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Abstract

This paper leverages the entry of a high-speed train (HST) system in South Korea as a natural
experiment to establish the causal effect of competition among hospitals on health care quality
and consumer welfare. We implement a difference-in-differences research design that exploits the
differential effect of the HST entry on hospitals based on their distance to train stations. Our
results suggest that increased competition intensity caused by increased hospital substitutability
leads to better quality of clinical care. To evaluate the overall impact of the entry of the HST
on patients welfare, we estimate a structural model of hospital choice, allowing for a flexible
formation of patients’ consideration sets. We find that patients living near an HST station
experience an improvement in welfare from improvements in hospital quality in addition to
reduction in travel time. Patients living further away from HST stations also experience an
improvement in welfare – even though they do not gain from the reduced travel time, these
patients benefit from the improvement in the quality of the hospitals that are located close
to HST stations. We also find that the HST can have a beneficial impact on patients’ health
by facilitating patients’ sorting to better hospitals, even while holding constant the quality of
clinical care.
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1 Introduction

How does competition affect clinical quality in the health care industry? This is an important

question because many countries, including United Kingdom, Netherlands, Belgium, Israel, and

Australia, which historically have been providing healthcare through centralized non-market means

have recently to adopted or are considering market oriented reforms, despite weak evidence on

its effects on patient outcomes. Due to the size and impact of the health care industry on wel-

fare, correctly assessing the impact of competition on health outcomes is of crucial importance for

policymakers.

Assessing the impact of competition on health care is complex due to the fact that competition

in health care markets is based on geography. Hospitals compete in geographical markets because

patients have a strong preference, among other things, for hospitals that are located closed to

their home. Since some geographies are intrinsically more competitive than others, it is difficult

to separate the effect of competition from geographical factors using only cross-sectional analysis.

Therefore, many researchers have used changes in cross-sectional variation in levels of market struc-

ture over time to identify the impact of competition. However, the challenge again lies in the fact

that the market structure is endogenous: quality of incumbent hospitals and potential entrants in

a given geographical region may affect their strategic entry and exit decisions.

To address this issue, more recent papers have been exploiting changes in market structure induced

by health-related policies, which are seen as exogenous shocks that spur competition (Gaynor et al.

2013). Yet when policies themselves are health-related, the analyses can be complicated by the fact

that they may affect the behavior of the agents involved in ways unanticipated by researchers. For

example, the U.K. government mandated in 2006 that patients be offered a choice of five hospitals

when referred to a hospital by their physician. However, there is evidence that not all primary case

physicians thought that patients were able to or wanted to make choices (Gaynor et al. 2013). If

such behavior are not accounted for in the analysis, conclusions may be biased.

In this article we leverage the entry of the high-speed train (henceforth HST) system in South

Korea to examine the effects of competition on the quality of health care. In April 2004, Korea

Train eXpress (KTX) started operating in South Korea, connecting many large and small cities via

high-speed rail system. The An important aspect of the South Korean healthcare industry is that

patients have the full freedom to go to any hospital of their choice with some financial incentives,

and the fee for each medical procedure is fixed by the South Korean National Health Insurance
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(NHI) Corporation. The introduction of the HST represents an exogenous shock to the healthcare

market in that it greatly reduced patients’ travel time, and enabled patients to consider hospitals

that were previously unreachable due to long travel distances, thereby increasing substitutability

between hospitals. According to media reports, the proportion of rural patients choosing the top

four largest hospitals in Seoul increased from 41.2% in 2002 to 48.5% in 2007 as a result of the HST.1

In addition, a survey by Kim et al. (2008) of HST passengers arriving in Seoul by train reports that

36% of passengers had at some point used the HST to seek hospital treatment in Seoul.

The importance of the tradeoff between quality and travel time that patients face has been high-

lighted in Tay (2003). This tradeoff between quality and travel time is what gives hospitals market

power, especially when patients have the full freedom to choose any hospital. The entry of the HST

alleviates the tradeoff between quality and travel time, leading to increased competition between

hospitals. Standard models of hospital non-price competition predict that, conditional on price

being set above the marginal cost, competition becomes intensified with more hospitals and this

leads to higher quality, regardless of their ownership status (public, not-for-profit, for profit). Low

levels of NHI fees have been a subject of recurrent complaint by providers in South Korea, and it is

a well known fact that due to low price margins, attracting many patients is of vital importance for

hospitals in South Korea. 2 In fact, when “Super Rapid Train (SRT)”, a different high-speed rain

system run by a private company, entered in 2016, several major hospitals started operating shuttle

busses to- and from SRT stations to their hospitals.3 Although in 2004 hospitals didn’t respond

with shuttle busses, the entry of the HST facilitates access to patients’ preferred hospitals, implying

that hospitals that were previously competing for patients locally are now competing with those

located further away. In fact, there is an anecdotal evidence suggesting that hospitals responded to

the increased competition caused by the HST: according to one medical personnel, several hospi-

tals in non-Seoul regions started adopting expensive equipment and strengthening their services in

response to the entry of HST. 4

The objectives of this paper are twofold: First, we examine the impact of competition on hospital

quality. Second, we decompose changes in patients’ welfare and health outcomes into those caused
1Source: http://news20.busan.com/controller/newsController.jsp?newsId=20110804000124 (in Korean), accessed

on July 10, 2018.
2Source: https://www.rapportian.com/news/articleView.html?idxno=15659 (in Korean), accessed on April 18,

2022.
3Source: https://www.docdocdoc.co.kr/news/articleView.html?idxno=1043608 (in Korean), accessed on April 18,

2022.
4Source: https://www.donga.com/news/It/article/all/20050323/8172270/1 , accessed on April 18, 2022.
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by patient sorting to better hospitals, and those caused by improvements in hospital quality. To

achieve our first objective, we rely on the fact that the HST stations do not extend to all regions,

making the intensity of the competition induced by the HST to vary depending on the hospital’s

proximity to the nearest train station. We exploit the exogenous variation in hospitals’ proximity

to the HST station to identify the impact of competition on hospital clinical quality, as measured

by 30-day mortality outcomes following patients’ admissions for a surgical procedure.5

We argue that the proximity of a HST station and therefore the impact of competition to any given

hospital is exogenous for several reasons: First, the HST didn’t enter into all the major cities. For

example, the HST did not enter into metropolitan areas such as Ulsan or Incheon, and other cities

such as Pohang, Jeonju, Chuncheon, Cheonju, etc. Second, while it is true that the HST entered

several major, it also entered into many rural regions that are aligned in between the stations

connecting the cities. Finally, even within a given city, there is substantial variation in hospital’s

proximity to a HST station. For example, there is evidence that a few hospitals in Seoul that are

located particularly close to the HST station experienced a disproportionately huge influx of rural

patients post HST compared to other hospitals in Seoul that are located further away from the HST

station.

To achieve our second objective, we develop and estimate a structural model of hospital choice

wherein patients are time-constrained and use the model estimates to perform counterfactuals when

the HST is removed. Specifically, in our counterfactuals, we decompose the effects of the HST on

patient welfare and health outcomes along two dimensions: First, we quantify the changes in welfare

and health outcomes caused by patients sorting themselves to better hospitals via HST, keeping the

quality of care constant. Second, we quantify the changes in welfare and health outcomes caused

by improvement in hospital quality, keeping travel time constant.

In our analysis, we consider all surgeries that were conducted during the period of study and for

which mortality rate can be used as a measure of hospital quality.6However, using raw mortality

rates as a measure of clinical quality is problematic due to patient selection issue: patients’ hospital

choice is non-random. Therefore, to minimize the contamination of hospital quality with patient
5Unlike some papers that only consider in-hospital deaths within 30 days of admission, we consider all deaths

within 30 days of admission, regardless of where the death occurs. This is because regulated prices give hospitals an
incentive to discharge patients prematurely Kosecoff et al. (1990). As pointed out by Gaynor et al. (2013), focusing
only on in-hospitals deaths disregards this damaging response.

6Although ideally we would have wanted to look at patients suffering from one specific illness, or who underwent
one specific type of surgery, this prevents us from doing any meaningful analysis because it leaves us with too few
observations per hospital due to the fact that our data is a 2 percent random sample of the entire population.
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selection, we employ the Bayesian inference method developed by Geweke et al. (2003) to obtain

selection-adjusted measures of clinical quality.

We find that increased competition improves the clinical quality of hospitals, i.e., hospitals facing

greater competition due to their close proximity to train stations experience a greater improvement

in quality compared to hospitals located further away from the train stations. Our counterfactuals

from the structural model shows that patients living close to train stations experience an improve-

ment in welfare due to reduction in travel costs as well as enhanced clinical quality. Patients living

far from HST stations do not benefit in terms of travel costs, but they also experience an increase

in welfare because many of them choose to go to hospitals whose clinical quality were positively

affected by the HST. We further use the model estimates to measure the impact of the entry of the

HST on patient’s health outcomes (i.e., surgery survival) by comparing the number of deaths in

the post-HST period to those in a counterfactual scenario in which the HST is removed. From this

analysis we find that a substantial number of lives can be saved annually with the HST, not only

as a result of improved quality of hospitals, but also as a result of patients’ sorting (due to lower

travel costs) to better hospitals.

Our research contributes to the literature on hospital competition and quality in the health care

industry. The empirical evidence on this topic is mixed. One of the initial studies on competition

in health care markets and health outcomes is by Kessler and McClellan (2000), who examine the

impact of market concentration on hospital quality in the US Medicare program. They find that

higher market concentration leads to significantly higher mortality rates for heart attack patients.

On the other hand, some papers find opposite results. Using similar methods to Kessler and

McClellan (2000), Gowrisankaran and Town (2003) find that mortality rates are higher for Medicare

heart attack and pneumonia patients that are treated in less concentrated markets. This is in

contrast to the classical theoretical literature which predicts that increased competition under fixed

prices results in improved quality. Gowrisankaran and Town (2003) suggest as a possible explanation

for their results that a sufficiently low profit margin on Medicare patients coupled with increased

competition can cause hospitals to focus on more profitable HMO patients at the expense of Medicare

patients. While these papers use the predicted market share based on exogenous characteristics of

the hospitals and patients to solve the endogeneity in market shares, they do not deal with a more

serious problem that the number of hospitals itself may be endogenous due to entry and exits.

Other papers study changes in competition brought by health-related reforms. Propper et al.

