 0) > 0, meaning that there are stayers whose treatment does
not change. While we assume that D1 and D2 are continuous, we also assume that the treatment
is persistent, and thus ∆D has a mixed distribution with a mass point at zero.

To identify the AOSS, we also start by assuming that there are no quasi-stayers: the treatment
of all switchers changes by at last c from period one to two, for some strictly positive c.

Assumption 5 (No quasi-stayers) ∃c > 0: P (|∆D| > c|S = 1) = 1.

We relax Assumption 5 just below.
4See D’Haultfœuille et al. (2023) for bounds of the same kind obtained under concavity or convexity.
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Theorem 1 If Assumptions 1-5 hold,

δ1 = E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣S = 1
)
.

Intuitively, the effect of changing a switcher’s treatment from its period-one to its period-two
value is identified by a DID comparing its outcome evolution to that of stayers with the same
period-one treatment. Then, this DID is normalized by ∆D, to recover the slope of the switcher’s
potential outcome function.

If there are quasi-stayers, the AOSS is still identified. For any η > 0, let Sη = 1{|∆D| > η} be
an indicator equal to one for switchers whose treatment changes by at least η from period one
to two.

Theorem 2 If Assumptions 1-4 hold,

δ1 = lim
η↓0

E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣Sη = 1
)
.

If there are quasi-stayers whose treatment change is arbitrarily close to 0 (i.e. f|∆D||S=1(0) > 0),
the denominator of (∆Y − E(∆Y |D1, S = 0))/∆D is very close to 0 for them. On the other
hand,

∆Y − E(∆Y |D1, S = 0)
=Y2(D2) − Y2(D1) + ∆Y (D1) − E(∆Y (D1)|D1, S = 0)
≈∆Y (D1) − E(∆Y (D1)|D1, S = 0),

so the ratio’s numerator may not be close to 0. Then, under weak conditions,

E

(∣∣∣∣∣∆Y − E(∆Y |D1, S = 0)
∆D

∣∣∣∣∣
∣∣∣∣∣S = 1

)
= +∞.

Therefore, we need to trim quasi-stayers from the estimand in Theorem 1, and let the trimming
go to 0 to still recover δ1, as in Graham and Powell (2012) who consider a related estimand
with some quasi-stayers. Accordingly, while the AOSS is still identified with quasi-stayers, it is
irregularly identified by a limiting estimand.

3.3 Estimation and inference

With no quasi-stayers, E ((∆Y − E(∆Y |D1, S = 0))/∆D|S = 1) can be estimated in three steps.
First, one estimates E(∆Y |D1, S = 0) using a non-parametric regression of ∆Yi on Di,1 among
stayers. Second, for each switcher, one computes Ê(∆Y |D1 = Di,1, S = 0), its predicted outcome
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evolution given its baseline treatment, according to the non-parametric regression estimated
among stayers. Third, one lets

δ̂1 := 1
ns

∑
i:Si=1

∆Yi − Ê(∆Y |D1 = Di,1, S = 0)
∆Di

,

where ns = #{i : Si = 1}.

To estimate E(∆Y |D1, S = 0), we consider a series estimator based on polynomials in D1,
(pk,Kn(D1))1≤k≤Kn . We make the following technical assumption.

Assumption 6 (Conditions for asymptotic normality of AOSS estimator)

1. D1 is continuously distributed on a compact interval I, with infd∈I fD1(d) > 0.

2. E[∆Y 2] < ∞ and d 7→ E[∆Y 2|D1 = d] is bounded on I.

3. P (S = 1) > 0 and supd∈I P (S = 1|D1 = d) < 1.

4. The functions d 7→ E[(1 − S)∆Y |D1 = d], d 7→ E[S|D1 = d] and d 7→ E[S/∆D|D1 = d]
are four times continuously differentiable.

5. The polynomials d 7→ pk,Kn(d), 1 ≤ k ≤ Kn, are orthonormal on I and K12
n /n → +∞,

K7
n/n → 0.

Point 3 is a slight reinforcement of Assumption 4. In Point 5, K12
n /n → ∞ requires that Kn, the

order of the polynomial in D1 we use to approximate E(∆Y |D1, S = 0), goes to +∞ when the
sample size grows, thus ensuring that the bias of our series estimator of E(∆Y |D1, S = 0) tends
to zero. K7

n/n → 0 ensures that Kn does not go to infinity too fast, thus preventing overfitting.

Theorem 3 If Assumptions 1-3 and 5-6 hold,
√
n
(
δ̂1 − δ1

)
d−→ N (0, V (ψ1)),

where

ψ1 := 1
E(S)

{(
S

∆D − E
(

S

∆D

∣∣∣∣D1

) (1 − S)
E[1 − S|D1]

)
[∆Y − E(∆Y |D1, S = 0)] − δ1S

}
.

Theorem 3 shows that without quasi-stayers, the AOSS can be estimated at the
√
n−rate, and

gives an expression of its estimator’s asymptotic variance. With quasi-stayers, we conjecture
that the AOSS cannot be estimated at the

√
n−rate. This conjecture is based on a result from

Graham and Powell (2012). Though their result applies to a broader class of estimands, it
implies in particular that with quasi-stayers,

lim
η↓0

E

(
∆Y − E(∆Y |S = 0)

∆D

∣∣∣∣∣Sη = 1
)
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cannot be estimated at a faster rate than n1/3. The estimand in the previous display is closely
related to our estimand

lim
η↓0

E

(
∆Y − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣Sη = 1
)

in Theorem 2, and is equal to it if E(∆Y |D1, S = 0) = E(∆Y |S = 0). Then, even though
the assumptions in Graham and Powell (2012) differ from ours, it seems reasonable to assume
that their general conclusion still applies to our set-up: here as well, owing to δ1’s irregular
identification, this parameter can probably not be estimated at the parametric

√
n−rate with

quasi-stayers. This is one of the reasons that lead us to consider, in the next section, another
target parameter that can be estimated at the parametric

√
n−rate with quasi-stayers.

4 Estimating a weighted average of switchers’ slopes

4.1 Target parameter

In this section, our target parameter is

δ2 :=E
(

|D2 −D1|
E(|D2 −D1||S = 1) × Y2(D2) − Y2(D1)

D2 −D1

∣∣∣∣∣S = 1
)

=E (sgn(D2 −D1)(Y2(D2) − Y2(D1))|S = 1)
E(|D2 −D1||S = 1)

=E (sgn(D2 −D1)(Y2(D2) − Y2(D1)))
E(|D2 −D1|)

.

δ2 is a weighted average of the slopes of switchers’ potential outcome functions from their period-
one to their period-two treatments, where slopes receive a weight proportional to switchers’ ab-
solute treatment change from period one to two. Accordingly, we refer to δ2 as the Weighted
Average Of Switchers’ Slopes (WAOSS). All slopes are weighted positively, so the WAOSS sat-
isfies the no-sign reversal property, like the AOSS.

It is easy to see that δ2 = δ1 if and only if

cov
(
Y2(D2) − Y2(D1)

D2 −D1
, |D2 −D1|

∣∣∣∣∣S = 1
)

= 0 : (4)

the WAOSS and AOSS are equal if and only if switchers’ slopes are uncorrelated with |D2 −D1|.

Economically, the AOSS and WAOSS serve different purposes. As discussed above, under shape
restrictions on the potential outcome function, the AOSS can be used to identify or bound the
effect of other treatment changes than the actual change switchers experienced from period one
to two. The WAOSS cannot serve that purpose, but under some assumptions, it may be used

12

Electronic copy available at: https://ssrn.com/abstract=4011782



to conduct a cost-benefit analysis of the treatment changes that took place from period one to
two. To simplify the discussion, let us assume in the remainder of this paragraph that D2 ≥ D1.
Assume also that the outcome is a measure of output, such as agricultural yields or wages,
expressed in monetary units. Finally, assume that the treatment is costly, with a cost linear in
dose, uniform across units, and known to the analyst: the cost of giving d units of treatment to
a unit at period t is ct ×d for some known (ct)t∈{1,2}. Then, D2 is beneficial relative to D1 if and
only if E(Y2(D2) − c2D2) > E(Y2(D1) − c2D1) or, equivalently,

δ2 > c2.

Then, comparing δ2 to the per-unit treatment cost is sufficient to evaluate if changing the
treatment from D1 to D2 was beneficial.

4.2 Identification

Let S+ = 1{D2 −D1 > 0}, S− = 1{D2 −D1 < 0} and

δ2+ := E (Y2(D2) − Y2(D1)|S+ = 1)
E(D2 −D1|S+ = 1) ,

δ2− := E (Y2(D1) − Y2(D2)|S− = 1)
E(D1 −D2|S− = 1) .

Hereafter, units with S+ = 1 are referred to as “switchers up”, while units with S− = 1 are
referred to as “switchers down”. Thus, δ2+ is the WAOSS of switchers up, and δ2− is the
WAOSS of switchers down. One has

δ2 =P (S+ = 1|S = 1)E(D2 −D1|S+ = 1)
E(|D2 −D1||S = 1) δ2+

+P (S− = 1|S = 1)E(D1 −D2|S− = 1)
E(|D2 −D1||S = 1) δ2−. (5)

To identify δ2+ (resp. δ2−) we use DID estimands comparing switchers up (resp. switchers down)
to stayers with the same period-one treatment. This requires that there be no value of D1 such
that some switchers up (resp. switchers down) have that baseline treatment while there is no
stayer with the same baseline treatment, as stated in Point 1 (resp. 2) of Assumption 7 below.

Assumption 7 (Support conditions for WAOSS identification)

1. 0 < P (S+ = 1), and 0 < P (S+ = 1|D1) implies that 0 < P (S = 0|D1).