(2004) leverage on the 1991 Health Reform in the UK National Health Service, and find that
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the relationship between competition and AMI mortality rates is negative. Propper et al. (2008)

further investigate this policy change and find that increased competition reduces waiting times,

suggesting that hospitals facing more competition cut-on services that affect mortality rates (which

are unobserved, in their setting, by consumers) in order to focus on other activities which are

better observed by health-care buyers. Cooper et al. (2011) and Gaynor et al. (2013) exploit the

2006 English pro-competitive policy shift to study the impact of competition on quality using a

difference-in-differences research design. Both papers find that increased competition improves the

quality of clinical care. Leveraging on the same reform, Gaynor et al. (2016) find coronary artery

bypass graft patients to become more responsive to clinical quality post-reform and hospitals to be

responsive to changes in demand through quality improvements. Moscelli et al. (2021), on the other

hand, find mixed results from the same reform.

Our paper adds to the prior literature by studying the effects of competition following an exogenous

shock which is not related to hospital market structure or any other aspect of healthcare, thus

providing a unique and novel natural-experiment to identify the impact of competition. Another

paper that uses an identification strategy unrelated to aspects of the healthcare market is one by

Bloom et al. (2015) in which the authors exploit the variation in hospital closures driven by the

political process in the U.K. to study the impact of competition on hospital performance. While

Bloom et al. (2015) use cross-sectional data for a single year, our data and setting allows us to not

only leverage the cross-sectional variation in the degree of HST entry across regions, but also allows

us to carry out a pre-post analysis. In addition, we explicitly model patients’ choice sets to take

into account changes in travel time induced by the HST. This allows us to decompose the effect of

the HST along various dimensions, such as patient sorting and changes in quality of care.

The rest of this paper is structured as follows. In the next section we describe the relevant aspects

of the health care industry and the entry of the high-speed train. Section 3 describes our data and

section 4 describes our differences-in-differences estimation strategy and issues concerning measures

of hospital quality. Section 5 describes our data and present descriptive statistics. In section

6 we present differences-in-differences regression results. Section 7 outlines the structural model

of hospital choice, and section 8 presents the structural model estimates. In section 9 we measure

patients’ welfare changes and changes in health outcomes through a series of counterfactual exercises.

Section 10 concludes.
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2 Industry Details

2.1 Health Care Industry

The National Health Insurance (NHI) program in South Korea is a compulsory solo-payer public

insurance system which covers the entire resident population. The social insurance system of South

Korea was established in 1977, and initially covered only 8.79% of the population, but expanded

to approximately 97% of the population by 1989. It operated as a multi-insurance fund system

with more than 370 insurers until July 2000, when the funds were integrated to form a single-payer

system. It is managed by a single insurer, the National Health Insurance Corporation (NHIC),

and is supervised by the Ministry of Health, Welfare and Family Affairs (MIHWFA). The Health

Insurance Review and Assessment Service (HIRA), also supervised by MIHWFA, reviews the cost

and healthcare benefits and evaluates the appropriateness of health care services provided by hos-

pitals. The system is funded by compulsory contributions from the entire resident population and

government subsidies. The amount paid as NHIC contributions by an individual depends on his

income and wealth; the elderly and disabled pay less.

The healthcare delivery system in South Korea is classified into three tiers: primary (clinics),

secondary (hospitals and general hospitals) and tertiary care (general hospitals). Starting 1989,

hospitals that met the criteria in terms of facilities, workforce, equipment, patient composition, etc,

could apply to be designated as a tertiary care institution subject to demand for number of hospital

beds from each health region.7 There were 42 tertiary care institutions, and the composition of

these hospitals did not change during the period of our analysis. During this period, there was little

to no room for a new tertiary care entry. This is because the number of hospital beds provided by

the then-tertiary care hospitals saturated the market for each health region, and tertiary hospitals

were “renewed” every 3 years instead of being re-selected.

As opposed to public-sector dominant healthcare financing, healthcare delivery in South Korea is

predominantly provided by the private sector: approximately 90% of hospitals are private institu-

tions. Since the launch of the NHI program, private providers are not allowed to opt out from the

program. Private health-care providers mainly supply health care services, and the fee schedule is

established through annual negotiations between the NHIC and provider associations.8 The fixed

price schedule includes fees for each medical procedure, with adjustments for whether a hospital is
7There were 9 health regions during this period.
8The Korean Medical Association (KMA) and the Korean Hospital Association (KHA) are among the most

important provider organizations.
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a primary, secondary, or a tertiary care institution. Patients are responsible for any co-payments

applicable to the medical services they receive, and the NHIC reimburses healthcare providers for

the share of medical costs not borne directly by the patient on the basis of the fee schedule. There-

fore, the price is exogenous to both the hospitals and patients. Fee regulation has been the subject

of recurrent complaints by providers in South Korea, who claim that they are not adequately com-

pensated for their services as a result of historically low levels of NHI fees.

Although the NHI service flow is designed to progress from primary to secondary to tertiary care,

patients have the complete freedom to choose any healthcare provider at any level, with some

financial incentives. To achieve an efficient distribution of limited healthcare resources, insurance

coverage largely depends on the tier of the hospital. For example, the NHI insurance coverage for

clinics is 70%, and it is 60% and 50% for hospitals and general hospitals, respectively. To receive

treatment in tertiary hospitals, patients must be referred by primary or secondary care hospitals,

in which case 40% of their bills are covered by insurance − otherwise, they can expect to pay 100%

of the bill. The referral by a primary or secondary care physician is easy to obtain, so there is

essentially no gatekeeping system. The insurance coverage is identical at all levels of hospitals for

inpatient care, with patients being responsible for 20% of medical expenses.

2.2 Entry of the High-Speed Train

South Korea’s HST system, Korea Train eXpress (KTX), began commercial operations on April 1st

2004 with the objective to alleviate (foreseeable) traffic congestion. Construction of the HST system

occurred in two stages. 9 The first-stage construction involved building the Gyeongbu HST Line

connecting Seoul to Daegu and electrifying the existing Gyeongbu Line connecting Daegu-Busan, as

well as electrifying the existing Honam Line connecting Daejeon-Mokpo.10 The second-stage HST

system, which involved the construction of the new Gyeongbu HST line connecting Daegu to Busan

replacing the existing electrified tracks, went into service in November of 2010. In this paper we

only focus on the first-stage HST system. Although the launch of the second-stage HST system
9Note that here we are referring to the construction of the Gyeongbu HST system. The construction of additional

HST systems was completed only after 2015. Additional electrified (existing) lines were added by the end of 2010.
10Newly constructed links included 51.6 miles of viaducts and 47.0 miles of tunnels. Electrification of the existing

rail comprised of 82.5 miles across Daegu to Busan, 12.9 miles across Daejeon, and 164.3 miles from Daejeon to Mokpo
and Gwangju. First stage Gyeongbu HST stations include Seoul Station, Gwangmyeong, Cheonan-Asan, Daejon,
Dongdaegu stations, and the electrified Gyeongbu line connecting Dongdaegu and Busan includes Miryang, Gupo
and Busan stations. Honam line includes Yongsan station, Seodaejeon, Dungyae, Nonsan, Iksan, Gimje, Jeongeub,
Jangseong, Songjeongni, Gwangju, Naju, and Mokpo stations. There exists a depot for HST along the Gyeongui Line
at Haengsin station. Thus some HST services continue beyond Seoul and Yongsan station and terminate at Haengsin
station. For detailed information on HST services see Cho and Chung (2008).
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Figure 1: HST line and hospitals
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enabled the HST to reach full speed through Daegu-Busan corridor, this shock was much smaller in

magnitude compared to the shock generated by the first-stage HST system. Figure 1 displays two

HST lines of the first-stage HST system, the Gyeongbu Line (blue) connecting Seoul-Busan and the

Honam line (green) connecting Seoul-Mokpo. The figure also plots the hospitals that are included

in our final sample (more on this in the next section).

At the time of its launch in 2004, the HST operated 128 times per day (94 times on Gyeongbu

Line, and 34 times on the Honam Line), and the daily frequency increased to 163 in the following

years, greatly reducing travel time. As an example, the HST system has reduced the travel time

from Seoul to Busan from more than 5 hours by car to 2 hours and 40 minutes by train. HST fares

were fixed and kept low, at approximately 55% of the corresponding air fares for the same routes,

to encourage the use of the HST.11

3 Data

We rely on a number of data sources at a patient and hospital level. Our patient data comes from

the National Health Insurance Services (NHIS) which is a health insurance claims dataset collected

by the solo insurer system NHIS. Our data consists of a nationally representative random sample,

which accounts for 2% of the entire South Korean population who received medical treatment at

a hospital. The data contain anonymized patient-level information on medical procedures that a

patient received at a hospital. Detailed information on patient demographics, diagnosis, patient’s

home location, the chosen hospital and the date of hospital admission are observed. In addition, if

the patient died, we observe the month/year of the patient’s death.12 The geographic unit of our data

(and hence patients’ home location) is defined either at a city, county or at a district level depending

on where a patient lives. This is because some counties are not populated enough to qualify for

a city, while some smaller cities are not populated enough to be sub-divided into districts.13 To
11In addition to low regular prices, various discounts (60% off the regular passes and 20% off the reserved tickets)

were available to attract as many passengers as possible.
12We want to use 30-day mortality following a surgery as our measure of hospital quality as it is the most commonly

used outcome-based measure. However, we do not observe the exact date of the surgery in our data. To complicate
matters further, we only observe the year and month of patients’ death instead of the exact date. Therefore our
(proxy) measure of 30-day mortality rate is obtained as follows: We construct a dummy variable M whose element
mi takes value 1 if (i) patient i who was admitted to hospital in month mmi day ddi and year yyyyi dies either in
month mmi and year yyyyi or in month mmi + 1 and year yyyyi for mmi = 1, ...11 and (ii) length of hospital-stay
does not exceed 30 days. If patient was admitted to hospital in mmi = 12 and year yyyyi, µi takes value 1 if patient
dies in month mmi and year yyyyi or in January of year yyyyi + 1.

13South Korea is made up of 17 first-tier administrative divisions (province level). These are further subdivided
into cities (si), counties (gun), districts (gu), towns (eup), townships (myeon), neighborhoods (dong) and villages (ri).
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simplify the exposition, we will henceforth ignore the distinction between city/country/district and

denote the smallest geographic unit that we observe in the data as a “district”. The boundaries of

each “district” are delineated in figure 1. Since patients’ home location is at the district level, we

use the coordinates of the centroid of each district as patients’ location.

The hospital data also comes from the NHIS dataset. Hospitals in the NHIS dataset are anonymized

and their location is observable only at the city-province level. To get a more precise location of

the hospitals, which is essential for our analysis, we combine the NHIS dataset with that obtained

from the HIRA (Health Insurance Review Assessment). Although the identity of the hospitals in

the HIRA dataset is also anonymized, we are able to match this dataset to the NHIS dataset using

hospital characteristics. In addition to the hospital characteristics such as number of hospital beds,

number of nurses and hospital tier, the HIRA dataset contains hospital location at the district level,

which in turn allows us to obtain exact coordinates for each hospital.

Our sample selection process is as follows. We define January 2003 to March 2004 as the pre-

HST time period and then define January 2006 to March 2007 as the post-HST time period after

allowing for some adjustment time.14 We focus on patients who underwent a surgery at a tertiary

hospital. We only consider tertiary hospitals in this paper for the following reason: Since we use

30-day mortality rates as measures of hospital quality, primary and secondary care hospitals are

not suitable for the analysis because the majority of severely sick patients who are at risk of death

receive treatment at tertiary hospitals. In addition, due to the fact that our data is a 2% sample,

there are not enough observations per hospital for secondary care institutions. We consider all

surgeries that were performed during the data period that resulted in at least xx% deaths within

30 days of admission to the hospital. Ideally we would look at patients suffering from one specific

illness, or who underwent one specific type of surgery in order to minimize the contamination of

hospital quality (impact on mortality rates) with patient selection.15 Constraining our analysis to

a single type of surgery, however, leaves us with too few observations (too few patients for each

hospital). Limiting our attention to only one “category” of surgery (e.g., cardiovascular surgery)

also leaves us with too few observations per hospital. To attenuate the contamination of hospital

Once a country attains a population of at least 150,000, it becomes a city. Cities with a population of over 500,000
are subdivided into districts. Districts are then further divided into neighborhoods (dong). Cities with a population
of less than 500,000 are directly divided into neighborhoods (dong).

14We choose pre-HST period to start from year 2003 because patient mortality information is only available from
2003.

15Gowrisankaran and Town (2003) look at pneumonia patients, Kessler and McClellan (2000), Propper et al. (2004)
look at acute myocardial infarction (AMI) patients, and Gaynor et al. (2016) look at patients receiving coronary artery
bypass grafting (CABG) surgery.
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quality from pooling patients across multiple types of surgeries, we control for the riskiness of each

type of surgery in addition to patient demographics.

The key feature of our setting is that the entry of the HST enabled patients to exercise choice

among alternatives with different travel distances. To take advantage of this feature, we drop the

following patients who were less likely to exercise choice based on hospital location: First, patients

who arrived at the hospital via ambulance because the emergency ambulance usually takes patients

to a nearby hospital. Second, patients who arrived at the hospital via intra-hopital transfer as it

is the physician who makes the choice of the hospital in this case. Next, we drop patients living

on islands (Jeju and Ulleng Islands, as well as Shin-ahn and Ong-jin Gun) because it is difficult to

calculate travel time to hospitals by car for these patients, a necessary component for estimating

our demand model and performing counterfactuals. Our final sample consists 8,817 patients who

went to 42 tertiary hospitals.

4 Empirical Strategy

The goal of our paper is to study the impact of increased hospital competition on hospital quality.

Post-HST a hospital located closer to the HST station faces more competition than hospitals that

are located further away from the HST station because the HST allows for greater substitutability

between hospitals that are close to the HST. Therefore, to examine whether hospitals that are

located closer to the HST experience an improvement in hospital quality after the entry of HST,

we conduct our analysis using difference-in-differences (DiD) approach by exploiting the variation

in distance from each hospital to the nearest train station. We identify the impact of competition

from the interaction of a continuous treatment intensity variable (hospital’s distance to the nearest

HST station) with a dummy indicator for the post-HST period. This specification was employed by

Gaynor et al. (2013) to study the impact of hospital competition.16 Specifically, the DiD regression

specification is given by

outcomejt = b0j + b1I(t = 1) + b2I(t = 1)× disthj + εjt. (1)

We collapse time periods into pre- and post-HST periods so that t = 0 denotes pre-HST and t = 1

denotes post-HST. The variable outcomejt measures the quality of clinical care at hospital j in
16See Card (1992) and Acemoglu et al. (2004) for more about continuous treatment.
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period t. As mentioned earlier, we use hospital-level 30-day mortality rates as the outcome variable

after adjusting for patient selection; b0j denotes a full set of hospital dummies; I(·) is an indicator

function for the post-HST period which takes the value 1 for the post-HST period and 0 otherwise,

and εjt is a random noise. The DiD coefficient of interest is b2, which corresponds to the interaction

term between a post-HST dummy and the distance from hospital j to the nearest train station,

denoted as disthj . This coefficient measures the change in the effect of distance to the nearest train

station pre- and post-HST. If the outcome variable is hospital-level death rate, a positive value of b2

implies that death rate is lower as hospitals are located closer to the HST station in the post-HST

period. The identifying assumption is that without the entry of the HST, the trend in mortality

rates would have been the same regardless of the distance to the train station. The entry of the

HST induces a deviation from this parallel trend. We provide evidence supporting this assumption

in Section 5.

4.1 Measure of Hospital Quality

Using raw mortality rates as a measure of quality is problematic due to patient selection bias:

hospital selection is non-random. The existing literature address this issue by obtaining hospital

quality measures that take into account this selection bias. Several papers control for hospital

selection using a model in which distance between the patient’s residence and alternative hospitals

are used as exogenous variables (e.g., Gowrisankaran and Town 1999, Gowrisankaran and Town

2003, Kessler and McClellan 2000, Geweke et al. 2003, Tay 2003). For instance, Gowrisankaran

and Town (1999) model mortality as a function of hospital choice dummy variables and patient

characteristics, and apply linear instrumental variables approach using distance from each patient

to all alternative hospitals.17 The identifying assumption here is that where a patient chooses to

live from alternative hospitals is uncorrelated to patient’s severity of illness – an assumption that

has been commonly used in empirical models of hospital choice, e.g. Capps et al. (2003), Gaynor

and Vogt (2003), Ho (2009), Beckert et al. (2012). Geweke et al. (2003) develop a method to infer

hospital quality using a binary probit model of mortality accompanied by a multinomial probit

model of hospital choice. Here again, the distance is an exogenous variable that influences patient’s

hospital choice: the farther away a patient lives from a hospital, the less likely the patient is to

choose that hospital, other things equal.
17While this approach is simple, there is no formal statistical model that rationalizes this approach, as discussed

in Geweke et al. (2003).
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In our setting, the HST may facilitate long-distance travel for certain type of patients, and hence

the degree of patient selection may change as a result of the entry of the HST. For example, if

severely ill patients take the HST to go to better hospitals, the degree of patient selection will be

aggravated. To allow for this change in the degree of patient selection resulting from the reduction

in travel time, we take into account changes in travel time between pre- and post-HST periods. We

follow the approach developed by Geweke et al. (2003) which we describe below, but use travel time

rather than travel distance from each patient to alternative hospitals as an instrument. Specifically,

we define travel time for patient i to hospital j in period t as

traveltimeijt =


min(cartimeij , traintimeij) if t = post-HST & distpati <30 & disthj<30

cartimeij otherwise,
(2)

where cartimeij denotes the drive time from patient i’s location to hospital j by car and traintimeij

is the travel time from patient i’s location to hospital j by HST. Driving times by car are obtained

using the georoute routine developed by Weber and Péclat (2017) which calculates the driving time

between two points under normal traffic conditions. Note that traintimeij is obtained by summing

the following three components: (i) drive time from i’s location to i’s nearest HST station h, (ii)

travel time from station h to station k, which is the closest HST station to hospital j and (iii) drive

time from station k to hospital j. The variables distpati and disthj are, as described earlier, travel

time from patient i to the closest train station and travel time from hospital j to the closest train

station, respectively. While the effect of HST does not have physical boundaries, we nevertheless

constrain the effect of the HST to patients and hospitals that are located within 30 minutes of

the train station. This is to account for changes in travel time only for patients that live (and

visit hospitals) sufficiently close to the HST station, and is reflective of the data which reveal that

there are no significant differences in travel times between pre- and post- HST for patients living

beyond 30 minutes of the HST station. Having explained our instrument, we next proceed to briefly

explain the model developed by Geweke et al. (2003) that will be used to obtain selection-corrected

mortality rates.

Model of Patient Mortality and Hospital Choice

Following Geweke et al. (2003), we obtain adjusted mortality rates by estimating a structural probit

equation in which the death probability is a function of hospital choice and patient’s observed
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characteristics. To account for patient selection problem, the mortality probit model is accompanied

by a multinomial probit model of hospital choice in which the travel time affects choice.

Specifically, the mortality probit equation for patient i (i = 1, ..., N) is given by

m∗i = c′iβ + x′iγ + εi, (3)

where m∗i is the latent outcome variable for the observed mortality indicator mi that equals 1 if the

patient dies 30 days following the admission to the hospital and 0 otherwise, ci is a J×1 dimensional

vector whose element cij equals 1 if i chooses hospital j and 0 otherwise, xi is a k × 1 vector of

observed patient characteristics that can affect mortality, and εi is an independent and normally

distributed error term with mean 0 and variance σ2.18 The probability of patient i’s death from

choosing hospital j can be written as P (mi = 1) = Φ((βj + x′iγ)/σ). Here, the parameters β and σ

are jointly unidentified. While conventional probit models resolve this identification issue by setting

σ = 1, this creates an additional problem in the current setting: hospital choice ci is likely to be

correlated in part with εi because sicker patients may prefer better hospitals, which will lead to

biased estimates of β. To resolve this selection issue, we supplement the mortality equation with a

multinomial model of hospital choice as described below.

For the model of hospital choice, let Z̃i = [z̃i1, z̃i2, ..., z̃iJ−1 − z̃iJ ]′ be the J × q dimensional matrix

of characteristics specific to the combination of patient i and hospital j, such as travel time from

patient’s home to the hospital, and serves as an instrument. Specifically, we include travel time

from the patient’s home to each hospital (in hundreds of minutes), the square of travel time, and the

product of travel time and patient’s characteristics. The J × 1 dimensional hospital choice latent

vector c̃∗i is given by

c̃∗i = Z̃iα+ η̃i, (4)

where the observed hospital choice vector cij takes value 1 if c̃∗ij ≥ c̃∗ik(k = 1, ..., J) and 0 otherwise,

and η̃i ∼ N(0, Σ̃) is a vector of independent error terms. Note that as in the mortality probability,

the parameters α and Σ̃ are jointly unidentified.
18For patient characteristics xi we include an indicator for gender, indicator for low income, age indicators (10-19,

20-29, 30-39, 40-49, 50-59, 60-69, 70-79 and 80 or older), riskiness of the surgery that the patient undergoes as well
as the riskiness of the patients’ diagnosed disease, and indicators for each year-quarter. We construct the riskiness
of each surgery as the death rate of that specific surgery across all patients in our sample. Similarly, the riskiness of
diagnosis is constructed as the death rate of that specific diagnosis across all patients in the sample.
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Normalizing the utility of the J-th alternative to 0, we get

c∗i = Ziα+ ηi, (5)

where Zi = [z̃i1 − z̃iJ , z̃i2 − z̃iJ , ..., z̃iJ−1 − z̃iJ ]′, c∗i = [c̃∗i1 − c̃∗iJ , ..., c̃∗iJ−1 − c̃∗iJ ]′, and ηi = [η̃i1 −

η̃iJ , ..., η̃iJ−1 − η̃iJ ]′ with ηi ∼ N(0,Σ).