2. 0 < P (S− = 1), and 0 < P (S− = 1|D1) implies that 0 < P (S = 0|D1).
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Theorem 4 1. If Assumptions 1-2 and Point 1 of Assumption 7 hold,

δ2+ = E (∆Y − E(∆Y |D1, S = 0)|S+ = 1)
E(∆D|S+ = 1) (6)

=
E (∆Y |S+ = 1) − E

(
∆Y P (S+=1|D1)

P (S=0|D1)
P (S=0)

P (S+=1)

∣∣∣S = 0
)

E(∆D|S+ = 1) . (7)

2. If Assumptions 1-2 and Point 2 of Assumption 7 hold,

δ2− = E (∆Y − E(∆Y |D1, S = 0)|S− = 1)
E(∆D|S− = 1) (8)

=
E (∆Y |S− = 1) − E

(
∆Y P (S−=1|D1)

P (S=0|D1)
P (S=0)

P (S−=1)

∣∣∣S = 0
)

E(∆D|S− = 1) . (9)

3. If Assumptions 1-2 and Assumption 7 hold,

δ2 =E [sgn(∆D) (∆Y − E(∆Y |D1, S = 0))]
E[|∆D|] (10)

=
E [sgn(∆D)∆Y ] − E

[
∆Y P (S+=1|D1)−P (S−=1|D1)

P (S=0|D1) P (S = 0)
∣∣∣S = 0

]
E[|∆D|] . (11)

Point 1 of Theorem 4 shows that δ2+, the WAOSS of switchers-up, is identified by two estimands,
a regression-based and a propensity-score-based estimand. Point 2 of Theorem 4 shows that δ2−,
the WAOSS of switchers down, is identified by two estimands similar to those identifying δ2+,
replacing S+ by S−. Finally, if the conditions in Point 1 and 2 of Theorem 4 jointly hold, it
directly follows from (5) that δ2, the WAOSS of all switchers, is identified by a weighted average
of the estimands in Equations (6) and (8), and by a weighted average of the estimands in
Equations (7) and (9). Those weighted averages simplify into the expressions given in Point 3 of
Theorem 4. Point 3 of Theorem 4 also implies that δ2 is identified by the following doubly-robust
estimand:

E
[(
S+ − S− − P (S+=1|D1)−P (S−=1|D1)

P (S=0|D1) (1 − S)
)

(∆Y − E(∆Y |D1, S = 0))
]

E[|∆D|] . (12)

4.3 Estimation and inference

The regression-based estimands identifying δ2+ and δ2− can be estimated following almost the
same steps as in Section 3.3. Specifically, let

δ̂r
2+ :=

1
n+

∑
i:Si+=1

(
∆Yi − Ê(∆Y |D1 = Di,1, S = 0)

)
1

n+

∑
i:Si+=1 ∆Di

δ̂r
2− :=

1
n−

∑
i:Si−=1

(
∆Yi − Ê(∆Y |D1 = Di,1, S = 0)

)
1

n−

∑
i:Si−=1 ∆Di

,
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where n+ = #{i : Si+ = 1} and n− = #{i : Si− = 1}, and where Ê(∆Y |D1, S = 0) is the series
estimator of E(∆Y |D1, S = 0) defined in Section 3.3 of the paper. Then, let

ŵ+ =
n+
n

× 1
n+

∑
i:Si+=1 ∆Di

n+
n

× 1
n+

∑
i:Si+=1 ∆Di − n−

n
× 1

n−

∑
i:Si−=1 ∆Di

,

and let

δ̂r
2 =ŵ+δ̂

r
2+ + (1 − ŵ+)δ̂r

2−

be the corresponding estimator of δ2.

We now propose estimators of the propensity-score-based estimands identifying δ2+ and δ2− in
Equations (7) and (9). Let P̂ (S+ = 1) = n+/n (resp. P̂ (S− = 1) = n−/n, P̂ (S = 0) =
(n − ns)/n) be an estimator of P (S+ = 1) (resp. P (S− = 1), P (S = 0)). Let P̂ (S+ = 1|D1)
(resp. P̂ (S− = 1|D1), P̂ (S = 0|D1)) be a non-parametric estimator of P (S+ = 1|D1) (resp.
P (S− = 1|D1), P (S = 0|D1)) using a series logistic regression of Si+ (resp. Si−, 1 − Si) on
polynomials in D1 (pk,Kn(D1))1≤k≤Kn . We make the following technical assumption.

Assumption 8 (Technical conditions for asymptotic normality of propensity-score WAOSS es-
timator)

1. D1 is continuously distributed on a compact interval I, with infd∈I fD1(d) > 0.

2. E[∆Y 2] < ∞ and d 7→ E[∆Y 2|D1 = d] is bounded on I

3. 0 < E[S+] < 1, 0 < E[S−] < 1, E[S] > 0 and supd∈I E[S|D1 = d] < 1.

4. The functions d 7→ E[∆Y (1 − S)|D1 = d], d 7→ E[S|D1 = d], d 7→ E[S+|D1 = d] and
d 7→ E[S−|D1 = d] are four times continuously differentiable.

5. The polynomials d 7→ pk,Kn(d), k ≤ 1 ≤ Kn are orthonormal on I and Kn = Cnν where
1/10 < ν < 1/6.

Let

δ̂ps
2+ :=

1
n+

∑
i:Si+=1 ∆Yi − 1

n−ns

∑
i:Si=0 ∆Yi

P̂ (S+=1|D1=Di1)
P̂ (S=0|D1=Di1)

P̂ (S=0)
P̂ (S+=1)

1
n+

∑
i:Si+=1 ∆Di

δ̂ps
2− :=

1
n−

∑
i:Si−=1 ∆Yi − 1

n−ns

∑
i:Si=0 ∆Yi

P̂ (S−=1|D1=Di1)
P̂ (S=0|D1=Di1)

P̂ (S=0)
P̂ (S−=1)

1
n−

∑
i:Si−=1 ∆Di

,

and let

δ̂ps
2 =ŵ+δ̂

ps
2+ + (1 − ŵ+)δ̂ps

2−
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be the corresponding estimator of δ2. Let

ψ2+ := 1
E(∆DS+)

{(
S+ − E(S+|D1)

(1 − S)
E(1 − S|D1)

)
(∆Y − E(∆Y |D1, S = 0)) − δ2+∆DS+

}

ψ2− := 1
E(∆DS−)

{(
S− − E(S−|D1)

(1 − S)
E(1 − S|D1)

)
(∆Y − E(∆Y |D1, S = 0)) − δ2−∆DS−

}

ψ2 := 1
E(|∆D|)

{(
S+ − S− − E(S+ − S−|D1)

(1 − S)
E(1 − S|D1)

)

× (∆Y − E(∆Y |D1, S = 0)) − δ2 |∆D|
}
.

Theorem 5 1. If Assumptions 1-3 and 6 hold,
√
n
(
(δ̂r

2+, δ̂
r
2−)′ − (δ2+, δ2−)′

)
d−→ N (0, V ((ψ2+, ψ2−)′)).

and
√
n
(
δ̂r

2 − δ2
)

d−→ N (0, V (ψ2)).

2. If Assumptions 1-3 and 8 hold,
√
n
(
(δ̂ps

2+, δ̂
ps
2−)′ − (δ2+, δ2−)′

)
d−→ N (0, V ((ψ2+, ψ2−)′)).

and
√
n
(
δ̂ps

2 − δ2
)

d−→ N (0, V (ψ2)).

Based on (12), we can also estimate δ2 using the following doubly-robust estimator:

δ̂dr
2 =

∑
i

(
Si+ − Si− − P̂ (S+=1|D1=D1i)−P (Si−=1|D1=D1i)

P (Si=0|D1=D1i) (1 − Si)
)

(∆Yi − Ê(∆Yi|D1 = D1i, Si = 0))∑
i |∆Di|

.

Finally, we now show that under some assumptions, the asymptotic variance of the WAOSS
estimator is lower than that of the AOSS estimator. While the assumptions under which this
result is obtained are admittedly strong, this still suggests that one may often expect an efficiency
gain from using the WAOSS.

Proposition 1 If Assumption 1 holds, (Y2(D2) − Y2(D1))/(D2 −D1) = δ for some real number
δ, V (∆Y (D1)|D1, D2) = σ2 for some real number σ2 > 0, D2 ≥ D1, and ∆D ⊥⊥ D1, then

V (ψ1) =σ2
[
E(1/(∆D)2|S = 1)

P (S = 1) + (E(1/∆D|S = 1))2

P (S = 0)

]

≥σ2 1
(E(∆D|S = 1))2

[
1

P (S = 1) + 1
P (S = 0)

]
= V (ψ2),

with equality if and only if V (∆D|S = 1) = 0.
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5 Instrumental-variable estimation

There are instances where the parallel-trends condition in Assumption 1 is implausible, but one
has at hand an instrument satisfying a similar parallel-trends condition. For instance, one may
be interested in estimating the price-elasticity of a good’s consumption, but prices respond to
supply and demand shocks, and therefore do not satisfy Assumption 1. On the other hand, taxes
may not respond to supply and demand shocks and may satisfy a parallel-trends assumption.

5.1 Notation and assumptions

Let (Z1, Z2) denote the instrument’s values at period one and two and Zt be the support of Zt.
For any z ∈ Z1 ∪ Z2, let D1(z) and D2(z) respectively denote the unit’s potential treatments at
periods 1 and 2 with instrument z. Let SC = 1{D2(Z2) ̸= D2(Z1)} be an indicator equal to 1 for
switchers-compliers, namely units whose instrument changes from period one to two and whose
treatment is affected by that change in the instrument. We make the following assumptions.5

Assumption 9 (Reduced-form and first-stage parallel trends) For all z ∈ Z1,

1. E(∆Y (D1(z))|Z1 = z, Z2) = E(∆Y (D1(z))|Z1 = z).

2. E(∆D1(z)|Z1 = z, Z2) = E(∆D1(z)|Z1 = z).

Point 1 of Assumption 9 requires that ∆Y (D1(z)), units’ outcome evolutions in the counterfac-
tual where their instrument does not change from period one to two, be mean independent of Z2,
conditional on Z1. Point 2 requires that units’ treatment evolutions under Z1 be mean indepen-
dent of Z2, conditional on Z1. de Chaisemartin (2010) and Hudson et al. (2017) consider IV-DID
estimands and also introduce “reduced-form” and “first-stage” parallel trends assumptions.

Assumption 10 (Monotonicity) For all (z, z′) ∈ Z2
2 , z ≥ z′ ⇒ D2(z) ≥ D2(z′).

Assumption 10 is a monotonicity assumption similar to that in Imbens and Angrist (1994). It
requires that increasing the period-two instrument weakly increases the period-two treatment.