Because hospital choice is likely to be correlated with patients’ unobserved severity of illness, the

mortality error term εi and choice error term ηi can be correlated. The mortality error term can be

parameterized as

εi = η′iδ + ζi; cov(ηi, ζi) = 0, (6)

where the scale of εi is normalized by var(ζi) = 1 and δ is a (J − 1) × 1 parameter vector. The

variance of εi of the mortality probit equation then becomes σ2 = δ′Σδ + 1. This parameterization

resolves the identification problem in equation (3), and the probability of mortality of patient with

observed characteristics xi under hypothetical random assignment to hospital j becomes P (mi =

1) = Φ[(βj +x′iγ)/(δ′Σδ+1)1/2]. Denote qj = βj/(δ
′Σδ+1)1/2 as the hospital j quality probit. Note

that, in the conventional probit model where σ is normalized to 1, quality probit becomes qj = βj .

For the remainder of this paper, we use quality probits (from the selection model) as our measure of

hospital quality. Because lower quality probit implies lower death rate and in turn higher hospital

quality, for ease of exposition we henceforth interchangeably use the term “risk-adjusted mortality

rate” to denote the quality probit.

The model is estimated using Bayesian inference with the GGT computer program as described

in Marquardt et al. (2021).19 Using the Markov Chain Monte Carlo method, the GGT program

iteratively simulates latent variable values conditional on data and parameters, and parameters

conditional on data and latent variables, to simultaneously recover the joint posterior distribution

of parameters and latent variables. Because the model is estimated using Bayesian inference, the

estimation of the model depends on the prior distributions. For prior distributions we use the default

setting of the GGT program, but also show that our results are robust to alternative specifications of

prior distributions. More details on the model, prior distributions and the estimation methodology

can be found in Geweke et al. (2003) and Marquardt et al. (2021).
19Evaluating one parameter vector for one patient through the Maximum likelihood would require evaluating the

joint density of the mortality and hospital choice outcomes for that patient. Given the number of endogenous variables
and the correlation between the error terms in the mortality and hospital choice equations, evaluating the likelihood
for just one parameter vector would be extremely computationally burdensome.
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pre-HST post-HST
mean median sd min max mean median sd min max

female 0.401 0 0.490 0 1 0.402 0 0.490 0 1
age 0-24 0.430 0 0.495 0 1 0.437 0 0.496 0 1
age 25-49 0.269 0 0.444 0 1 0.318 0 0.466 0 1
age 50-74 0.145 0 0.352 0 1 0.115 0 0.319 0 1
age 75 + 0.156 0 0.363 0 1 0.131 0 0.337 0 1
Seoul resident 0.308 0 0.462 0 1 0.303 0 0.460 0 1
low income 0.182 0 0.385 0 1 0.173 0 0.378 0 1
medium income 0.330 0 0.470 0 1 0.340 0 0.474 0 1
high income 0.487 0 0.499 0 1 0.487 0 0.500 0 1
diagnosis risk 0.045 0.024 0.055 0 0.75 0.050 0.031 0.058 0 0.75
surgery risk 0.053 0.017 0.088 0.003 0.625 0.052 0.017 0.088 0.003 0.625
death 0.044 0 0.205 0 1 0.051 0 0.219 0 1
Observations 4,055 4,762

Notes: Most of the patient characteristics are binary variables, and therefore the mean represents the fraction.
“Seoul resident” is a binary variable that equals 1 if a patient lives in Seoul and 0 otherwise. There are 11 (group
0 - group 10) income groups in our data. We classify groups 0-3 as low income, groups 4-7 as medium income, and
groups 8-10 as high income. “death” is binary variable that equals 1 if patient dies within 30 days of admission
to the hospital, and 0 otherwise.

Table 1: Patient Characteristics

5 Descriptive Statistics

We first proceed by providing descriptive evidence on patients’ response to the entry of the HST

with respect to their travel patterns. Then, we will provide some hospital-level summary statistics.

5.1 Patients’ Response to the Entry of the HST

Table 1 provides summary statistics of patient characteristics. We first show that patients’ travel

patterns changed following the entry of the HST. If patients indeed responded to the entry of the

HST, we expect patients living closer to the HST stations to choose hospitals that are located

further away from their home. Figure 2 plots percent changes in average travel distance by district,

following the entry of the HST, separately for patients who live in Seoul and patients who live in

non-Seoul regions. Since patients in South Korea generally have a preference for hospitals that

are located in Seoul, we expect the HST to have minimal effect on travel patterns of patients who

already live in Seoul. From the plot on the left, proximity to the HST station doesn’t seem to affect

patients’ travel distance. From the plot on the right, however, regions that are located very close

to the HST station experienced a large increase in average travel distance following the entry of the
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Figure 2: Proximity to the train station and changes in average travel distance by district

HST.

To get an estimate of the effect of the HST on patients’ travel distance, we leverage the variation in

distance from each patient to the nearest train station to examine whether patients that live closer

to the train station travel longer distances after the entry of the HST. Specifically, we estimate the

equation as below:

traveldistit = a0 + a1I(t = 1) + a2I(t = 1)× distpati + a3Xit + µi + εit (7)

Here the dependent variable, traveldistit , is the travel distance of patient i in period t; I(·) is an

indicator function for the post-HST period, which takes the value 1 for the post-HST period and 0

otherwise; Xit denotes patient characteristics (age, gender, diagnosis type and surgery type dummy

variables), µi denotes a full set of district dummy variables of where the patient’s home is located in,

and εjt is a random noise. The coefficient of interest is a2, which corresponds to the interaction term

between the post-HST dummy variable and distpati , which is the distance (in miles) from patient i’s

home to the nearest HST station. This coefficient measures whether patients who live closer to the

train station traveled further distances following the entry of the HST.

In Table 2 column 1 we report OLS regression estimates for equation (7) using all the patients in

our final sample. The result suggests that there was a marginally significant increase in distance

traveled for patients that live closer to the train station after the entry of the HST - while the

positive coefficient on the post dummy variable suggests that patients on average traveled 3.1 miles

more following the entry of the HST, this effect decreases as patients are located further away from
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all patients excluding
Seoul residents

ambulance
and transfer

(1) (2) (3)
post 3.0781*** 5.1842*** -1.5582

(0.8639) (1.3205) (3.1554)
post×distpati -0.0594* -0.1038*** 0.0109

(0.0316) (0.0351) (0.1147)

district FE X X X
surgery type FE X X X
diagnosis type FE X X X
R2 0.4451 0.4196 0.5755
Observations 8,817 6,124 2,316

Notes: Models are estimated using OLS with standard errors (in parentheses under coefficients). Standard error
clustered at the district level. In addition to diagnosis and surgery type, all regressions control for patient
characteristics (age and gender).
*** Significant at the 1 percent level; ** Significant at the 5 percent level;* Significant at the 10 percent level.

Table 2: OLS Estimates of Patient’s Distance on HST on Travel Distance

the train station (a 1 mile increase in distance from patient’s home to the closest train station is

associated with a 0.06 miles decrease in travel distance.

We also estimate equation (7) only using patients that live in non-Seoul regions and report the

results in column 2. For these patients, the closer they live to the HST station, we find a significant

increase in distance traveled. The positive coefficient on the post dummy variable suggests that

patients living in non-Seoul regions traveled 5.2 miles more following the entry of the HST, but

this effect significantly decreases as patients live further away from the train station. A one mile

increase in distance from patient’s home to the closest train station is associated with a 0.1 miles

decrease in travel distance.

As mentioned earlier, our final sample excludes patients who transferred from other hospitals and

who arrived at a hospital via ambulance because these patients are less likely (if any) to exercise

choice. If the increase in travel distance is a consequence of the entry of the HST, we should not see

changes in travel distance for patients who arrived at hospitals via transfer or ambulance because

these patients did not take the HST. Table 2 column 3 reports the regression estimates for equation

(7) using only those patients who transferred or took an ambulance (note that these patients are not

included our final sample and are not used in further analysis). In this case, we find that HST has

no effect on travel distance, suggesting that HST only affected patients who exercised their choice.

It would be difficult to attribute increased travel distance to HST if a patient traveled longer distance
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treated hospitals control hospitals
pre-HST post-HST z-stat pre-HST post-HST z-stat

control patients 0.124 0.135 0.943 0.107 0.121 1.306
(0.008) (0.008) (0.007) (0.007)

Observations 1,719 1,971 1,719 1,971
treated patients 0.060 0.084 2.281 0.076 0.088 1.078

(0.007) (0.004) (0.008) (0.008)
Observations 1,088 1,346 1,088 1,346

Notes: This table shows the changes in proportion of patients (excluding Seoul residents) who traveled more than
50 miles to arrive at the hospitals. z-statistic for test of proportions. Standard error in parentheses.

Table 3: Proportion of Patients who Traveled to arrive at Hospitals

to arrive at a hospital which is located far away from the HST station. To provide further evidence

of the effect of the HST on patients’ travel, we next show that patients who live closer to train

station traveled long distances only to visit hospitals that are also located close to the HST station.

To facilitate this analysis, we first define “treated” as being located within 10 miles of the HST

station and define “control” as being located beyond 10 miles from the HST station. This allows

us to categorize patients into two groups: “treated patients” (patients who live within 10 miles of

the HST station), and “control patients” (patients who live beyond 10 miles of the HST station).

Similarly, we can categorize hospitals into two groups: “treated hospitals” (hospitals that are located

within 10 miles of the HST station), and “control hospitals” (hospitals that are located beyond 10

miles of the HST station). For each group of patient who went to each group of hospitals, we

then calculate the proportion of patients who traveled more than 50 mile to arrive at each type of

hospital. The results reported in Table 3 show that there was a significant increase in proportion of

treated patients who traveled more than 50 miles to arrive at treated hospitals (from 6 percent to 8.4

percent). We do not see significant difference in travel patterns for treated patients going to control

hospitals. Likewise, we do not see any significant changes in travel patterns for control patients.

These patterns suggest that patients didn’t simply travel longer distances by driving longer hours,

but instead provide some evidence that they took the HST to go to a hospital that is also closely

located to the HST station.

Table 4 shows changes in patient care seeking post entry of HST by hospital quality. For our

measure of quality we use the adjusted mortality rates obtained through the probit selection model

in the previous section. If patients use the HST to sort to better hospitals, we should see better

hospitals attracting more patients relative to worse hospitals. We define better hospitals as those

in the bottom quartile of the adjusted mortality distribution and define worse hospitals as those
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in the top quartile. While better hospitals experienced a significant increase in share of patients

who traveled more than 50 miles to arrive at the hospital, there is no significant change for worse

hospitals. This pattern continues to hold when we only look at non-Seoul residents who travel more

than 50 miles, as well as share of patients who live within 10 miles of the HST station and travel

more than 50 miles. For both better and worse hospitals, there are no changes in share of patients

who live beyond 50 miles from the HST station and traveled more than 50 miles. For these patients,

the entry the HST is likely to have small (if any) effect, and hence it doesn’t change their sorting

patterns.

5.2 Hospital Characteristics

Table 5 provides summary statistics of hospital characteristics. Figure 3 presents the relationship

over the entire period of our analysis (including the adjustment period) between distance to the

nearest train station and raw 30-day mortality rates. Due to data limitations, we do not have

patient death information prior to 2003. Since the HST entered in April 2004, it is difficult to see (if

any) pre-HST trends of mortality rates at the annual level. Therefore, for this analysis, we calculate

30-day mortality rates at the quarter level. Three time series lines are presented for the mean of the

mortality rates, one for patients who visited hospitals in each quantile of the hospital’s distance to

the nearest train station.20The series is rather noisy, but we can see that all three series fluctuate

together. Until the first quarter of 2004, mortality rates for all three quantiles display declining

trends.

6 Difference-in-Differences Estimation Results

We use the measures of clinical quality obtained through the probit selection model to study the

impact of increased hospital competition on hospital quality. As a starting point to this analysis, we

first estimate equation (1) using hospital-level raw mortality rates as the outcome variable. Since

hospitals located near the HST station are the ones that are most affected by the entry of the HST,

the DiD coefficient on dpost ·disthj captures the impact of increased hospital competition. A positive

value of the DiD coefficient implies that death rate is lower as hospitals are located closer to the

HST station in the post-HST period. Column (1) in Table 6 reports the results. While marginally
20Since there are not enough patients at each hospital for each quarter, we calculate mortality rates at the patient

level for each quantile of hospital’s distance to the nearest train station.

22



pr
e-
H
ST

po
st
-H

ST
m
ea
n

m
ed

ia
n

sd
m
in

m
ax

m
ea
n

m
ed

ia
n

sd
m
in

m
ax

nu
m
be

r
of

ad
m
is
si
on

s
96

.5
81

.5
75

.6
14

45
6

11
3.
4

93
.5

93
.3

11
53

5
nu

m
be

r
of

be
ds

1,
10

1
1,
01

9
49

1.
3

48
0

2,
99

3
1,
10

1
1,
01

9
49

1.
3

48
0

2,
99

3
nu

m
be

r
of

nu
rs
es

47
9.
5

42
1

26
7.
7

22
4

1,
67

1
50

1.
6

42
6

27
8.
5

22
4

1,
67

1
lo
ca
te
d
in

Se
ou

l
0.
45

0
0.
5

0
1

0.
45

0
0.
5

0
1

m
or
ta
lit
y
ra
te

0.
04
5

0.
03

8
0.
02

7
0

0.
14

3
0.
05

3
0.
05

2
0.
03

8
0

0.
23

8
O
bs
er
va
ti
on

s
42

42

N
ot
es
:
V
ar
ia
bl
e
“lo

ca
te
d
in

Se
ou

l”
is

a
bi
na

ry
va
ri
ab

le
th
at

eq
ua

ls
1
if
a
ho

sp
it
al

is
lo
ca
te
d
in

Se
ou

l
an

d
0
ot
he

rw
is
e.

T
he

m
ea
n
of

“lo
ca
te
d
in

Se
ou

l”
is

a
fr
ac
ti
on

ho
sp
it
al
s
th
at

ar
e
lo
ca
te
d
in

Se
ou

l.

T
ab

le
5:

H
os
pi
ta
lC

ha
ra
ct
er
is
ti
cs

23



Figure 3: Trend of mortality rates (2003-2007)

significant, the DiD coefficient is positive: when the travel time from the hospital to its closest train

station decreases by 1 minute (i.e., the hospital is closer to the train station), the hospital-level raw

mortality rate decreases by 0.048 percentage points.

As discussed earlier, however, hospital-level raw mortality rates do not correctly reflect the true

quality of clinical care due to differences in patients’ health status across hospitals (referred to as

hospital’s “case-mix”) i.e., hospitals with a larger number of sicker patients are more likely to have

higher mortality rates. It is therefore necessary to take into account differences in patient case-mix

across hospitals, for both observed and unobserved patient characteristics. We therefore use the

adjusted mortality rates that we obtained through the selection probit model as the outcome variable

to estimate equation (1). This measure of hospital quality was obtained through the model that

incorporates patient’s hospital choice, and therefore resolves the patient selection issue. The results

are reported in Table 6, column (2). The DiD coefficient is positive and significant (β = 0.006),

suggesting that more competition leads to improved hospital quality. Since adjusted morality rates

are coefficients of the probit mortality equation (equation (3)), the magnitude of the DiD coefficient

is difficult to interpret. Therefore, to interpret the magnitude of the DiD coefficient and results, we

calculate the probability of death for an average (in terms of case-mix) patient for each hospital,

and use the log of this measure as the dependent variable to estimate equation (1). Specifically, we

estimate the equation

log
(

Φ[(βj + x̄′γ)/(δ′Σδ + 1)1/2]
)

= b0j + b1I(t = post) + b2I(t = post)× disthj + εjt,
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(1) (2) (3) (4)
raw mortality selection

corrected
selection

uncorrected
ambulance
and transfer

post 0.0027 -0.0113 -0.0181 0.0937*
(0.0066) (0.0509) (0.0346) (0.0508)

post · disthj 0.0005* 0.0061** 0.0050*** 0.0058**
(0.0003) (0.0028) (0.0012) (0.0026)

R2 0.7709 0.5909 0.6271 0.6187
hospital FE X X X X
number hospitals 42 42 42 42
Observations 84 84 84 84

Notes: Models are estimated using OLS with standard errors (in parentheses under coefficients). All regressions
include constants.
*** Significant at the 1 percent level; ** Significant at the 5 percent level;* Significant at the 10 percent level.

Table 6: Diff-in-Diff Estimates of the Impact of Competition on Quality of Clinical Care

where x̄ =
∑

i xi/N denotes the average case-mix across all patients. The results from this regression

suggests that a 1 minute reduction in travel time from the hospital to the nearest train station

decreases the probability of death for an average patient by 1.98 percent (significant at the 5 percent

level).

To see how accounting for patient selection affects the results, we also estimate equation (1) using

adjusted mortality rates obtained through the conventional probit model that ignores the selection

issue. As mentioned above, in the conventional probit model, σ is normalized to 1 and the quality

probit is qj = βj . The results are reported in Table 6, column (3). While the DiD coefficient is

positive and significant, which is consistent with our previous results, the magnitude of the DiD

coefficient is smaller compared to the case where patient selection is accounted for (0.005 versus

0.0061). This suggests that ignoring selection may lead to misleading inferences about hospital

quality.

Recall that our final sample excludes patients who transferred from other hospital and who arrived

at a hospital via ambulance and transfer. Including these patients in our sample should not change

our results because the quality of clinical care should be independent from how patients arrive to

a hospital. To test the robustness of our results, we estimate equation (1) including transfer and

ambulance patients into our sample. The results are reported in Table 6, column (4). The results

from this analysis are consistent with the previous results, and the DiD estimates are similar to

those in column (2) where we use the quality probits from the selection model.

To show the robustness of our findings to the specification of the prior distribution, we estimate the
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selection model in Section 4.1 using the following two variants of prior distribution specifications

(this is the same approach used by Geweke et al. (2003) to test the sensitivity of their estimates to

the specifications of the prior distribution): Variant 1 scales the prior standard deviations of α in

the original selection model downward by a factor of 5 and τ2 downward by a factor of 25. Variant

2 is the opposite of variant 1 in that the prior standard deviations are scaled up by a factor of 5

relative to the base model. We then use quality probits from these two specifications to estimate

equation (1). Appendix B provides the results for each of these prior distributions. The results are

consistent with the findings in the current section.

To test the robustness of our findings to alternative measures of hospital quality, we employ the

linear instrumental variables approach as in Gowrisankaran and Town (1999) and Gowrisankaran

and Town (2003). Results are reported in Appendix A, and are consistent to what we find in this

section.

The results in in this section suggest that increased competition leads to an improvement in hospital

clinical quality. To evaluate the impact on patient welfare, we next estimate a demand model of

hospital choice and use the model estimates to perform welfare analysis and various counterfactuals.

7 Model of Hospital Choice

To evaluate the impact of the HST on patient welfare we need to consider the hospital choice that

patients would have made had the HST not been launched. To do this, we estimate a structural

model of hospital choice, and conduct a reverse counterfactual analysis by switching off the impact of

the HST. The entry of the HST reduces travel time and thereby increases the number of hospitals

in the choice set of patients living close to a HST station. To capture the changes in patients’

choice sets in our model, we extend the traditional conditional logit model by imposing travel-

time constraints on patients, an approach that has been used in the geography and transportation

literatures. We assume that the travel time to each hospital determines whether that hospital is

included in a patient’s choice set or not. If a hospital is located too far from a patient’s location, a

patient with a travel-time constraint will exclude it from his choice set. This translates to a decrease

in the size of the choice set for patients living close to a HST station once the HST is removed.
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7.1 Utility and Demand

Each patient i chooses from Ji ⊆ J hospitals in his choice set, indexed j = 1, ...Ji where J is the total

number of hospitals in the data. The indirect utility of patient i choosing hospital j, j = 1, ..., J is

defined as

uij =

L∑
l=1

Xj,kY
′
iβ

xy
.,l +QjY

′
iα

z +Dij + X
′
jβ

x + αQj + εij , (8)

where Xj is a vector of hospital characteristics with length L; Yi is a K vector of patient-specific

demographics; Dij is the travel time from patient i’s home to hospital j; Qj denotes the quality of

clinical care at hospital j; εij is an idiosyncratic taste shock that is distributed i.i.d. type I extreme

value. βxy, αz and βx are K ×L, K × 1, and L× 1 matrices of coefficients, respectively. Following

previous literature on hospital choice, we assume that all patients are admitted to some hospital,

and hence there is no outside option in our model.