Assumption 11 (Bounded instrument, Lipschitz and bounded reduced-form potential outcomes
and potential treatments)

1. Z1 and Z2 are bounded subsets of R.

2. For all t ∈ {1, 2} and for all (z, z′) ∈ Z2
t , there is a random variable Y ≥ 0 such that

|Yt(Dt(z)) − Yt(Dt(z′))| ≤ Y |z − z′|, with sup(z1,z2)∈Supp(Z1,Z2) E[Y |Z1 = z1, Z2 = z2] < ∞.
5Note that with our notation where potential outcomes do not depend on z, we also implicitly impose the

usual exclusion restriction.
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3. For all t ∈ {1, 2} and for all (z, z′) ∈ Z2
t , there is a random variable D ≥ 0 such that

|Dt(z) −Dt(z′)| ≤ D|z − z′|, with sup(z1,z2)∈Supp(Z1,Z2) E[D|Z1 = z1, Z2 = z2] < ∞.

Assumption 11 is an adaptation of Assumption 2 to the IV setting we consider in this section.

Assumption 12 (iid sample) We observe (Yi,1, Yi,2, Di,1, Di,2, Zi,1, Zi,2)1≤i≤n, that are indepen-
dent and identically distributed with the same probability distribution as (Y1, Y2, D1, D2, Z1, Z2).

5.2 Target parameter

In this section, our target parameter is

δIV :=E
(

|D2(Z2) −D2(Z1)|
E(|D2(Z2) −D2(Z1)||SC = 1) × Y2(D2(Z2)) − Y2(D2(Z1))

D2(Z2) −D2(Z1)

∣∣∣∣∣SC = 1
)
.

δIV is a weighted average of the slopes of compliers-switchers’ period-two potential outcome
functions, from their period-two treatment under their period-one instrument, to their period-
two treatment under their period-two instrument. Slopes receive a weight proportional to the
absolute value of compliers-switchers’ treatment response to the instrument change. δIV is just
equal to the reduced-form WAOSS effect of the instrument on the outcome, divided by the
first-stage WAOSS effect of the instrument on the treatment. Hereafter, we refer to δIV as the
IV-WAOSS. With a binary instrument, such that Z1 = 0 and Z2 ∈ {0, 1}, our IV-WAOSS
effect coincides with that identified in Corollary 2 of Angrist et al. (2000), in a cross-sectional
IV model. We could also consider a reduced-form AOSS divided by a first-stage AOSS. The
resulting target parameter is a weighted average of the slopes Y2(D2(Z2))−Y2(D2(Z1))

D2(Z2)−D2(Z1) , with weights
proportional to D2(Z2)−D2(Z1)

Z2−Z1
. It may be more natural to weight compliers-switchers’ slopes by

the absolute value of their first-stage response than by the slope of their first-stage response.

5.3 Identification

Let SI = 1{Z2 − Z1 ̸= 0}, SI
+ = 1{Z2 − Z1 > 0}, and SI

− = 1{Z2 − Z1 < 0}.

Assumption 13 (Support conditions for IV-WAOSS identification)

1. 0 < P (SI
+ = 1), and 0 < P (SI

+ = 1|Z1) implies that 0 < P (SI = 0|Z1).

2. 0 < P (SI
− = 1), and 0 < P (SI

− = 1|Z1) implies that 0 < P (SI = 0|Z1).
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Theorem 6 If Assumptions 9-11 and 13 hold,

δIV =
E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, SI = 0))] (13)

=
E [sgn(∆Z)∆Y ] − E

[
∆Y P (SI

+=1|Z1)−P (SI
−=1|Z1)

P (SI=0|Z1) P (SI = 0)
∣∣∣∣SI = 0

]
E [sgn(∆Z)∆D] − E

[
∆DP (SI

+=1|Z1)−P (SI
−=1|Z1)

P (SI=0|Z1) P (SI = 0)
∣∣∣∣SI = 0

] . (14)

The regression-based (resp. propensity-score-based) estimand identifying δIV is just equal to the
regression-based (resp. propensity-score-based) estimand identifying the reduced-form WAOSS
effect of the instrument on the outcome, divided by the regression-based (resp. propensity-score-
based) estimand identifying the first-stage WAOSS effect.

5.4 Estimation and inference

Let

δ̂r
IV =

1
n

∑n
i=1 sgn(∆Zi)

(
∆Yi − Ê(∆Y |Z1 = Zi,1, S

I = 0)
)

1
n

∑n
i=1 sgn(∆Zi)

(
∆Di − Ê(∆D|Z1 = Zi,1, SI = 0)

) , (15)

where Ê(∆Y |Z1, S
I = 0) and Ê(∆D|Z1, S

I = 0) are series estimators of E(∆Y |Z1, S
I = 0) and

E(∆D|Z1, S
I = 0) defined analogously to the series estimator in Section 3.3.

Let nI
s = #{i : SI

i = 1}, and let

δ̂ps
IV =

1
n

∑n
i=1 sgn(∆Zi)∆Yi − 1

n−nI
s

∑
i:SI

i =0 ∆Yi
P̂ (SI

+=1|Z1=Zi1)−P̂ (SI
−=1|Z1=Zi1)

P̂ (SI=0|Z1=Zi1)
P̂ (SI = 0)

1
n

∑n
i=1 sgn(∆Zi)∆Di − 1

n−nI
s

∑
i:SI

i =0 ∆Di
P̂ (SI

+=1|Z1=Zi1)−P̂ (SI
−=1|Z1=Zi1)

P̂ (SI=0|Z1=Zi1)
P̂ (SI = 0)

, (16)

where P̂ (SI = 0) = (n − nI
s)/n, and P̂ (SI

+ = 1|Z1) (resp. P̂ (SI
− = 1|Z1), P̂ (SI = 0|Z1)) is a

series logistic regression estimator of P (SI
+ = 1|Z1) (resp. P (SI

− = 1|Z1), P (SI = 0|Z1)) defined
analogously to the series logistic regression estimators in Section 4.3.

For any variable X, let

δX = E
[
sgn(∆Z)

(
∆X − E(∆X|Z1, S

I = 0)
)]

ψX = 1
E(|∆Z|)

{(
SI

+ − SI
− − E(SI

+ − SI
−|Z1)

(1 − SI)
E(1 − SI |Z1)

)

× (∆X − E(∆X|D1, S
I = 0)) − δX |∆Z|

}
.

Then, let

ψIV = ψY − δIV ψD

δD

.
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Under technical conditions similar to those in Assumptions 6 and 8, one can show that
√
n
(
δ̂r

IV − δIV

)
d−→ N (0, V (ψIV )),

√
n
(
δ̂ps

IV − δIV

)
d−→ N (0, V (ψIV )).

6 Extensions

In this section, we return to the case where the treatment, rather than an instrument, satisfies
a parallel-trends condition. Combining the extensions below with the IV case is possible.

6.1 Discrete treatments

While in this paper we focus on continuous treatments, our results can also be applied to discrete
treatments. In Section 4 of their Web Appendix, de Chaisemartin and D’Haultfœuille (2020)
already propose a DID estimator of the effect of a discrete treatment. The plug-in estimator of
δ2 one can form following Theorem 4 and using simple averages to estimate the non-parametric
regressions or the propensity scores is numerically equivalent to the estimator therein. This paper
still makes two contributions relative to de Chaisemartin and D’Haultfœuille (2020) when the
treatment is discrete. First, the estimator based on Theorem 1 was not proposed therein. Second,
with a discrete treatment taking a large number of values, the estimator in de Chaisemartin and
D’Haultfœuille (2020) may not be applicable as it requires finding switchers and stayers with
the exact same period-one treatment, which may not always be feasible. Instead, one can use
the estimators proposed in this paper.

6.2 More than two time periods

In this section, we assume the representative unit is observed at T > 2 time periods. Let
(D1, ..., DT ) denote the unit’s treatments and Dt = Supp(Dt) for all t ∈ {1, ..., T}. For any
t ∈ {1, ..., T}, and for any d ∈ Dt let Yt(d) denote the unit’s potential outcome at period t

with treatment d. Finally, let Yt denote their observed outcome at t. For any t ∈ {2, ..., T}, let
St = 1{Dt ̸= Dt−1} be an indicator equal to 1 if the unit’s treatment switches from period t− 1
to t. Let also S+,t = 1{Dt > Dt−1} and S−,t = 1{Dt < Dt−1}. We assume that the assumptions
made in the paper, rather than just holding for t = 1 and t = 2, actually hold for all pairs of
consecutive time periods (t− 1, t). For instance, we replace Assumption 1 by:

Assumption 14 (Parallel trends) For all t ≥ 2, for all d ∈ Dt−1, E(∆Yt(d)|Dt−1 = d,Dt) =
E(∆Yt(d)|Dt−1 = d).
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To preserve space, we do not restate our other assumptions with more than two periods.

Let

δ1,t = E

(
Yt(Dt) − Yt(Dt−1)

Dt −Dt−1

∣∣∣∣∣St = 1
)
,

δ2,t = E (sgn(Dt −Dt−1)(Yt(Dt) − Yt(Dt−1)))
E(|Dt −Dt−1|)

.

Let

δT ≥3
1 =

T∑
t=2

P (St = 1)∑T
k=2 P (Sk = 1)

δ1,t,

δT ≥3
2 =

T∑
t=2

E(|∆Dt|)∑T
k=2 E(|∆Dk|)

δ2,t

be generalizations of the AOSS and WAOSS effects to applications with more than two periods.
Note that in line with the spirit of the two effects, we propose different weights to aggregate the
AOSS and WAOSS across time periods. For the AOSS, the weights are just proportional to the
proportion of switchers between t − 1 and t. For the WAOSS, the weights are proportional to
the average absolute value of the treatment switch from t− 1 to t.

Theorem 7 If Assumption 14 and generalizations of Assumptions 2-5 to more than two periods
hold,

δT ≥3
1 =

T∑
t=2

P (St = 1)∑T
k=2 P (Sk = 1)

E

(
∆Yt − E(∆Yt|Dt−1, St = 0)

∆Dt

∣∣∣∣∣St = 1
)
.