We estimate the parameters in equation (8) using a maximum likelihood approach. One might be

concerned about the endogeneity of quality of clinical care in the utility function. Previous literature

has found that treating a larger number of cases is associated with better outcomes. Hospitals with

higher unobserved quality will attract larger volume of patients, and this will in turn lead to higher

quality of clinical care.21 To address this concern, following Gaynor et al. (2016), we include an

entire set of hospital indicator variables to estimate hospital fixed effects.

7.2 Choice Set Formation

The entry of the HST enlarged patients’ consideration sets by reducing travel costs. Hospitals that

would not previously have been considered by the patient may now be considered. We model this

change in consideration sets by imposing a travel-time constraint on patients. We assume that time is

a limited resource that constrains choice options from being evaluated. This assumption is consistent

with theoretical and empirical literature in geography and regional science where a relationship

between the available time budget and individuals’ destination choice has been established. Our

modeling approach follows the Approximate Nested Choice-Set Destination Choice (ANCS-DC)

model developed by Thill and Horowitz (1997) which explicitly models the formation of choice sets

when individuals have limited time resources.

Each patient has a travel-time threshold Ti which confines his choice set. We let Ti to be a random
21For more literature on volume-quality relationship, see Birkmeyer et al. (2002), Silber et al. (2010), and Halm

et al. (2002).
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variable with cumulative distribution PT (t; θ), where parameterization by θ allows PT (t; θ) to depend

on observable patient characteristics. Then, the unconditional probability of patient i choosing

hospital j is given as

Pr(yij = 1) =

∫ ∞
t=0

Pr(yij = 1|Jit)dPT (t; θ) (9)

where Jit is a choice set of individual i who has a travel-time threshold t and Pr(yij = 1|Jit) is the

probability of choosing hospital j conditional on facing choice set Jit. Since hospitals are discrete

and mutually exclusive alternatives, hospitals can be sorted according to their travel time from a

patient’s location in ascending order. Then, equation 9 can be simplified to a summation over all

the nested sets of hospitals defined by incremental travel-time thresholds, given as

Pr(yij = 1) =

J∑
r=1

Pr(yij = 1|Jir)pT (r; θ), (10)

where pT (r; θ) is the probability that travel time threshold is between travel times to destinations

r and r + 1, i.e.,

pT (r; θ) = PT (tr+1; θ)− PT (tr; θ). (11)

The appealing feature of this modeling approach is that it enables us to avoid considering all subset

combinations of hospitals which would result in 2J−1 choice sets for each patient. The number

of possible choice sets is substantially reduced by exploiting the non-random ordering of hospitals

based on their travel time from patients’ location and travel-time constraints. Therefore, all hospitals

that are located closer than any hospital that satisfies the inclusion criterion set by the travel-time

threshold are also included in the choice set, and all hospitals that are located further than any

hospital that does not satisfy the inclusion criterion are excluded. Despite this simplification, the

computational complexity still remains due to the number of hospitals in our data.

To further reduce the computational burden, we reduce the support of pT by restricting the entire

series of travel-time thresholds to take only a few discrete values. Specifically, let Tr′ denote the

travel-time threshold with r′ = 1, ..., RT , where RT is the number of possible travel-time thresholds

after the number of discrete thresholds has been approximated to a few manageable points. We

denote the probability that patient i’s threshold is Tr′ as πi,r′ . Let πi,r′ be a function of concomitant

(demographic) variables, defined as

πi,r′ =
exp(γr + Y

′
iφr′ )∑RT

l exp(γl + Y′
iφr′ )

, (12)
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(1) ANCS-DC (2) Multinomial Logit
Coefficient Standard error Coefficient Standard error

TravelTime -1.7097*** 0.0235 -3.2683*** 0.0140
AdjustedMortality -0.3241** 0.1367 -0.2499*** 0.0245
NursePerBed 7.6387*** 0.2799 6.1856*** 0.1511
AdjustedMortality×Female -0.1385 0.1629 -1.0186*** 0.0634
AdjustedMortality×Old -1.6288*** 0.4288 -0.9847*** 0.2619
AdjustedMortality×LowIncome -0.0105 0.1937 0.1205 0.1219
AdjustedMortality×HighRiskSurgery -0.0619*** 0.0188 -0.0295 0.0308
NursePerBed×Female -0.7758*** 0.1182 -0.7564*** 0.1206
NursePerBed×Old 2.6883*** 0.2283 2.4353*** 0.1290
NursePerBed×LowIncome -0.2806*** 0.0527 -0.4650*** 0.0714
NursePerBed×HighRiskSurgery -0.0003 0.0381 0.0808*** 0.0320

Log Likelihood -22,257 (38.2370) -22,806 (3.3610)
Notes: *** Significant at the 1 percent level; ** Significant at the 5 percent level;* Significant at the 10 percent
level.
To account for the standard errors of the mortality rates, we employ bootstrapping, and report the means and
standard deviations of the parameter estimates across the bootstrap replications. We also report the mean of the
log-likelihood across all bootstrap replications and the standard deviation in parentheses.

Table 8: Demand Model Estimates

where Yi is a K × 1 vector of patient demographics (Gupta and Chintagunta 1994). Then the

probability that hospital j is chosen is

Pr(yij = 1) =

RT∑
r′=1

Pr(yij = 1|Jir′ )πi,r′ , (13)

where Jir′ is the set of all hospitals h such that Dih ≤ Tr′ . The model is estimated by maximizing

the following log likelihood function:

LL =

N∑
i=1

J∑
j=1

yij log

 RT∑
r′=1

Pr(yij = 1|Jir′ )πi,r′

 . (14)

8 Demand Model Estimation Results

We estimate the conditional logit model of hospital choice under travel-time constraints (ANCS-

DC). The covariates that enter the utility function are as follows. AdjustedMortality is the hospital

quality probit from the selection model that we obtained in Section 4.1. TravelTime refers to travel

time between the patient and a hospital in his choice set, and is defined in units of 100 minutes.
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NursePerBed refers to ratio of number of nurses to number of hospital beds. We also interact

the following patient characteristics with AdjustedMortality and NursePerBed variables: Female

indicator variable; Old is a dummy variable that equals 1 if a patient is above 75 years of age

and 0 otherwise; LowIncome is a dummy variable that equals 1 if a patient falls in the bottom 20

percent of the income distribution; HighRiskSurgery is a dummy variable that equals 1 if a patient

undergoes a surgery for which the risk of death belongs in the 75th percentile and 0 otherwise.

The estimation results are reported in column (1) of Table 8. The results are, for the most part,

intuitive. Travel time to the hospital plays an important role in patients’ decisions when choosing

a hospital – the negative coefficient suggests that patients are less likely to go to hospitals that are

located further away from their home. Our estimates also suggest that patients prefer hospitals

with higher nurse-to-bed ratio and dislike hospitals with poor clinical quality. We find that older

patients are more sensitive to quality of care and the number of nurses per bed. Female patients

and patients with lower income prefer hospitals with a smaller nurse-to-bed ratio. Patients who

undergo a more risky surgery are generally more sensitive to the quality of clinical care.

To estimate the parameters of the travel-time threshold probabilities, we discretize the travel-time

thresholds into 9 points: 30, 60, 90, 120, 150, 180, 210, 240 and 240+ minutes.22 Concomitant

variables that enter the time threshold probability are as follows: Metro is an indicator variable

that equals 1 if a patient lives in a metropolitan area other than Seoul and 0 otherwise.23 Seoul

is an indicator variable that equals 1 if a patient lives in Seoul. We also include the variables

Female, Old, LowIncome and HighRiskSurgery. Table 10 presents the parameter estimates of the

parameters of the travel-time threshold probabilities. Several of our estimates show bi-modality

over time constraints which makes complicates the interpretation of several of the coefficients.

Patients living in metro areas and Seoul are more likely to have a choice set to within 90 minutes

or beyond 210 minutes compared to patients who live outside these regions. Our estimates also

suggest that low income patients are more likely to be time constrained in their choice, and are

more likely to have a 30-minute time constraint. This can be due to the monetary cost of traveling

long distances. For example, low income patients may not have a car, which is not uncommon

given the public transportation infrastructure in South Korea. Older patients are more likely to be

time constrained within 60 minutes than younger patients. Meanwhile, older patients are also more

likely to travel beyond 240 minutes. This could be because older patients who are more sick may
22The travel time threshold of 240+ includes hospitals that are located 240 minutes or more from the train station.
23Metro area corresponds to 6 metropolitan cities excluding Seoul consisting of Busan, Daegu, Incheon, Gwangju,

Daejeon and Ulsan.
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be willing to travel longer distances. Coefficients on the riskiness of the surgery is ambiguous.

We also estimate the hospital choice model using a conventional multinomial logit model (without

travel-time constraints). The estimates of the parameters are reported in column (2) of Table 8.

The sign and magnitude of the estimates obtained using the traditional multinomial logit model

are very similar to those obtained using the ANCS-DC model. We prefer to use the ANCS-DC

model, however, because the general theory of choice behavior postulates that individuals follow

a two-stage decision process in which the alternatives are reduced to a smaller set (consideration

set). The construction of these choice sets depend on factors such as the individual’s awareness,

feasibility, saliency or accessibility of the alternatives, and mis-specifying the considerations sets

may lead to inconsistent parameter estimates. In our setting, we are not able to use an ad-hoc rule

such as “15 miles within a patients’ home” to define a choice set because a substantial number of

patients travel very long distances (even prior to the entry of the HST) to seek better health care

services. The ANCS-DC model that we employ is flexible in this manner because it allows the travel

time thresholds to be probabilistic, and also to depend on patients’ demographic characteristics.

We also use the likelihood ratio test to test whether modeling of the choice set incorporated in the

formulation of the ANCS-DC model enhances the representation of the observed hospital choice over

the conventional multinomial logit model. The χ2 statistic for this test is −2×(−22, 806+22, 258) =

−1, 096 with 112 degrees of freedom, leading to significance at the 0.01 level. This establishes the

relevance of travel-time constraints in modeling the hospital choice problem.

9 Counterfactual Analyses

Using the estimates from the demand model we evaluate the impact of the HST on patient welfare.

We decompose changes in patient welfare arising from (i) the reduced travel time and (ii) changes in

hospital quality. We implement this using the following steps. First, we compute a counterfactual

level of clinical care that would arise if the HST is removed (details of this procedure described

below), denoted as q0. Then, using this counterfactual hospital quality and travel-time by car as a

baseline, we calculate changes in patient welfare arising from reduced travel time, assuming hospital

quality did not change. Next, using the same baseline, we calculate changes in welfare arising from

improved hospital quality, assuming that travel time did not change. Finally, we calculate changes

in welfare arising from both, reduced travel time and changes in clinical quality.

Next, we evaluate the impact of the entry of the HST on patients’ health outcomes. We compare
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the number of deaths in post-HST period to number of deaths in a counterfactual scenario where

the train is removed, and decompose these effects into those caused by changes in travel time and

changes in hospital quality.

9.1 Changes in Patient Welfare

We compute the changes in patient welfare from the entry of the HST as follows. Using the

parameter estimates from the demand model, we simulate a post-HST scenario where the HST is

removed. Recall from our demand model that when travel-time becomes longer (i.e., if the travel

time is that of the pre-HST level), constraints imposed on patients’ travel-time will force them to

remove further-located hospitals (which are included in the choice set if the travel time is that of

the post-HST level) from the consideration set.

The expected patient surplus (in utils) for patient i with HST can be expressed as

E [Surplusi(t1, q1)] =

RT∑
r=1

E
[
Surplusi|r(t1, q1)

]
· πir =

RT∑
r=1

E

max
j∈Jt1

i|r

(Ūij + εij)

 · πir, (15)

where t1 and q1denote travel time and hospital quality with HST, respectively. Similarly, the

expected patient surplus when the HST is removed can be expressed as

E [Surplusi(t0, q0)] =

RT∑
r=1

E
[
Surplusi|r(t0, q0)

]
· πir =

RT∑
r=1

E

max
j∈Jt0

i|r

(Ūij + εij)

 · πir, (16)

where t0 and q0 denote travel time and hospital quality when the HST is removed. The choice

set J t1
i|r differs from the choice set J t0

i|r because changes in travel time change the composition of

hospitals in a choice set. Assuming that εij is distributed i.i.d extreme value, the above expression

can be rewritten as a logit-inclusive value

E [Surplusi(t1, q1)] =

RT∑
r=1

ln

∑
j∈Jt1

i|r

exp(Ūij)

πir, (17)

and
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E [Surplusi(t0, q0)] =

RT∑
r=1

ln

∑
j∈Jt0

i|r

exp(Ūij)

πir. (18)

The average change in surplus is then given by

E [∆Surplus] =
1

N

N∑
i=1

[E [Surplusi(t1, q1)]− E [Surplusi(t0, q0)]] , (19)

where N is the number of patients in post-HST period. This change in welfare can further be

decomposed into two parts, the change in welfare from (i) reduction in travel time and fron (ii)

improved hospital quality:

E [∆Surplusi] = 1
N

∑N
i=1 [E [Surplusi(t1, q0)]− E [Surplusi(t0, q0)]]

+ 1
N

∑N
i=1 [E [Surplusi(t1, q1)]− E [Surplusi(t1, q0)]] .

(20)

The first part of equation (20) captures the changes in welfare derived from the changes in travel

time while the second part measures the welfare changes caused by the change in hospital quality.

To obtain the counterfactual level of hospital quality that would occur when the HST is removed,

we use the fitted values from equation (1) and given by

outcomejt = b0j + b1I(t = post) + b2I(t = post)× disthj + εjt.

Specifically, since the DiD coefficient captures how much the distance to the train station affects

the quality in the post-HST period, we can use the above equation to compute the fitted values of

hospital quality in a counterfactual scenario when the HST is removed. The details of this procedure

are as follows. Denote the hospital which is located furthest away from the HST station in our data

as jmax. Since this hospital is located far from the train station, we assume that the entry and thus

the removal of the HST does not affect this hospital in any way. Denote the distance from jmax to

its nearest HST station as distmax. Since we are removing the HST in the post-HST period (i.e.,

2006Q1-2007Q1), we set dpost = 1 and set disthj = distmax ∀j. In other words, if all hospitals are

relocated to be very far from the train station to the degree that they are unaffected by the entry

of the train, i.e., disthj = distmax, then this effect on hospitals is equivalent to removing the HST.
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time quality time & quality
total ∆Utility 0.2264 0.0174 0.2437

Dollar Value $2,211 $170 $2,380
first quartile ∆Utility 0.3613 0.0160 0.3773

Dollar Value $3,507 $156 $3,685
second quartile ∆Utility 0.1578 0.0231 0.1809

Dollar Value $1,503 $225 $1,767
third quartile ∆Utility 0.1193 0.0166 0.1359

Dollar Value $1,169 $162 $1,327
fourth quartile ∆Utility 0 0.0089 0.0089

Dollar Value 0 $87 $87

Table 11: Changes in Patient Welfare

We obtain q0 as the following fitted value

q̂0,j = b̂0j + b̂1 + b̂2 · distmax,

and use this as the adjusted mortality rate that would occur in the counterfactual scenario when

the HST is removed.

While we could use the qj obtained in section 4.1 as the hospital quality in a scenario with HST,

we instead choose to use the following fitted values for a better comparison24

q̂1,j = b̂0j + b̂1 + b̂2 · disthj .

Note that we use the actual distance disthj such that hospitals are affected by the HST.

We first calculate the value given by equation (19) assuming the quality of clinical care did not

change. This allow us to evaluate the changes in welfare from the reduction in travel time only.

The results are reported in Table 11. Assuming the quality of clinical care did not change, patients

on average experience an increase of 0.2264 units in expected utility. This increase in welfare arises

from a reduction in travel time, and the resulting ability of patients to sort into better hospitals.

Since there is no price coefficient in the demand model due to the absence of a price mechanism in

this market, we cannot directly convert the welfare change from utils into a dollar value. Therefore,

following Gaynor et al. (2016), we first translate the gains in terms of the preference over distance,

and then convert the welfare estimates into a dollar value using additional data from other sources.25

24The pearson correlation coefficient of the predicted value of q̂1,j and the actual q1,j in the post period is greater
than 0.8, with a p-value less than 0.000.

25Gowrisankaran et al. (2015) estimate that a one minute reduction in travel time to hospitals increases patient
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Comparing the gains in utils to the preference over distance, we find that the welfare effect of the

reduction in travel distance for patients belonging to the first quartile corresponds to a 13-minute

reduction in travel time.26 Applying a $167 value per minute reduction in travel time (Gaynor et al.

2016; Gowrisankaran et al. 2015), the reduction in travel time yields a welfare effect of approximately

$2,211 (167× 13 = 2, 211 ) per patient.

To look at the gains in welfare based on how close patients live from the train station, we divide

the distance to the nearest train station into quartiles, and calculate changes in welfare separately

for patients belonging to each quartile. Patients who belong to the first quartile experience an

average increase of 0.3613 units in expected utility. This increase in welfare arises from a reduction

in travel time, and the resulting ability of patients to sort to better hospitals. As patients’ are

located further away from the train station, the benefit from the entry of the HST becomes smaller

(0.1578 units increase for patients belonging to the second quartile; 0.1193 units increase for patients

belonging to the third quartile; no change for patients belonging to the fourth quartile). The welfare

effect of the reduction in travel distance for patients who belong to the first quartile corresponds to

approximately $3,507 (167× 21 = 3, 507 ) per patient. Similarly, patients who belong to the second

and third quartiles experience a welfare gain corresponding to approximately $1,503 and $1,169,

respectively.

Next, we calculate the changes in welfare arising from changes in quality of clinical care, holding

the changes in travel time constant. Holding travel time constant, patients experience, on average,

an increase of 0.0174 units in expected utility. Applying the same back of the envelope calculations

as before to monetize the gains in utils, the improvement in clinical quality yields a welfare gain of

approximately $170 per patient.

Patients who belong to the first quartile in terms of distance to the nearest train experience an

average increase of 0.0160 units in expected utility; patients who belong to second and third quartiles

experience an increase of 0.0231 and 0.0166, respectively; patients who belong to the fourth quartile

experience an increase of 0.0089 utils. The increase in expected utility for patients belonging to the

fourth quartile arises from the fact that they face higher clinical quality even though they do not

benefit from the new transportation system. This corresponds to monetary gains of approximately

$156 for patient in the first quartile, $225 for patients in the second quartile, $161.99 for patient in

the third quartile and $86.84 for patients in the fourth quartile.

surplus by $167.
260.2264/(−1.7097) = −0.1324, where −1.7097 is the coefficient on travel time. Travel time in the regression is

defined in units of 100 minutes.
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time quality time & quality
total -0.2003 1.6575 1.8576
first quartile 0.1426 0.9155 1.0580
second quartile 0.0520 0.5895 0.6415
third quartile 0.0057 0.1105 -0.1161
fourth quartile 0 0.0420 0.0420

Table 12: Impact of the HST on Patient Survival

Finally, we calculate the changes in welfare arising from both changes in travel time and changes

in quality of clinical care. On average, the increase in expected utility is 0.2437, corresponding

to $2,380 per patient. Patients who belong to the first quartile experience an average increase of

0.3773 units in expected utility; patients who belong to the second and third quartiles experience

an increase of 0.1809 and 0.1359, respectively; patients who belong to the fourth quartile experience

an increase of 0.0089 (identical to the case when quality of clinical care changes, holding changes in

travel time constant). This yields a welfare gain of approximately $3,685 per patient for patients in

the first quartile, $1,767 in the second quartile, $1,327 in the third quartile, and $86.84 for patients

in the fourth quartile.

9.2 The Impact of Patients’ Sorting on Survival

The HST has enabled patients to choose hospitals that were previously difficult to consider due to

long travel distances. Therefore the HST has not only improved the quality of clinical care through

increased competition among hospitals, but has also increased the size of the choice set for the

patients which in turn has resulted in patients’ sorting to better hospitals. One way to directly

measure the benefits generated by the HST through its impact on patient sorting is to calculate

how many patients would have died in the post-HST period if the HST were to be removed, i.e.

post-HST period patients are faced with the pre-HST level travel time to the hospitals.

To implement this, we closely follow Gaynor et al. (2016) and calculate the expected differences in

mortality across all patients:

E(∆Mortality) =
∑
i

[E [Mortalityi(t1, q1)]− E [Mortalityi(t0, q0)]] , (21)
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where

E [Mortalityi(t1, q1)] =
∑
j

Prij (t1, q1) · Prob(Mortalityi|choice = j,Healthi), (22)

and

E [Mortalityi(t0, q0)] =
∑
j

Prij (t0, q0) · Prob(Mortalityi|choice = j,Healthi). (23)

The probability of patient i choosing hospital j is denoted by Prij (t, q). Equations (22) and (23)

denote the mortality probability with HST and without HST, respectively. The variableMortalityi

is an indicator variable which takes value 1 if the patient dies and 0 otherwise. As in the previ-

ous subsection, we also decompose the differences in mortality caused by reduced travel time and

improved clinical quality.