Theorem 8 If Assumption 14 and generalizations of Assumptions 2 and 7 to more than two
periods hold,

δT ≥3
2 =

T∑
t=2

E(|∆Dt|)∑T
k=2 E(|∆Dk|)

E (sgn(∆Dt) (∆Yt − E(∆Yt|Dt−1, St = 0)))
E(|∆Dt|)

=
T∑

t=2

E(|∆Dt|)∑T
k=2 E(|∆Dk|)

E [sgn(∆Dt)∆Yt] − E
[
∆Yt

P (S+,t=1|Dt−1)−P (S−,t=1|Dt−1)
P (St=0|Dt−1) P (St = 0)

∣∣∣St = 0
]

E(|∆Dt|)
.

Theorems 7 and 8 are straightforward generalizations of Theorems 1 and 4 to settings with more
than two time periods.

Let

ψ1,t = 1
E(St)

{(
St

∆Dt
− E

(
St

∆Dt

∣∣∣∣Dt−1

) (1 − St)
E[1 − St|Dt−1]

)
[∆Yt − E(∆Yt|Dt−1, St = 0)] − δ1,tSt

}
,

ψ2,t = 1
E(|∆Dt|)

{(
S+,t − S−,t − E(S+,t − S−,t|Dt−1) (1 − St)

E(1 − St|Dt−1)

)
(∆Yt − E(∆Yt|Dt−1, St = 0)) − δ2,t|∆Dt|

}
.
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After some algebra, one can show that the influence function of the AOSS estimator with is
several periods is

ψT ≥3
1 :=

∑T
t=2(P (St = 1)ψ1,t + (δ1,t − δT ≥3

1 )(St − P (St = 1)))∑T
t=2 P (St = 1)

, (17)

while the influence function of the WAOSS estimators with several periods is

ψT ≥3
2 :=

∑T
t=2 E(|∆Dt|)ψ2,t + (δ2,t − δT ≥3

2 )(|∆Dt| − E(|∆Dt|))∑T
t=2 E(|∆Dt|)

. (18)

Importantly, those influence functions allow the unit’s treatments and outcomes to be arbitrarily
serially correlated.

6.3 Testing for pre-trends

With several time periods, one can test the following condition, which is closely related to
Assumption 14:

Assumption 15 (Testable parallel trends) For all t ≥ 2, t ≤ T−1, for all d ∈ Dt−1, E(∆Yt(d)|Dt−1 =
d,Dt, Dt+1) = E(∆Yt(d)|Dt−1 = d).

To test that condition, one can compute a placebo version of the estimators described in the
previous subsection, replacing ∆Yt by ∆Yt−1, and restricting the sample, for each pair of con-
secutive time periods (t− 1, t), to units whose treatment did not change between t− 2 and t− 1.
Thus, the placebo compares the average ∆Yt−1 of the t−1-to-t switchers and stayers, restricting
attention to t− 2-to-t− 1 stayers.

7 Application

Data and research questions. We use the yearly 1966-to-2008 panel dataset of Li et al.
(2014), covering 48 US states (Alaska and Hawaii are excluded). For each state×year cell (i, t),
the data contains Zi,t, the total (state plus federal) gasoline tax in cents per gallon, Di,t, the
log tax-inclusive price of gasoline, and Yi,t, the log gasoline consumption per adult. Our goal
is to estimate the effect of gasoline taxes on gasoline consumption and prices, and to estimate
the price-elasticity of gasoline consumption, using taxes as an instrument. Instead, Li et al.
(2014) jointly estimate the effect of gasoline taxes and tax-exclusive prices on consumption,
using a TWFE regression with two treatments. Between each pair of consecutive periods, the
tax-exclusive price changes in all states, so this treatment does not have stayers and its effect
cannot be estimated using the estimators proposed in this paper. Thus, our estimates cannot
be compared to those of Li et al. (2014).
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Switching cells, and how they compare to the entire sample. Let S be the set of
switching (i, t) cells such that Zi,t ̸= Zi,t−1 but Zi′,t = Zi′,t−1 for some i′. The second condition
drops from the estimation seven pairs of consecutive time periods between which the federal
gasoline tax changed, thus implying that all states experienced a change of their tax. S includes
384 cells, so effects of taxes on gasoline prices and consumptions can be estimated for 19% of the
2,016 state×year cells for which Zi,t − Zi,t−1 can be computed. Table 1 below compares some
observable characteristics of switchers and stayers. Switchers seem slightly over-represented in
the later years of the panel: t is on average 2.5 years larger for switchers than for stayers, and the
difference is significant. On the other hand, switchers are not more populated than stayers, and
their gasoline consumption and gasoline price in 1966 are not significantly different from that of
stayers. Thus, there is no strong indication that the cells in S are a very selected subgroup.

Table 1: Comparing switchers and stayers

Dependent Variables: t Adult Population log(quantity)1966 log(price)1966

Constant 1,986.7 3,691,608.0 -0.5161 3.471
(0.2739) (577,164.0) (0.0210) (0.0054)

1{Zi,t ̸= Zi,t−1} 2.481 39,588.0 -0.0099 0.0014
(0.7519) (320,342.1) (0.0096) (0.0029)

N 2,016 2,016 2,016 2,016

Notes: The table show the results of regressions of some dependent variables on a constant and an indicator for
switching cells. The standard errors shown in parentheses are clustered at the state level.

Distribution of taxes. As an example, the top panel of Figure 1 below shows the distribution
of Zg,1987 for 1987-to-1988 stayers, while the bottom panel shows the distribution for 1987-to-
1988 switchers. The figure shows that there are many values of Zg,1987 such that only one or
two states have that value, so Zg,1987 is close to being continuously distributed. Moreover, all
switchers g are such that

min
g′:Zg′,1988=Zg′,1987

Zg′,1987 ≤ Zg,1987 ≤ max
g′:Zg′,1988=Zg′,1988

Zg′,1987.

Thus, Assumption 4 seems to hold for this pair of years. (1987, 1988) is not atypical. While
Zi,t varies less across states in the first years of the panel, there are many other years where
Zi,t is close to being continuously distributed. Similarly, almost 95% of cells in S are such that
ming′:Zi′,t=Zi′,t−1 Zi′,t−1 ≤ Zi,t−1 ≤ maxg′:Zi′,t=Zi′,t−1 Zi′,t−1. Dropping the few cells that do not
satisfy this condition barely changes the results presented below.
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Figure 1: Gasoline tax in 1987 among 1987-to-1988 switchers and stayers

Distribution of tax changes. Figure 2 below shows the distribution of Zi,t − Zi,t−1 for the
384 cells in S. The majority experience an increase in their taxes, but 38 cells experience a
decrease. The average value of |Zi,t −Zi,t−1| is equal to 1.61 cents, while prior to the tax change,
switchers’ average gasoline price is equal to 112 cents: our estimators leverage small changes
in taxes relative to gasoline prices. Finally, min(i,t)∈S |Zi,t − Zi,t−1| = 0.05 : some switchers
experience a very small change in their taxes. Their slope receives a weight equal to 1/384 in
the AOSS estimators, and a weight 32.2 (1.61/0.05) times smaller in the WAOSS estimators.
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Figure 2: Distribution of tax changes between consecutive periods

Reduced-form and first-stage AOSS and WAOSS estimates. Columns (1) and (3) of
Table 2 below show the AOSS and doubly-robust WAOSS estimates of the reduced-form and
first-stage effects of taxes on quantities and prices. First, the estimators are computed using
a polynomial of order 1 in Dt−1 to estimate E(∆Yt|Dt−1, St = 0) and the propensity scores
P (S+,t = 1|Dt−1), P (S−,t = 1|Dt−1), and P (St = 0|Dt−1). Second, as a robustness check, the
estimators are computed using a polynomial of order 2 in those estimations. With 48 states, and
only 20 to 30 stayers for many pairs of consecutive time periods, fitting higher order polynomials
could lead to overfitting. Columns (2) and (4) show standard errors clustered at the state level,
computed following (17) and (18). Column (5) shows the p-value of a test that the AOSS and
WAOSS effects are equal. All estimations use 1632 (48× 35) first-difference observations: 7
periods have to be excluded as they do not have stayers. In Panel A, the AOSS estimates
indicate that increasing gasoline tax by 1 cent decreases quantities consumed by 0.5-0.6 percent
on average for the switchers. That effect is significant at the 5% level when one uses linear
models to estimate the aforementioned conditional expectations, and at the 10% level when one
uses quadratic models. The WAOSS estimates are slightly lower than, but close to, the AOSS
estimates. As predicted by Proposition 1, the standard errors of the WAOSS estimators are
around 2.5 times smaller than that of the AOSS estimators. Equality tests that the AOSS and
WAOSS effects are equal are not rejected, thus suggesting that (4) may hold in this application.
At least, the correlation between switchers’ tax changes and their slopes is not large enough to
generate a detectable difference between the two parameters. In Panel B, the AOSS estimates of
the first-stage effect are insignificant. The WAOSS estimates are significant, and they indicate
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that if gasoline tax increases by 1 cent on average, prices increase by around 0.5 percent on
average for the switchers. Again, the differences between the AOSS and WAOSS effects of taxes
on prices are insignificant.

Table 2: Effects of gasoline tax on quantities consumed and prices

Panel A: Reduced-form effect of taxes on quantities consumed.
AOSS s.e WAOSS s.e. p-value N

(1) (2) (3) (4) (5) (6)
log(quantity) - Linear model -0.0058 0.0028 -0.0039 0.0011 0.381 1632
log(quantity) - Quadratic model -0.0050 0.0028 -0.0038 0.0012 0.581 1632

Panel B: First-stage effect of taxes on quantities consumed.
AOSS s.e WAOSS s.e p-value N

log(price) - Linear model 0.0028 0.0024 0.0054 0.0011 0.188 1632
log(price) - Quadratic model 0.0024 0.0025 0.0050 0.0010 0.199 1632

Notes: All estimators in the table are computed using the data of Li et al. (2014). Columns (1) and (3) show the
AOSS and doubly-robust WAOSS estimates of the reduced-form and first-stage effects of taxes on quantities and
prices. First, the estimators are computed using a polynomial of order 1 in Dt−1 to estimate E(∆Yt|Dt−1, St = 0)
and the propensity scores P (S+,t = 1|Dt−1), P (S−,t = 1|Dt−1), and P (St = 0|Dt−1). Second, the estimators
are computed using a polynomial of order 2 in those estimations. Columns (2) and (4) show estimated standard
errors clustered at the state level and following (17) and (18). Column (5) shows the p-value of a test that the
AOSS and WAOSS effects are equal.

Placebo analysis. Table 3 below shows placebo AOSS and doubly-robust WAOSS estimates
of the reduced-form and first-stage effects. The placebo estimators are analogous to the actual
estimators, but they replace ∆Yt by ∆Yt−1, and they restrict the sample, for each pair of con-
secutive time periods (t − 1, t), to states whose taxes did not change between t − 2 and t − 1.
The placebo WAOSS estimates are small and insignificant, both for quantities and prices. Those
placebos are fairly precisely estimated, and their confidence intervals do not contain the actual
WAOSS estimates. The placebo AOSS estimates are larger for quantities, but they are insignif-
icant, and less precisely estimated. This placebo analysis shows that before switchers change
their gasoline taxes, switchers’ and stayers’ consumption of gasoline and gasoline prices do not
follow detectably different evolutions.
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Table 3: Placebo effects of gasoline tax on quantities consumed and prices

Panel A: Reduced-form placebo effect of taxes on quantities consumed.
AOSS s.e WAOSS s.e N

(1) (2) (3) (4) (5)
log(quantity) - Linear model 0.0038 0.0026 -0.0001 0.0012 1059
log(quantity) - Quadratic model 0.0039 0.0030 -0.0003 0.0012 1059

Panel B: First-stage placebo effect of taxes on prices.
AOSS s.e WAOSS s.e N

(1) (2) (3) (4) (5)
log(price) - Linear model -0.0008 0.0060 0.0015 0.0016 1059
log(price) - Quadratic model -0.0011 0.0060 0.0011 0.0016 1059

Notes: The table shows the placebo AOSS and doubly-robust WAOSS estimates of the reduced-form and first-
stage effects of taxes on quantities and prices. The estimators and their standard errors are computed as the
actual estimators, replacing ∆Yt by ∆Yt−1, and restricting the sample, for each pair of consecutive time periods
(t− 1, t), to states whose taxes did not change between t− 2 and t− 1.

IV-WAOSS estimate of the price-elasticity of gasoline consumption. The first two
lines of Table 4 show doubly-robust IV-WAOSS estimates of the price-elasticity of gasoline
consumption. The third line shows a 2SLS-TWFE estimator, computed via a 2SLS regression
of Yi,t on Di,t and state and year fixed effects, using Zi,t as the instrument. As the instrument’s
first stage is not very strong and the sample effectively only has 48 observations, asymptotic
approximations may not be reliable for inference. In line with that conjecture, we find that
the bootstrap distributions of the three estimators in Table 4 are non-normal, with some very
large outliers. Therefore, we use percentile bootstrap for inference, clustering the bootstrap at
the state level. Reassuringly, these confidence intervals have nominal coverage in simulations
taylored to our application.6 The IV-WAOSS estimates are negative, significant, and larger
than -1, though their confidence intervals contain -1. The 2SLS-TWFE is 42% larger in absolute
value, though Column (3) of the table shows that the IV-WAOSS and 2SLS-TWFE estimators
do not significantly differ. Interestingly, the confidence interval attached to the 2SLS-TWFE

6Here is the DGP used in our simulations. We estimate TWFE regressions of Yi,t on state and year fixed effects
and Zi,t, and ofDi,t on state and year fixed effects and Zi,t. We let γ̂Y

i +λ̂Y
t +β̂Y Zi,t+ϵYi,t and γ̂D

i +λ̂D
t +β̂DZi,t+ϵDi,t

denote the resulting regression decompositions. In each simulation, the simulated instrument is just the actual
instrument, while the simulated outcomes and treatments are respectively equal to Y s

i,t = γ̂Y
i + λ̂Y

t + β̂Y Zi,t +ϵY,s
i,t ,

and Ds
i,t = γ̂D

i + λ̂D
t + β̂DZi,t + ϵD,s

i,t , where the vector of simulated residuals (ϵY,s
g,1 , ..., ϵ

Y,s
g,T , ϵ

D,s
g,1 , ..., ϵ

D,s
g,T ) is drawn

at random and with replacement from the estimated vectors of residuals ((ϵYg′,1, ..., ϵ
Y
g′,T , ϵ

D
g′,1, ..., ϵ

D
g′,T ))g′∈{1,...,G}.

Thus, the first-stage and reduced-form effects, the correlation between the reduced-form and first-stage residuals,
and the residuals’ serial correlation are the same as in the sample.
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estimator is about 27% wider than that of the IV-WAOSS estimators, thus showing that using
a more robust estimator does not always come with a precision cost.

Table 4: IV estimators of the price-elasticity of gasoline consumption

Estimator 95% CI P-value N
(1) (2) (3) (4)

IV-WAOSS - Linear Model -0.726 [-1.349,-0.328] 0.358 1632
IV-WAOSS - Quadratic Model -0.761 [-1.566,-0.068] 0.394 1632
2SLS-TWFE -1.084 [-2.015,-0.502] 1632

Notes: The table shows the doubly-robust IV-WAOSS and 2SLS-TWFE estimates of the price-elasticity of
gasoline consumption, computed using the data of Li et al. (2014). Percentile bootstrap confidence intervals
are shown in Column (2). They are computed with 500 bootstrap replications, clustered at the state level. The
p-value of an equality test of the IV-WAOSS and 2SLS-TWFE estimators, also computed by percentile bootstrap,
is shown in Column (3).

8 Conclusion

We propose new difference-in-difference (DID) estimators for continuous treatments. We assume
that between pairs of consecutive periods, the treatment of some units, the switchers, changes,
while the treatment of other units, the stayers, does not change. We propose a parallel trends
assumption on the outcome evolution of switchers and stayers with the same baseline treatment.
Under that assumption, two target parameters can be estimated. Our first target is the average
slope of switchers’ period-two potential outcome function, from their period-one to their period-
two treatment, referred to as the AOSS. Our second target is a weighted average of switchers’
slopes, where switchers receive a weight proportional to the absolute value of their treatment
change, referred to as the WAOSS. Economically, the AOSS and WAOSS serve different purposes,
so neither parameter dominates the other. On the other hand, when it comes to estimation,
the WAOSS unambiguously dominates the AOSS. First, it can be estimated at the parametric
rate even if units can experience an arbitrarily small treatment change. Second, under some
conditions, its asymptotic variance is strictly lower than that of the AOSS estimator. Third,
unlike the AOSS, it is amenable to doubly-robust estimation. In our application, we use US-
state-level panel data to estimate the effect of gasoline taxes on gasoline consumption. The
standard error of the WAOSS estimator is almost three times smaller than that of the AOSS
estimator, and the two estimates are close. Thus, even if one were interested in inferring the effect
of other tax changes than those observed in the data, a policy question for which the AOSS is a
more relevant target, a bias-variance trade-off may actually suggest using the WAOSS estimator.
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9 Proofs

Hereafter, Supp(X) denotes the support of X. Note that under Assumption 2, one can show
that for all (t, t′) ∈ {0, 1}2, E(Yt(Dt′)) exists.

9.1 Theorem 1

The result is just a special case of Theorem 2, under Assumption 5 □

9.2 Theorem 2

First, observe that the sets {Sη = 1} are decreasing for the inclusion and {S = 1} = ∪η>0{Sη =
1}. Then, by continuity of probability measures,

lim
η↓0

P (Sη = 1) = P (S = 1) > 0, (19)

where the inequality follows by Assumption 4. Thus, there exists η > 0 such that for all
η ∈ (0, η), P (Sη = 1) > 0. Hereafter, we assume that η ∈ (0, η).

We have Supp(D1|Sη = 1) ⊆ Supp(D1|S = 1) and by Assumption 4, Supp(D1|S = 1) ⊆
Supp(D1|S = 0). Thus, for all (d1, d2) ∈ Supp(D1, D2|Sη = 1), d1 ∈ Supp(D1|S = 0), so
E(Y2(d1) − Y1(d1)|D1 = d1, S = 0) = E(Y2(d1) − Y1(d1)|D1 = d1, D2 = d1) is well-defined.
Moreover, for almost all such (d1, d2),

E(Y2(d1) − Y1(d1)|D1 = d1, D2 = d2) =E(Y2(d1) − Y1(d1)|D1 = d1, D2 = d1)
=E(∆Y |D1 = d1, S = 0), (20)

where the first equality follows from Assumption 1. Now, by Point 2 of Assumption 2, [Y2(D2)−
Y2(D1)]/∆D admits an expectation. Moreover,

E

(
Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣Sη = 1
)

=E
(
E(Y2(D2) − Y1(D1)|D1, D2) − E(Y2(D1) − Y1(D1)|D1, D2)

∆D

∣∣∣∣∣Sη = 1
)

=E
(
E(∆Y |D1, D2) − E(∆Y |D1, S = 0)

∆D

∣∣∣∣∣Sη = 1
)

=E
(

∆Y − E(∆Y |D1, S = 0)
∆D

∣∣∣∣∣Sη = 1
)
, (21)

where the first equality follows from the law of iterated expectations, the second follows from
(20), and the third again by the law of iterated expectations. Next,

δ1 = Pr(Sη = 1|S = 1)E
[
Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣Sη = 1
]

+ E

[
(1 − Sη)Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣S = 1
]
.
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Moreover,∣∣∣∣∣E
[
(1 − Sη)Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣S = 1
]∣∣∣∣∣ ≤ E

[
(1 − Sη)

∣∣∣∣∣Y2(D2) − Y2(D1)
∆D

∣∣∣∣∣
∣∣∣∣∣S = 1

]
≤ E

[
(1 − Sη)Y |S = 1

]
,

where the second inequality follows by Assumption 2. Now, by (19) again, limη↓0(1 − Sη)Y = 0
a.s. Moreover, (1 − Sη)Y ≤ Y with E[Y |S = 1] < ∞. Then, by the dominated convergence
theorem,

lim
η↓0

E

[
(1 − Sη)Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣S = 1
]

= 0.