The results are reported in Table 12. We first assume the quality of clinical care does not change.

Our estimates from this counterfactual analysis suggest that 0.2003 lives of patients can be saved

from patients’ sorting. Since our data corresponds to a 2-percent random sample of the entire

population, this translates to approximately 10 lives over the five quarters, which is equivalent to 8

lives on an annual basis.27

As before, we divide the distance to the nearest train station into quartiles, and calculate the number

of lives saved separately for patients belonging to each quartile. Our calculations show that 0.1426

lives of patients in the first quartile (5.7 lives on an annual basis), 0.0520 lives of patients in the

second quartile (2.08 lives on an annual basis), 0.0057 lives of patient in the third quartile (0.228

lives on an annual basis), and 0 lives of patients in the fourth quartile can be saved due to patients’

sorting.

Next, we calculate how many lives are saved due to patient sorting when the quality of clinical care

also responds to the entry of HST. Our estimates suggest that 1.6575 lives (66.3 lives on an annual

basis) of patients can be saved. When we look at the patients by quartile, 0.9155 lives (36.62 lives

on an annual basis) of patients in the first quartile, 0.5895 lives of patients in the second quartile

(23.58 lives on an annual basis), 0.1105 lives of patient in the third quartile (4.42 lives on an annual

basis), and 0.0420 lives of patients in the fourth quartile can be saved (1.68 lives on an annual basis).

Finally we calculate how many lives are saved due to both the reduction in travel time and the

improvements in clinical quality. We find that 1.8576 lives (74 lives on an annual basis) of patients
270.2003 × 50 × (4/5) = 8.012
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can be saved. When we look at the patients by quartile, 1.0580 lives (42.32 lives on an annual

basis) of patients in the first quartile, 0.6415 lives of patients in the second quartile (25.7 lives on an

annual basis), 0.1161 lives of patient in the third quartile (4.6 lives on an annual basis), and 0.0420

lives of patients in the fourth quartile can be saved (1.68 lives on an annual basis).

10 Conclusion

This paper exploits the entry of HST in South Korea, which reduced patients’ travel costs, increas-

ing substitutability among hospitals and thereby increasing hospital competition. This exogenous

shock allows us to look at the impact of reduced travel time on patient behavior as well as to study

the causal impact of increased competition on hospital quality. Taking advantage of the differential

effects of the entry of the HST on hospitals located in different regions of the country, we use a

difference-in-differences approach to examine the impact of competition on health outcomes mea-

sured by 30-day mortality rates following admissions for surgeries. On the methodological side, we

utilize the heterogeneous effects of the entry of the HST on patients living in different areas of the

country to obtain a reliable measure of hospital-level quality of clinical care.

We find that the entry of the HST improves patient mobility, and that intensified hospital com-

petition leads to an improvement in clinical quality. To evaluate the overall impact of HST on

patient welfare, we estimate a structural model of hospital choice, allowing for a flexible forma-

tion of patients’ consideration set. We find that patients living near a HST station experience an

improvement in welfare arising from reduction in travel time as well as improvement in hospital

quality. Patients living further away from HST stations also experience an improvement in welfare

because, while they do not benefit from reduced travel time, they benefit from the improvement

in the quality of hospitals that affected by the entry of the HST. We also find that HST led to a

substantial improvement on the probability of patient survival through its effect on patient sorting,

even while holding hospital quality constant.

Overall, our paper suggests that increased hospital competition can lead to beneficial health out-

comes and that an improvement in transportation infrastructure can have a beneficial impact on

patients’ health by facilitating patients’ sorting to better hospitals through lower travel costs.
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Appendix A: Alternative measure of hospital quality

In this section, we present estimation results of equation 1 using an alternative measure of hospital

quality as in Gowrisankaran and Town (1999). Specifically, we obtain measure of hospital quality

by estimating a linear probability model where we regress mi on a set of hospital dummies and

patient’s observed characteristics. The mortality of patient i is given as

µit = ψ
′
ci + γ

′
hi + sit + ηit (24)

where µit is a dummy variable that denotes the death of patient i within 30 days of the admission,

ci is a vector of dummy variables where cijt equals 1 if patient i (i = 1, ..., N) chooses hospital j

(j = 1, ..., J), hi is a vector of patient characteristics that can affect mortality, sit is unobserved (by

the researcher) severity of illness, and ηit is an i.i.d. normal error term. The parameter vectors to

estimate are ψ and γ. With the linear probability model, the elements of estimated fixed effects ψ̂

are interpreted as the incremental probability of death from choosing a particular hospital condi-

tional on observed health status, and is used as our measure of quality of care. The coefficient vector

γ captures the impact of patients’ observed health status on the probability of death. Following

section 4.1, we will refer to the estimated measure of quality of care, ψ̂ as the adjusted mortality

rate. Because hospital choice is likely to be correlated with patients’ unobserved severity of illness,

estimating equation (24) using OLS will lead to biased estimates. For instance, if sicker patients are

more likely to choose a certain hospital j, then sit and cijt will be positively correlated, and hence

ψ̂j will be overestimated.

To address the endogeneity of hospital choice, we use two sets of instrumental variables for hospital

choice dummy variables (ci) : (i) the travel time to each hospital, and (ii) and instruments of the

form exp(−φ× traveltimeijt), where we define travel time for patient i to hospital j in period t as

traveltimeijt =


min(cartimeij , traintimeij) if t = post-HST & distpati <30 & disthj<30

cartimeij otherwise
(25)

Here cartimeij denotes the drive time from patient i’s location to hospital j by car, and traintimeij

is the travel time from patient i’s location to hospital j by HST. 28 distpati is the travel time from
28Note that traintimeij is obtained by summing the following three components: (i) drive time from i’s location to

i’s nearest HST station h, (ii) travel time from station h to station k, which is the closest HST station to hospital j
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patient i to the closest train station and disthj is the travel time from hospital j to the closest train

station. We constrain the effect of the HST to patients and hospitals living 30 minutes within the

train station. This is to account for the changes in travel time only for patients living sufficiently

close to the HST station in the post-HST era, and is based on the pattern in the data where there

are no significant differences in travel times in pre- and post- HST for patients living beyond 30

minutes of the HST station.

Formal specification tests for the validity of our instruments are provided in Table A.1.29 Our overi-

dentifying restrictions are valid as we fail to reject the null of the Sargan-Hansen overidentification

test. We reject the null hypothesis of the Hausman Endogeneity test which means that our OLS and

IV estimates are statistically different. We also perform the Wald-Test of Weak Instruments and

reject the hypothesis that our instruments are weak. These tests provide support for the validity of

our IV specification.

Sargan-Hansen χ2 60.5670
Overidentification Test p-value 0.9792
Hausman χ2 8,600
Endogeneity Test p-value 0.0000
Wald-Test of χ2 934.9818
Weak Instruments p-value 0.0000

Table A.1: Tests for Validity of Instruments

(1) (2)
OLS IV

dpost -0.0061 -.01088***
(0.0082) (0.0285)

dpost · disthj 0.0005 ** 0.0015**
(0.0002) (0.0007)

R2 0.5746 0.6502
hospital FE X X
number hospitals 42 42
Observations 84 84

Notes: Models are estimated using OLS with standard errors (in parentheses under coefficients). All regressions
include constants.
*** Significant at the 1 percent level; ** Significant at the 5 percent level;* Significant at the 10 percent level.

Table A.2: Diff-in-Diff Estimates of the Impact of Competition on Quality of Clinical Care

and (iii) drive time from station k to hospital j. We obtain driving time by car by using georoute routine developed
by Weber and Péclat (2017) which calculates the driving time between two points under normal traffic conditions.

29Note that we perform the specification tests for the data pooled across pre- and post- HST periods.
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In order to control for the observed case-mix at the patient-level, we first estimate equation (24)

using OLS, and use estimated ψ̂ as a measure of clinical quality to estimate equation (1). Note that

although this measure of quality controls for observed health status at the individual patient-level,

it does not control for unobserved (to the researcher) severity of illness which may be correlated with

patients’ hospital choice, and hence may be biased. The results are reported Table A.2, column

1. The DiD coefficient is positive and significant (β2 = 0.0005), i.e. when a hospital’s travel

time to a closest train station decreases by 1 minute (i.e. hospital is closer to the train station),

(adjusted) mortality rate decreases by 0.05 percentage points. As already mentioned, however,

simply controlling for observed patient case-mix is not sufficient to correctly measure the quality of

clinical care. Patients’ unobserved (to the researcher) severity of illness, which may be correlated

with hospital choice, may contaminate the quality of clinical care. We further control for patients’

unobserved severity of illness by instrumenting hospital choice dummy variables for each period

with travel time to each hospital, and use thus (using IV) obtained adjusted mortality rates as

the dependent variable to estimate equation (1). The results are reported in Table A.2, column 2.

After controlling for unobserved severity of illness, we see that the (absolute) magnitude of the DiD

coefficient has become larger. The DiD coefficient is 0.0015 and significant, suggesting that when

a hospital’s travel time to a closest train station decreases by 1 minute, (adjusted) mortality rate

decreases by 0.15 percentage points.
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Appendix B

To test to robustness of our findings to the specification of the prior distribution, we estimate the

selection model of section 4.1 using the following two variants of prior distribution specifications:

Variant 1 scales the prior standard deviations of α in the original selection model downward by a

factor of 5 and τ2 downward by a factor of 25. Variant 2 is the opposite of variant 1 in that the

prior standard deviations are scaled up by a factor of 5 relative to the base model. This is the same

approach used by Geweke et al. (2003) to test the sensitivity of their estimates to specifications of

the prior distribution. We then use measures of hospital quality from these two specifications to

estimation equation 1. Table B.1 provide the estimation results of equation 1 using the measures

of hospital quality obtained using these alternative prior distributions. The results are consistent

with the findings in section 6.

(1) (2)
prior variant 1 prior variant 2

dpost 0.0194 0.8249***
(0.0254) (0.0897)

dpost · disthj 0.0032*** 0.0093**
(0.0015) (0.0045)

R2 0.6241 0.6891
hospital FE X X
number hospitals 42 42
Observations 84 84

Notes: Models are estimated using OLS with standard errors (in parentheses under coefficients). All regressions
include constants.
*** Significant at the 1 percent level; ** Significant at the 5 percent level;* Significant at the 10 percent level.

Table B.1: Robustness to Prior Specification
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