We finally obtain

δ1 = lim
η↓0

E

[
Y2(D2) − Y2(D1)

∆D

∣∣∣∣∣Sη = 1
]
. (22)

The result follows by combining (21) and (22) □

9.3 Theorem 3

Let ∆Y = Y2 − Y1, ∆D = D2 −D1, µ1(D1) = E[(1 − S)Y |D1], µ2(D1) = E[1 − S|D1]. In what
follows we let µ(D1) = (µ1(D1), µ2(D1))′. From Theorem 1, the parameter δ1 is characterized
by the condition:

0 = E

[
S

∆D

(
∆Y − δ1∆D − µ1(D1)

µ2(D1)

)]
Define:

g(Z, δ, µ) = S

∆D

(
∆Y − µ1(D1)

µ2(D2)

)
− Sδ1

where Z = (Y1, Y2, D1, D2). Also define:

L(Z, µ, δ1, µ̃) = − S

∆D · 1
µ̃2(D1)

(
µ1(D1) − µ̃1(D1)

µ̃2(D1)
µ2(D1)

)

We verify conditions 6.1 to 6.3, 5.1(i) and 6.4(ii) to 6.6 in Newey (1994). Following his notation,
we let µ0 = (µ10, µ20)′ and δ10 represent the true parameters, and g(Z, µ) = g(Z, δ10, µ).

Step 1. We verify condition 6.1. First, since S is binary E[(S − E[S|D1])2|D1] = V [S|D1] ≤
1/4. On the other hand, E[((1 − S)∆Y − E[(1 − S)∆Y |D1])2|D1] ≤ E [∆Y 2|D1] < ∞ by part
2 of Assumption 6. Thus, condition 6.1 holds.
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Step 2. We verify condition 6.2. Since pK(d1) is a power series, the support of D1 is compact
and the density of D1 is uniformly bounded below, by Lemma A.15 in Newey (1995) for each K
there exists a constant nonsingular matrix AK such that for PK(d1) = AKp

K(d1), the smallest
eigenvalue of E[PK(D1)PK(D1)′] is bounded away from zero uniformly over K, and PK(D1) is
a subvector of PK+1(D1). Since the series-based propensity scores estimators are invariant to
nonsingular linear transformations, we do not need to distinguish between PK(d1) and pK(d1)
and thus conditions 6.2(i) and 6.2(ii) are satisfied. Finally, because p1K(d1) ≡ 1 for all K, for
a vector γ̃ = (1, 0, 0, . . . , 0) we have that γ̃′pk(d1) = γ̃1 ̸= 0 for all d1. Since AK is nonsingular,
letting γ = A−1

K
′
γ̃, γ′P k(d1) = γ̃′A−1

K PK(d1) is a non-zero constant for all d1 and thus condition
6.2(iii) holds.

Step 3. We verify condition 6.3 for d = 0. Since pK(d1) is a power series, the support of D1

is compact and the functions to be estimated have 4 continuous derivatives, by Lemma A.12 in
Newey (1995) there is a constant C > 0 such that there is π with

∥∥∥µ− (pK)′π
∥∥∥ ≤ CK−α, where

in our case α = s/r = 4 since the dimension of the covariates is 1 and the unknown functions
are 4 times continuously differentiable. Thus, condition 6.3 holds.

Step 4. We verify condition 5.1(i). By part 3 of Assumption 6, µ20(D1) = E[1 − S|D1] = 1 −
E[S|D1] ≥ 1 − cM for some constant cM>0. Let C = 1 − cM . For µ such that ∥µ− µ0∥∞ < C/2,

|g(Z, µ) − g(Z, µ0) − L(Z, µ− µ0, δ10, µ0)|

=
∣∣∣∣ S∆D

∣∣∣∣
∣∣∣∣∣µ1(D1)
µ2(D1)

− µ10(D1)
µ20(D1)

− 1
µ20(D1)

(
µ1(D1) − µ10(D1) − µ10(D1)

µ20(D1)
(µ2(D1) − µ20(D1))

)∣∣∣∣∣
≤ 1
c

∣∣∣∣∣µ1(D1)
µ2(D1)

− µ10(D1)
µ20(D1)

− 1
µ20(D1)

(
µ1(D1) − µ10(D1) − µ10(D1)

µ20(D1)
(µ2(D1) − µ20(D1))

)∣∣∣∣∣
≤ 1
c

· 2 (1 + |µ10(D1)| / |µ20(D1)|)
C2 max {|µ1(D1) − µ10(D1)| , |µ2(D1) − µ20(D1)|}2

≤ 1
c

· 2 (1 + |µ10(D1)| / |µ20(D1)|)
C2 ∥µ− µ0∥2

∞

where the first inequality follows from Assumption 5 and the second inequality follows from
Lemma S3 in the Web Appendix of de Chaisemartin and D’Haultfœuille (2018). Thus, condition
5.1(i) holds.

Step 5. We verify condition 6.4(ii). First, E[(1 + |µ10(D1)| / |µ20(D1)|)2] < ∞. For power
series, by Lemma A.15 in Newey (1995), ζd(K) = sup|λ|=d,x∈I

∥∥∥∂λpK(x)
∥∥∥ ≤ CK1+2d so setting

d = 0,

ζ0(K)
(
(K/n)1/2 +K−α

)
≤ CK

(
(K/n)1/2 +K−α

)
= C

√K3

n
+K1−α

 → 0
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since α = 4 > 1/2, K7/n → 0 and K → ∞. Finally,

√
nζ0(K)2

(
K

n
+K−2α

)
≤ C2√nK2

(
K

n
+K−2α

)
= C

√K6

n
+
√

n

K4α−4

 → 0

since K7/n → 0 and for α = 4, K4α−4/n = K12/n → ∞. Hence condition 6.4(ii) holds.

Step 6. We verify condition 6.5 for d = 1 and where |µ|d = sup|λ|≤d,x∈I

∥∥∥∂λµ(x)
∥∥∥. Since

E[(1 + |µ10(D1)| / |µ20(D1)|)2] < ∞,

|L(Z, µ, δ10, µ0)| =
∣∣∣∣∣ S∆D · 1

µ20(D1)

(
µ1(D1) − µ10(D1)

µ20(D1)
µ2(D1)

)∣∣∣∣∣
≤ 1
c(1 − cM)

(
1 +

∣∣∣∣∣µ10(D1)
µ20(D1)

∣∣∣∣∣
)

|µ|1 .

Next, the same linear transformation of pK as in Step 2, namely PK is, by Lemma A.15 in

Newey (1995), such that
∣∣∣PK

k

∣∣∣
d

≤ CK1/2+2d. As a result,
(∑

k

∣∣∣PK
k

∣∣∣2
1

)1/2
≤ CK1+2d. Then, for

d = 1,
(∑

k

∣∣∣PK
k

∣∣∣2
1

)1/2
√K

n
+K−α

 ≤ CK3

√K
n

+K−α

 = C

√K7

n
+K3−α

 → 0

since K7/n → 0 and K3−α = K−1 → 0 for α = 4. Thus, condition 6.5 holds.

Step 7. We verify condition 6.6. Condition 6.6(i) holds for

δ(D1) = [−E[S/∆D|D1]/µ20(D1)](1,−µ10(D1)/µ20(D1)).

Because the involved functions are continuously differentiable, by Lemma A.12 from Newey
(1995) there exist πK and ξK such that:

E
[∥∥∥δ(D1) − ξKp

K(D1)
∥∥∥2
]

≤
∥∥∥δ − ξKp

K
∥∥∥2

∞
≤ CK−2α

and
E
[∥∥∥µ0(D1) − πKp

K(D1)
∥∥∥2
]

≤
∥∥∥µ0 − πKp

K
∥∥∥2

∞
≤ CK−2α

were we recall that α = 4. Thus, the first part of condition 6.6(ii) follows from

nE
[∥∥∥δ(D1) − ξKp

K(D1)
∥∥∥2
]
E
[∥∥∥µ0(D1) − πKp

K(D1)
∥∥∥2
]

≤ CnK−16 → 0.

Next,
ζ0(K)4K

n
≤ C

K5

n
→ 0
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and finally
ζ0(K)2E

[∥∥∥µ0(D1) − πKp
K(D1)

∥∥∥2
]

≤ CK2−2α → 0

and
E
[∥∥∥δ(D1) − ξKp

K(D1)
∥∥∥2
]

≤ CK−2α → 0.

Thus, condition 6.6 holds.
By inspection of the proof of Theorem 6.1 in Newey (1994), condition 6.4(ii) implies 5.1(ii)
therein, conditions 6.5 and 6.2 imply 5.2 therein, and condition 6.6 implies 5.3 therein. Then,
conditions 5.1-5.3 inNewey (1994) hold, and thus by his Lemma 5.1,

1√
n

∑
i

g(Zi, δ10, µ̂) = 1√
n

∑
i

[g(Zi, µ0) + α(Zi)] + oP (1) →d N (0, V )

where

α(Z) = δ(D1)
∆Y (1 − S) − µ10(D1)

(1 − S) − µ20(D1)

 = −
E
(

S
∆D

∣∣∣D1
)

E[1 − S|D1]
(1 − S)(∆Y − µ0(D1))

and V = E
[
(g(Zi, µ0) + α(Zi)) (g(Zi, µ0) + α(Zi))′

]
. Finally note that:

√
n(δ̂1 − δ10) = n∑

i Si

· 1√
n

∑
i

g(Zi, δ10, µ̂) = 1
E[S] · 1√

n

∑
i

[g(Zi, µ0) + α(Zi)] + oP (1)

and the result follows defining ψ1 = [g(Zi, µ0) + α(Zi)]/E[S]. □

9.4 Theorem 4

We only prove the first point, as the proof of the second point is similar and (10)-(11) follow by
combining these two points. Moreover, the proof of (6) is similar to the proof of Theorem 1 so
it is omitted. We thus focus on (7) hereafter.

For all d1 ∈ Supp(D1|S+ = 1), by Point 1 of Assumption 7, d1 ∈ Supp(D1|S = 0). Thus,
E(∆Y |D1 = d1, S = 0) is well-defined. Then, using the same reasoning as that used to show
(20) above, we obtain

E(Y2(d1) − Y1(d1)|D1 = d1, S+ = 1) = E(∆Y |D1 = d1, S = 0).

Now, let Supp(D1|S+ = 1)c be the complement of Supp(D1|S+ = 1). For all d1 ∈ Supp(D1|S =
0) ∩ Supp(D1|S+ = 1)c, P (S+ = 1|D1 = d1) = 0. Then, with the convention that E(∆Y |D1 =
d1, S+ = 1)P (S+ = 1|D1 = d1) = 0,

E(∆Y |D1 = d1, S = 0)P (S+ = 1|D1 = d1)
=E(Y2(d1) − Y1(d1)|D1 = d1, S+ = 1)P (S+ = 1|D1 = d1).
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Combining the two preceding displays implies that for all d1 ∈ Supp(D1|S = 0),

E(∆Y |D1 = d1, S = 0)P (S+ = 1|D1 = d1)
=E(Y2(d1) − Y1(d1)|D1 = d1, S+ = 1)P (S+ = 1|D1 = d1).

Hence, by repeated use of the law of iterated expectation,

E

(
∆Y P (S+ = 1|D1)

P (S = 0|D1)
P (S = 0)
P (S+ = 1)

∣∣∣∣∣S = 0
)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1)P (S+ = 1|D1)

P (S = 0|D1)
P (S = 0)
P (S+ = 1)

∣∣∣∣∣S = 0
)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1)P (S+ = 1|D1)

P (S = 0|D1)
1 − S

P (S+ = 1)

)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1)P (S+ = 1|D1)

P (S+ = 1)

)

=E
(
E[Y2(D1) − Y1(D1)|D1, S+ = 1) S+

P (S+ = 1)

)
=E (Y2(D1) − Y1(D1)|S+ = 1) .

The result follows after some algebra. □

9.5 Theorem 5

We prove the result for the propensity-score-based estimator and drop the “ps” subscript to
reduce notation. Let µ1(d) = E[S+|D1 = d], µ2(d) = E[1 − S|D1 = d], µ3(d) = E[S−|D1 = d]
and µY (D1) = E[∆Y (1 −S)|D1]. The logit series estimators of the unknown functions µj(d) are
given by µ̂j(d) = Λ(PK(d)′π̂j) where Λ(z) = 1/(1 + e−z) is the logit function and

0 =
∑

i

(Sji − Λ(PK(D1i)′π̂j))PK(D1i)

for Sji equal to 1−Si, Si+ or Si−. Under Assumption 8, there exists a constant πj,K that satisfies:∥∥∥∥∥log
(

µj

1 − µj

)
− (PK)′πj,K

∥∥∥∥∥
∞

= O(K−α)

and we let µji,K = Λ(PK(D1i)′πj,K). We suppress the n subscript on K to reduce notation and
let µji := µj(D1i) and µ̂ji := µ̂j(D1i). Under Assumption 8 part 1, Lemma A.15 in Newey (1995)
ensures that the smallest eigenvalue of E[PK(D1)PK(D1)′], is bounded away from zero uniformly
over K. In addition, Cattaneo (2010) shows that under Assumption 8, the multinomial logit
series estimator satisfies:

∥µj,K − µj∥∞ = O(K−α), ∥π̂j − πj,K∥ = OP

√K
n

+K−α+1/2
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and

∥µ̂j − µj∥∞ = OP

ζ(K)
√K

n
+K−α+1/2


where ζ(K) = supd∈I

∥∥∥PK(d)
∥∥∥. Newey (1994) also shows that for orthonormal polynomials, ζ(K)

is bounded above by CK for some constant C, which implies in our case that ∥µ̂j − µj∥∞ =
OP

(
K
(√

K
n

+K−α+1/2
))

. Throughout the proof, we also use the fact that by a second-order
mean value expansion, there exists a π̃j such that:

µ̂ji − µji,K = Λ(PK(D1i)′π̂j) − Λ(PK(D1i)′πj,K)
= Λ̇(PK(D1i)′πj,K)PK(D1i)′(π̂j − πj,K) + Λ̈(PK(D1i)′π̃j)(PK(D1i)′(π̂j − πj,K))2

where both Λ̇(z) and Λ̈(z) are bounded.
We start by considering the δ2+ parameter and omit the “ps” superscript to reduce notation.
Recall that

δ̂2+ = 1∑
i ∆DiSi+

∑
i

{
∆YiSi+ − ∆Yi(1 − Si)

µ̂1i

µ̂2i

}
.

Thus,

√
n(δ̂2+ − δ2+) = 1

E[∆DS+] · 1√
n

∑
i

{
∆YiSi+ − ∆Yi(1 − Si)

µ̂1i

µ̂2i

− δ2+E[∆DS+]
}

+ oP (1).

Define:
Vi = ∆YiSi+ − ∆Yi(1 − Si)

µ̂1i

µ̂2i

− δ2+E[∆DS+].

Let ψ2+,i be the influence function defined in the statement of the theorem. Using the identity:

1
b̂

− 1
b

= − 1
b2 (b̂− b) + 1

b2b̂
(b̂− b)2
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we have, after some rearranging,
1√
n

∑
i

Vi = E[∆DS+] · 1√
n

∑
i

ψ2+,i

− 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ̂1i − µ1i)

+ 1√
n

∑
i

(∆Yi(1 − Si) − µY i)
µ1i

µ2
2i

(µ̂2i − µ2i)

− 1√
n

∑
i

∆Yi(1 − Si)
µ1i

µ2
2iµ̂2i

(µ̂2i − µ2i)2

+ 1√
n

∑
i

∆Yi(1 − Si)
µ2

2i

(µ̂1i − µ1i)(µ̂2i − µ2i)

− 1√
n

∑
i

∆Yi(1 − Si)
µ2

2iµ̂2i

(µ̂1i − µ1i)(µ̂2i − µ2i)2

+ 1√
n

∑
i

µY i

µ2i

(Si+ − µ̂1i)

− 1√
n

∑
i

µYi
µ1i

µ2
2i

(1 − Si − µ̂2i).

which we rewrite as:
1√
n

∑
i

Vi = E[∆DS+] · 1√
n

∑
i

ψ2+,i +
7∑

j=1
Aj,n

where each Aj,n represents one term on the above display. We now bound each one of these
terms.

Term 1. For the first term, we have that:

−A1,n = 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ̂1i − µ1i)

= 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ̂1i − µ1i,K)

+ 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ1i,K − µ1i)

= A11,n + A12,n.

Now, by a second-order mean value expansion,

A11,n = 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̇(PK(D1i)′πj,K)PK(D1i)′(π̂K − πK)

+ 1√
n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̈(PK(D1i)′π̃)(PK(D1i)′(π̂K − πK))2

= A111,n + A112,n.
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Next note that

|A111,n| ≤ ∥π̂K − πK∥
∥∥∥∥∥ 1√

n

∑
i

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̇(PK(D1i)′πj,K)PK(D1i)′

∥∥∥∥∥ .
Now, ∥π̂K − πK∥ = OP

((√
K/n+K−α+1/2

))
. Let

Ui = (U1
i , ...U

K
i )′ :=

(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
Λ̇(PK(D1i)′πj,K)PK(D1i)′.

We have E[Ui] = E[E[Ui|D1i]] = 0 and

E
[
∥Ui∥2

]
≤E

(∆Yi(1 − Si)
µ2i

− µY i

µ2i

)2 ∥∥∥PK(D1i)
∥∥∥2


≤CE
[∥∥∥PK(D1i)

∥∥∥2
]

=CE
[
trace{PK(D1i)′PK(D1i)}

]
=C × trace

(
E
[
PK(D1i)PK(D1i)′

])
=CK, (23)

since the polynomials can be chosen such that E
[
PK(D1i)PK(D1i)′

]
= IK , see Newey (1997),

page 161. Hence,

E

∥∥∥∥∥ 1√
n

∑
i

Ui

∥∥∥∥∥
2
 =E

 K∑
j=1

(
1√
n

∑
i

U j
i

)2


=
K∑

j=1

1
n

∑
i,i′
E
[
U j

i U
j
i′

]

=
K∑

j=1

1
n

n∑
i=1

E
[
U j2

i

]
=E

[
∥U1∥2

]
.

Therefore, by Markov’s inequality,

A111,n = OP

K1/2

√K
n

+K−α+1/2

 .
Next,

|A112,n| ≤ C
√
n ∥π̂K − πK∥2 1

n

∑
i

∣∣∣∣∣∆Yi(1 − Si)
µ2i

− µY i

µ2i

∣∣∣∣∣ ∥∥∥PK(D1i)
∥∥∥2

= OP

[
√
n
(
K

n
+K−2α+1

)
E

(∣∣∣∣∣∆Yi(1 − Si)
µ2i

− µY i

µ2i

∣∣∣∣∣ ∥∥∥PK(D1i)
∥∥∥2
)]

= OP

(√
nK

(
K

n
+K−2α+1

))
,
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where the first inequality follows by Cauchy-Schwarz inequality, the second by Markov’s inequal-
ity and the third by the same reasoning as to obtain (23). Hence,

A11,n = OP

K1/2

√K
n

+K−α+1/2

+OP

(√
nK

(
K

n
+K−2α+1

))
.

Finally, for A12,n we have that

E

[(
∆Yi(1 − Si)

µ2i

− µY i

µ2i

)
(µ1i,K − µ1i)

∣∣∣∣∣D1

]
= 0

and

E

∥∥∥∥∥
(

∆Yi(1 − Si)
µ2i

− µY i

µ2i

)
(µ1i,K − µ1i)

∥∥∥∥∥
2
 ≤ C ∥µ1,K − µ1∥2

∞ = O(K−2α)

and therefore

A1,n = OP

K1/2

√K
n

+K−α+1/2

+OP

(√
nK

(
K

n
+K−2α+1

))
+OP (K−α).

Term 2. This follows by the same argument as that of Term 1 and we obtain:

A2,n = OP

K1/2

√K
n

+K−α+1/2

+OP

(√
nK

(
K

n
+K−2α+1

))
+OP (K−α).

Term 3. For the third term, since µ2i is uniformly bounded and µ̂2 converges uniformly to µ2,
for n large enough

|A3,n| ≤
√
n ∥µ̂2 − µ2∥2

∞
1
C

1
n

∑
i

|∆Yi(1 − Si)| = OP

(√
nK2

(
K

n
+K−2α+1

))
.

Term 4. For the fourth term,

|A4,n| ≤
√
n ∥µ̂1 − µ1∥∞ ∥µ̂2 − µ2∥∞

1
C

1
n

∑
i

|∆Yi(1 − Si)| = OP

(√
nK2

(
K

n
+K−2α+1

))

Term 5. For the fifth term, since µ2i is uniformly bounded and µ̂2 converges uniformly to µ2,
for n large enough

|A5,n| ≤
√
n ∥µ̂1 − µ1∥∞ ∥µ̂2 − µ2∥2

∞
1
C

1
n

∑
i

|∆Yi(1 − Si)| = OP

(
√
nK3

((
K

n

)3/2
+K−3α+3/2

))
.
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Term 6. For the sixth term, let γ6,K be the population coefficient from a (linear) series ap-
proximation to the function µY (D1)/µ2(D1). Then we have that

A6,n = 1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ̂1i) + 1√

n

∑
i

PK(D1i)′γ6,K(Si+ − µ̂1i)

= 1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ̂1i)

because the last term in the second line equals zero by the first-order conditions of the logit
series estimator. Next, we have that

1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ̂1i) = 1√

n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ1i)

− 1√
n

∑
i

(
µY i

µ2i

− PK(D1i)′γ6,K

)
(µ̂1i − µ1i)

= A61,n + A62,n.

Now, for A61,n, we have that

E

[(
µY i

µ2i

− PK(D1i)′γ6,K

)
(Si+ − µ1i)

∣∣∣∣∣D1

]
= 0

and

E

(Si+ − µ1i)2
∥∥∥∥∥
(
µY i

µ2i

− PK(D1i)′γ6,K

)∥∥∥∥∥
2
 ≤ O(K−2α)

so that
A61,n = OP (K−α).

On the other hand, for A62,n, we have that

|A62,n| ≤
√
n

∥∥∥∥∥µY

µ2
− (PK)′γ6,K

∥∥∥∥∥
∞

∥µ̂1 − µ1∥∞ = OP

√
nK1−α

√K
n

+K−α+1/2


from which

A6,n = OP

√
nK1−α

√K
n

+K−α+1/2

+K−α

 .
Term 7. This follows by the same argument as that of Term 6 and we obtain

A7,n = OP

√
nK1−α

√K
n

+K−α+1/2

+K−α

 .
Collecting all the terms, if follows that under the conditions

K6

n
→ 0, K4α−6

n
→ ∞, α > 3
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we obtain
√
n(δ̂2+ − δ2+) = 1√

n

∑
i

ψ2+,i + oP (1).

Setting α = 4, this implies
K6

n
→ 0, K10

n
→ ∞.

These conditions are satisfied when K = nν for 1/(4α− 6) < ν < 1/6 or in this case 1/10 < ν <

1/6.
By an analogous argument, we can show that under the same conditions

√
n(δ̂2− − δ2−) = 1√

n

∑
i

ψ2−,i + oP (1)

and the result follows by a multivariate CLT. Finally, notice that letting µ1−(d) = E[S−|D1 = d]
and µ̂ji− = µ̂1−(D1i), and using that sgn(∆Di) = Si+ − Si− and |∆Di| = ∆Di(Si+ − Si−), after
some simple manipulations:

δ̂2 = 1∑
i |∆Di|

∑
i

{
∆Yi(Si+ − Si−) − ∆Yi(1 − Si)

(
µ̂1i − µ̂1i−

µ̂2i

)}

which is analogous to δ̂2+ replacing Si+ by (Si+ −Si−) and the denominator by ∑i |∆Di|. Thus,
under the same conditions

√
n(δ̂2 − δ2) = 1√

n

∑
i

ψ2,i + oP (1)

where ψ2,i is defined in the statement of the theorem □

9.6 Proposition 1

If D2 ≥ D1 and ∆D ⊥⊥ D1,

ψ1 = 1
E(S)

{(
S

∆D − E
(
S

∆D

) (1 − S)
E[1 − S]

)
[∆Y − E(∆Y |D1, S = 0)] − δ1S

}
,

ψ2 = 1
E(∆D)

{(
S − E(S) (1 − S)

1 − E(S)

)
× (∆Y − E(∆Y |D1, S = 0)) − δ2∆D

}
.

If (Y2(D2) − Y2(D1))/(D2 − D1) = δ, then δ1 = δ2 = δ, and ∆Y = ∆Y (D1) + ∆Dδ, so after
some algebra the previous display simplifies to

ψ1 = 1
∆D

(
S

E(S) − (1 − S)
E[1 − S]

∆D
E(S)E

(
S

∆D

))
× (∆Y (D1) − E(∆Y (D1)|D1, S = 0)).

ψ2 = 1
E(∆D)

(
S − (1 − S) E(S)

1 − E(S)

)
× (∆Y (D1) − E(∆Y (D1)|D1, S = 0)).
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Then, under Assumption 1,

E(ψ1|D1, D2) = E(ψ2|D1, D2) = 0.

Then, using the law of total variance, the fact that V (∆Y (D1)|D1, D2) = σ2, and some algebra,

V (ψ1) =E(V (ψ1|D1, D2))

=σ2E


 S

∆D
− 1−S

1−E(S)E
(

S
∆D

)
E(S)

2
=σ2

[
E(1/(∆D)2|S = 1)

P (S = 1) + (E(1/∆D|S = 1))2

P (S = 0)

]
,

and

V (ψ2) =E(V (ψ2|D1, D2))

=σ2E


S − (1 − S) E(S)

1−E(S)

E(∆D)

2
=σ2 1

(E(∆D|S = 1))2

[
1

P (S = 1) + 1
P (S = 0)

]
.

The inequality follows from the convexity of x 7→ x2, the convexity of x 7→ 1/x on R+ \ {0} and
∆D|S = 1 ∈ R+ \ {0}, Jensen’s inequality, and x 7→ x2 increasing on R+, which together imply
that

E(1/(∆D)2|S = 1) ≥ (E(1/∆D|S = 1))2 ≥ 1
(E(∆D|S = 1))2 .

Finally, Jensen’s inequality is strict for strictly convex functions, unless the random variable is
actually constant. The last claim of the proposition follows.

9.7 Theorem 6

The parameter δIV can be written as:

δIV = E[sgn(∆Z) (Y2(D2(Z2)) − Y2(D2(Z1))) |SC = 1]
E[|D2(Z2) −D2(Z1)| |SC = 1]

The regression-based estimand is:

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, SI = 0))] .
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Following previous arguments, the conditional expectations are well-defined under Assumption
13. For the denominator,

E
[
sgn(∆Z)

(
∆D − E(∆D|Z1, S

I = 0)
)]

= E [sgn(∆Z) (D2(Z2) −D2(Z1))]

+ E
[
sgn(∆Z)

(
D2(Z1) −D1(Z1) − E(∆D|Z1, S

I = 0)
)]

= E [sgn(∆Z) (D2(Z2) −D2(Z1))]

because

E [sgn(∆Z)
(
D2(Z1) −D1(Z1) − E(∆D|Z1, S

I = 0)
)]

= E
{
E
[
sgn(∆Z)

(
D2(Z1) −D1(Z1) − E(∆D|Z1, S

I = 0)
)

|Z1, Z2
]}

= E
{
sgn(∆Z)

(
E (∆D(Z1)|Z1, Z2) − E(∆D(Z1)|Z1, S

I = 0)
)}

= 0

by Assumption 9. On the other hand,

E [sgn(∆Z) (D2(Z2) −D2(Z1))] = E [sgn(∆Z) (D2(Z2) −D2(Z1)) |D2(Z2) ̸= D2(Z1), Z2 ̸= Z1]
× P (D2(Z2) ̸= D2(Z1), Z2 ̸= Z1)
= E [|D2(Z2) −D2(Z1)| |SC]P (SC)

where the last equality follows from monotonicity (Assumption 10) and using the definition of
switchers-compliers. Next, the numerator is:

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0)
)]

= E
[
sgn(∆Z)

(
Y2(D2(Z1)) − Y1(D1(Z1)) − E(∆Y |Z1, S

I = 0)
)]

= E [sgn(∆Z) (Y2(D2(Z2)) − Y2(D2(Z1)))]

using the parallel trends assumption as before. Then,

E [sgn(∆Z) (Y2(D2(Z2)) − Y2(D2(Z1)))] = E [sgn(∆Z) (Y2(D2(Z2)) − Y2(D2(Z1))) |SC]P (SC)

and thus
E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, SI = 0))] = δIV .

For the propensity-score estimand, notice that

E
[
sgn(∆Z)

(
∆Y − E(∆Y |Z1, S

I = 0)
)]

E [sgn(∆Z) (∆D − E(∆D|Z1, SI = 0))] =
E [sgn(∆Z)∆Y ] − E

[
sgn(∆Z)E(∆Y |Z1, S

I = 0)
]

E [sgn(∆Z)∆D] − E [sgn(∆Z)E(∆D|Z1, SI = 0)]

44

Electronic copy available at: https://ssrn.com/abstract=4011782



and using that sgn(∆Z) = SI
+ − SI

−, by the law of iterated expectations,

E
[
sgn(∆Z)E(∆D|Z1, S

I = 0)
]

= E

[
(SI

+ − SI
−)E

(
∆D(1 − SI)
P (SI = 0|Z1)

∣∣∣∣∣Z1

)]

= E

[
E(SI

+ − SI
−|Z1)E

(
∆D(1 − SI)
P (SI = 0|Z1)

∣∣∣∣∣Z1

)]

= E

[
E

(
∆D(1 − SI)E(SI

+ − SI
−|Z1)

P (SI = 0|Z1)

∣∣∣∣∣Z1

)]

= E

[
∆D(1 − SI)E(SI

+ − SI
−|Z1)

P (SI = 0|Z1)

]

= E

[
∆DE(SI

+ − SI
−|Z1)

P (SI = 0|Z1)
P (SI = 0)

∣∣∣∣∣SI = 0
]

= E

[
∆DP (SI

+ = 1|Z1) − P (SI
− = 1|Z1)

P (SI = 0|Z1)
P (SI = 0)

∣∣∣∣∣SI = 0
]

as required. The same argument replacing ∆D by ∆Y completes the proof □

9.8 Theorem 7

Using the same steps as in the proof of Theorem 1, one can show that for all t ≥ 2,

δ1t = E

(
Yt − Yt−1 − E(Yt − Yt−1|Dt−1, St = 0)

Dt −Dt−1

∣∣∣∣∣St = 1
)
.

This proves the result □

9.9 Theorem 8

The proof is similar to that of Theorem 7, and is therefore omitted.
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